1
|
Ke F, Zhang R, Chen R, Guo X, Song C, Gao X, Zeng F, Liu Q. The role of Rhizoma Paridis saponins on anti-cancer: The potential mechanism and molecular targets. Heliyon 2024; 10:e37323. [PMID: 39296108 PMCID: PMC11407946 DOI: 10.1016/j.heliyon.2024.e37323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/07/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer is a disease characterized by uncontrolled cell proliferation, leading to excessive growth and invasion that can spread to other parts of the body. Traditional Chinese medicine has made new advancements in the treatment of cancer, providing new perspectives and directions for cancer treatment. Rhizoma Paridis is a widely used Chinese herbal medicine with documented anti-cancer effects dating back to ancient times. Modern research has shown that Rhizoma Paridis saponins (RPS) have various pharmacological activities. RPS can inhibit cancer in multiple ways, such as suppressing tumor growth, inducing cell cycle arrest, promoting cell apoptosis, enhancing cell autophagy, inducing ferroptosis, reducing inflammation, inhibiting angiogenesis, as well as inhibiting metastasis and invasion, and these findings demonstrate the potent anti-cancer activity of RPS. Polyphyllin I, polyphyllin II, polyphyllin VI, and polyphyllin VII have been widely reported as the main active ingredients with anti-cancer properties. Polyphyllin D, polyphyllin E, and polyphyllin G have also been confirmed to possess strong anti-cancer activity in recent years. Therefore, this review dives deep into the molecular mechanisms underlying the anti-cancer effects of RPS to serve as a valuable reference for future scientific research and their potential applications in cancer treatment.
Collapse
Affiliation(s)
- Famin Ke
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Ranqi Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Rui Chen
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiurong Guo
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Can Song
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiaowei Gao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
2
|
Yang Y, Wang C, Wang J, Yang L, Lv Z, An Q, Wang Y, Shao X, Wang F, Huo T, Liu J, Luo H, Quan Q. Rhizoma Paridis saponins attenuate Gram-negative bacteria-induced inflammatory acne by binding to KEAP1 and modulating Nrf2 and MAPK pathways. J Cell Mol Med 2024; 28:e18146. [PMID: 38426932 PMCID: PMC10906378 DOI: 10.1111/jcmm.18146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/30/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024] Open
Abstract
Acne vulgaris represents a chronic inflammatory condition, the pathogenesis of which is closely associated with the altered skin microbiome. Recent studies have implicated a profound role of Gram-negative bacteria in acne development, but there is a lack of antiacne agents targeting these bacteria. Polyphyllins are major components of Rhizoma Paridis with great anti-inflammatory potential. In this study, we aimed to evaluate the antiacne effects and the underlying mechanisms of PPH and a PPH-enriched Rhizoma Paridis extract (RPE) in treating the Gram-negative bacteria-induced acne. PPH and RPE treatments significantly suppressed the mRNA and protein expressions of interleukin (IL)-1β and IL-6 in lipopolysaccharide (LPS)-induced RAW 264.7 and HaCaT cells, along with the intracellular reactive oxygen species (ROS) generation. Furthermore, PPH and RPE inhibited the nuclear translocation of nuclear factor kappa-B (NF-κB) P65 in LPS-induced RAW 264.7 cells. Based on molecular docking, PPH could bind to kelch-like ECH-associated protein 1 (KEAP1) protein. PPH and RPE treatments could activate nuclear factor erythroid 2-related factor 2 (NRF2) and upregulate haem oxygenase-1 (HO-1). Moreover, RPE suppressed the mitogen-activated protein kinase (MAPK) pathway. Therefore, PPH-enriched RPE showed anti-inflammatory and antioxidative effects in vitro, which is promising for alternative antiacne therapeutic.
Collapse
Affiliation(s)
- Yang Yang
- R&D DepartmentYunnan Baiyao Group Health Products Co., LtdKunmingYunnanChina
- R&D DepartmentEast Asia Skin Health Research CenterBeijingChina
- R&D DepartmentYunnan Baiyao Group Shanghai Science & Technology Co., LtdShanghaiChina
| | - Chaofan Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Juan Wang
- R&D DepartmentEast Asia Skin Health Research CenterBeijingChina
- Key Laboratory for Space Bioscience and Biotechnology, School of Life SciencesNorthwestern Polytechnical UniversityXi'anShaanxiChina
| | - Lingli Yang
- R&D DepartmentYunnan Baiyao Group Health Products Co., LtdKunmingYunnanChina
- R&D DepartmentEast Asia Skin Health Research CenterBeijingChina
- R&D DepartmentYunnan Baiyao Group Shanghai Science & Technology Co., LtdShanghaiChina
| | - Zheng Lv
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Quan An
- R&D DepartmentYunnan Baiyao Group Health Products Co., LtdKunmingYunnanChina
- R&D DepartmentEast Asia Skin Health Research CenterBeijingChina
- R&D DepartmentYunnan Baiyao Group Shanghai Science & Technology Co., LtdShanghaiChina
| | - Yiming Wang
- R&D DepartmentEast Asia Skin Health Research CenterBeijingChina
| | - Xue Shao
- R&D DepartmentYunnan Baiyao Group Health Products Co., LtdKunmingYunnanChina
- R&D DepartmentEast Asia Skin Health Research CenterBeijingChina
- R&D DepartmentYunnan Baiyao Group Shanghai Science & Technology Co., LtdShanghaiChina
| | - Fei Wang
- R&D DepartmentYunnan Baiyao Group Health Products Co., LtdKunmingYunnanChina
- R&D DepartmentEast Asia Skin Health Research CenterBeijingChina
- R&D DepartmentYunnan Baiyao Group Shanghai Science & Technology Co., LtdShanghaiChina
| | - Tong Huo
- R&D DepartmentYunnan Baiyao Group Health Products Co., LtdKunmingYunnanChina
- R&D DepartmentEast Asia Skin Health Research CenterBeijingChina
- R&D DepartmentYunnan Baiyao Group Shanghai Science & Technology Co., LtdShanghaiChina
| | - Jiali Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Haoshu Luo
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Qianghua Quan
- R&D DepartmentYunnan Baiyao Group Health Products Co., LtdKunmingYunnanChina
- R&D DepartmentEast Asia Skin Health Research CenterBeijingChina
- R&D DepartmentYunnan Baiyao Group Shanghai Science & Technology Co., LtdShanghaiChina
| |
Collapse
|
3
|
Li Y, Lu Y, Nian M, Sheng Q, Zhang C, Han C, Dou X, Ding Y. Therapeutic potential and mechanism of Chinese herbal medicines in treating fibrotic liver disease. Chin J Nat Med 2023; 21:643-657. [PMID: 37777315 DOI: 10.1016/s1875-5364(23)60443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 10/02/2023]
Abstract
Liver fibrosis is a pathological condition characterized by replacement of normal liver tissue with scar tissue, and also the leading cause of liver-related death worldwide. During the treatment of liver fibrosis, in addition to antiviral therapy or removal of inducers, there remains a lack of specific and effective treatment strategies. For thousands of years, Chinese herbal medicines (CHMs) have been widely used to treat liver fibrosis in clinical setting. CHMs are effective for liver fibrosis, though its mechanisms of action are unclear. In recent years, many studies have attempted to determine the possible mechanisms of action of CHMs in treating liver fibrosis. There have been substantial improvements in the experimental investigation of CHMs which have greatly promoted the understanding of anti-liver fibrosis mechanisms. In this review, the role of CHMs in the treatment of liver fibrosis is described, based on studies over the past decade, which has addressed the various mechanisms and signaling pathways that mediate therapeutic efficacy. Among them, inhibition of stellate cell activation is identified as the most common mechanism. This article provides insights into the research direction of CHMs, in order to expand its clinical application range and improve its effectiveness.
Collapse
Affiliation(s)
- Yanwei Li
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Yunrui Lu
- Liaoning University of Traditional Chinese Medicine, Shenyang 110000, China
| | - Mozuo Nian
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Qiuju Sheng
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Chong Zhang
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Chao Han
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Xiaoguang Dou
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Yang Ding
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China.
| |
Collapse
|
4
|
Li S, Hao L, Hu X. Natural products target glycolysis in liver disease. Front Pharmacol 2023; 14:1242955. [PMID: 37663261 PMCID: PMC10469892 DOI: 10.3389/fphar.2023.1242955] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
Mitochondrial dysfunction plays an important role in the occurrence and development of different liver diseases. Oxidative phosphorylation (OXPHOS) dysfunction and production of reactive oxygen species are closely related to mitochondrial dysfunction, forcing glycolysis to become the main source of energy metabolism of liver cells. Moreover, glycolysis is also enhanced to varying degrees in different liver diseases, especially in liver cancer. Therefore, targeting the glycolytic signaling pathway provides a new strategy for the treatment of non-alcoholic fatty liver disease (NAFLD) and liver fibrosis associated with liver cancer. Natural products regulate many steps of glycolysis, and targeting glycolysis with natural products is a promising cancer treatment. In this review, we have mainly illustrated the relationship between glycolysis and liver disease, natural products can work by targeting key enzymes in glycolysis and their associated proteins, so understanding how natural products regulate glycolysis can help clarify the therapeutic mechanisms these drugs use to inhibit liver disease.
Collapse
Affiliation(s)
- Shenghao Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liyuan Hao
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Luo Z, Wang T, Zhang Z, Zeng H, Yi M, Li P, Pan J, Zhu C, Lin N, Liang S, Verkhratsky A, Nie H. Polyphyllin VI screened from Chonglou by cell membrane immobilized chromatography relieves inflammatory pain by inhibiting inflammation and normalizing the expression of P2X 3 purinoceptor. Front Pharmacol 2023; 14:1117762. [PMID: 36865911 PMCID: PMC9971013 DOI: 10.3389/fphar.2023.1117762] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Objective: Inflammatory pain is one of the most common diseases in daily life and clinic. In this work, we analysed bioactive components of the traditional Chinese medicine Chonglou and studied mechanisms of their analgesic effects. Material and methods: Molecular docking technology and U373 cells overexpressing P2X3 receptors combined with the cell membrane immobilized chromatography were used to screen possible CL bioactive molecules interacting with the P2X3 receptor. Moreover, we investigated the analgesic and anti-inflammatory effects of Polyphyllin VI (PPIV), in mice with chronic neuroinflammatory pain induced by CFA (complete Freund's adjuvant). Results: The results of cell membrane immobilized chromatography and molecular docking showed that PPVI was one of the effective compounds of Chonglou. In mice with CFA-induced chronic neuroinflammatory pain, PPVI decreased the thermal paw withdrawal latency and mechanical paw withdrawal threshold and diminished foot edema. Additionally, in mice with CFA-induced chronic neuroinflammatory pain, PPIV reduced the expression of the pro-inflammatory factors IL-1, IL-6, TNF-α, and downregulated the expression of P2X3 receptors in the dorsal root ganglion and spinal cord. Conclusion: Our work identifies PPVI as a potential analgesic component in the Chonglou extract. We demonstrated that PPVI reduces pain by inhibiting inflammation and normalizing P2X3 receptor expression in the dorsal root ganglion and spinal cord.
Collapse
Affiliation(s)
- Zhenhui Luo
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Tingting Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhenglang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Hekun Zeng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Mengqin Yi
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Peiyang Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Jiaqin Pan
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Chunyan Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shangdong Liang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School, Nanchang University, Nanchang, Jiangxi, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom,*Correspondence: Alexei Verkhratsky, ; Hong Nie,
| | - Hong Nie
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China,*Correspondence: Alexei Verkhratsky, ; Hong Nie,
| |
Collapse
|
6
|
Li J, Jia J, Zhu W, Chen J, Zheng Q, Li D. Therapeutic effects on cancer of the active ingredients in rhizoma paridis. Front Pharmacol 2023; 14:1095786. [PMID: 36895945 PMCID: PMC9989034 DOI: 10.3389/fphar.2023.1095786] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Cancer is a major threat to human health, with high mortality and a low cure rate, continuously challenging public health worldwide. Extensive clinical application of traditional Chinese medicine (TCM) for patients with poor outcomes of radiotherapy and chemotherapy provides a new direction in anticancer therapy. Anticancer mechanisms of the active ingredients in TCM have also been extensively studied in the medical field. As a type of TCM against cancer, Rhizoma Paridis (Chinese name: Chonglou) has important antitumor effects in clinical application. The main active ingredients of Rhizoma Paridis (e.g., total saponins, polyphyllin I, polyphyllin II, polyphyllin VI, and polyphyllin VII) have shown strong antitumor activities in various cancers, such as breast cancer, lung cancer, colorectal cancer, hepatocellular carcinoma (HCC), and gastric cancer. Rhizoma Paridis also has low concentrations of certain other active ingredients with antitumor effects, such as saponins polyphyllin E, polyphyllin H, Paris polyphylla-22, gracillin, and formosanin-C. Many researchers have studied the anticancer mechanism of Rhizoma Paridis and its active ingredients. This review article describes research progress regarding the molecular mechanism and antitumor effects of the active ingredients in Rhizoma Paridis, suggesting that various active ingredients in Rhizoma Paridis may be potentially therapeutic against cancer.
Collapse
Affiliation(s)
- Jie Li
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Jinhao Jia
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Weiwei Zhu
- Clinical Trial Agency, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Jianfei Chen
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Qiusheng Zheng
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Defang Li
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
7
|
Wang G, Yan M, Hao R, Lv P, Wang Y, Man S, Gao W. Q-marker identification of Paris polyphylla var. yunnanensis (Franch.) Hand.-Mazz. in pulmonary metastasis of liver cancer mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115311. [PMID: 35461989 DOI: 10.1016/j.jep.2022.115311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhizoma Paridis saponins (RPS) as the mainly active components of Paris polyphylla var. yunnanensis (Franch.) Hand.-Mazz., possess tumor therapeutic potential. However, the anti-tumor material basis of RPS in liver cancer pulmonary metastasis remains poorly understood. The objective of this study was to identify the distribution and anti-cancer effects of RPS in liver cancer pulmonary metastatic model. MATERIALS AND METHODS In this study, a mouse liver cancer pulmonary metastasis model was established to determine the distribution of different saponins in the tissues by UPLC-MS and plasma protein binding rate. RESULTS As a result, RPS prolonged the survival time and inhibited the pulmonary metastasis in H22 injected mice through its underlying mechanism. UPLC-MS identified saponins from RPS such as PVII, PH, PVI, PII, gracillin and PI in tissues, which may be regarded as the Q-markers in RPS. Surprisingly, the concentration of PI, PII and gracillin as diosgenyl saponins was higher than that of pennogenyl saponins in the liver and lung. Besides, plasma protein binding rate of PII was higher than that of PVII. CONCLUSION These findings suggested that PVII, PH, PVI, PI, PII and gracillin are regarded as the Q-markers of RPS in liver cancer pulmonary metastasis. The concentration of PI, PII and gracillin as diosgenyl saponins was higher than that of pennogenyl saponins in the liver and lung. It would be helpful for understanding the importance of RPS with anticancer activities in the future.
Collapse
Affiliation(s)
- Genbei Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin, 300072, China; State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China; Tasly Academy, Tasly Holding Group Co., Ltd., No.2 Pujihe East Road, Tasly TCM Garden, Beichen District, Tianjin, 300410, China
| | - Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Ruijia Hao
- Tasly Academy, Tasly Holding Group Co., Ltd., No.2 Pujihe East Road, Tasly TCM Garden, Beichen District, Tianjin, 300410, China
| | - Panpan Lv
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yu Wang
- Tasly Academy, Tasly Holding Group Co., Ltd., No.2 Pujihe East Road, Tasly TCM Garden, Beichen District, Tianjin, 300410, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
8
|
Chemical Constituents and Pharmacological Activities of Steroid Saponins Isolated from Rhizoma Paridis. J CHEM-NY 2021. [DOI: 10.1155/2021/1442906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rhizoma Paridis, the rhizome of liliaceous plants Paris polyphylla, is one of the most commonly used herbal drugs in China. Phytochemical and pharmacological studies have shown that steroid saponins were the major effective ingredients of Rhizoma Paridis to exert antitumor, anti-inflammatory, hemostasis, and antifibrosis functions. In this review, we discussed the chemical structures of steroid saponins and their related biological activity and mechanisms in cellular and animal models, aiming to provide a reference for future comprehensive exploitation and development of saponins.
Collapse
|
9
|
Guan L, Ju B, Zhao M, Zhu H, Chen L, Wang R, Gao H, Wang Z. Influence of drying process on furostanoside and spirostanoside profiles of Paridis Rhizoma by combination of HPLC, UPLC and UPLC-QTOF-MS/MS analyses. J Pharm Biomed Anal 2021; 197:113932. [PMID: 33618136 DOI: 10.1016/j.jpba.2021.113932] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022]
Abstract
Drying method is one of the important factors affecting quality of traditional Chinese medicine. To study the effect of shaded drying and hot air drying on steroidal saponins of Paridis Rhizoma (PR), high performance liquid chromatography (HPLC) analysis was used to investigate the difference of Paris polyphylla var. chinensis (PPC) samples treated by different methods, and then, a rapid and reliable ultra-high performance liquid chromatography (UPLC) method was established to quantitatively analyze the content change of ten steroidal saponins. Hot air drying at 50 ℃ could obviously improve the content of polyphyllin Ⅶ, 17-hydroxygracillin and polyphyllin H, which were major steroidal saponins in PPC. Based on that, the main component changes induced by different drying methods were further analyzed using ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS), and the structural identification of varied components revealed that hot air drying could promote the transformation of proto-pennogenyl glycosides to pennogenyl glycosides. This phenomenon was also found in other plants of genus Paris rich in diosgenyl glycosides. The present study provided a useful method for improving quality of PR and valuable information for TCM containing steroidal saponins.
Collapse
Affiliation(s)
- Liangjun Guan
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Boya Ju
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Meng Zhao
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450008, China
| | - Houda Zhu
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450008, China
| | - Liangmian Chen
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Rui Wang
- Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Huimin Gao
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Zhimin Wang
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
10
|
Xiong K, Shi M, Zhang T, Han H. Protective effect of picroside I against hepatic fibrosis in mice via sphingolipid metabolism, bile acid biosynthesis, and PPAR signaling pathway. Biomed Pharmacother 2020; 131:110683. [PMID: 32942155 DOI: 10.1016/j.biopha.2020.110683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/11/2020] [Accepted: 08/20/2020] [Indexed: 12/31/2022] Open
Abstract
Picroside I, a hepatoprotectant isolated from Picrorhiza kurroa Royle ex Benth and P. scrophulariiflora Pennell, can reduce liver injury in humans and animals. However, its anti-fibrosis effect remains elusive. This work aimed to explore the mechanism underlying the hepatoprotective effect of picroside I against hepatic fibrosis. Male mice (12 mice per group) were randomly divided into six groups: the control group; the model group, which received thioacetamide (TAA); the positive group, which received TAA + S-(5'-adenosyl)-l-methionine (SAMe, 10 mg/kg); the low-dose group, which received TAA + picroside I (25 mg/kg); the middle-dose group, which received TAA + picroside I (50 mg/kg); and the high-dose group, which received TAA + picroside I (75 mg/kg). Serum biochemical indicators were detected, and histological evaluation was performed. Metabolomics and proteomic analyses were conducted via liquid-chromatography coupled with tandem mass spectrometry (LC-MS/MS). Data showed that picroside I could decrease the serum levels of alanine transaminase (ALT), aspartate transaminase (AST), collagen type IV (CIV), N-terminal peptide of type III procollagen (PIIINP), laminin (LN), and hyaluronic acid (HA) and reduced fibrosis area. Picroside I altered metabolomic profiles, including energy, lipid, and glutathione (GSH) metabolism, in ice with fibrosis. Additionally, 25 differentially expressed proteins in the picroside I high-dose-treated group were reversed relative to in the model group. These proteins were involved in the sphingolipid signaling pathway, primary bile acid biosynthesis, and peroxisome proliferator-activated receptor (PPAR) signaling pathway. Moreover, this study revealed how picroside I could protect against TAA-induced liver fibrosis in mice. Results indicated that picroside I can serve as a candidate drug for hepatic fibrosis.
Collapse
Affiliation(s)
- Kai Xiong
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China
| | - Mengge Shi
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China.
| | - Han Han
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; Institute of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China.
| |
Collapse
|
11
|
Su G, Wang H, Bai J, Chen G, Pei Y. A Metabonomics Approach to Drug Toxicology in Liver Disease and its Application in Traditional Chinese Medicine. Curr Drug Metab 2019; 20:292-300. [PMID: 30599107 DOI: 10.2174/1389200220666181231124439] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/30/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The progression of liver disease causes metabolic transformation in vivo and thus affects corresponding endogenous small molecular compounds. Metabonomics is a powerful technology which is able to assess global low-molecular-weight endogenous metabolites in a biological system. This review is intended to provide an overview of a metabonomics approach to the drug toxicology of diseases of the liver. METHODS The regulation of, and relationship between, endogenous metabolites and diseases of the liver is discussed in detail. Furthermore, the metabolic pathways involved in drug interventions of liver diseases are reviewed. Evaluation of the protective mechanisms of traditional Chinese medicine in liver diseases using metabonomics is also reviewed. Examples of applications of metabolite profiling concerning biomarker discovery are highlighted. In addition, new developments and future prospects are described. RESULTS Metabonomics can measure changes in metabolism relating to different stages of liver disease, so metabolic differences can provide a basis for the diagnosis, treatment and prognosis of various diseases. CONCLUSION Metabonomics has great advantages in all aspects of the therapy of liver diseases, with good prospects for clinical application.
Collapse
Affiliation(s)
- Guangyue Su
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haifeng Wang
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiao Bai
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Gang Chen
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuehu Pei
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
12
|
Zhao B, Wang Z, Han J, Wei G, Yi B, Li Z. Rhizoma Paridis total saponins alleviate H2O2‑induced oxidative stress injury by upregulating the Nrf2 pathway. Mol Med Rep 2019; 21:220-228. [PMID: 31746361 PMCID: PMC6896395 DOI: 10.3892/mmr.2019.10827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 05/29/2019] [Indexed: 01/08/2023] Open
Abstract
Rhizoma Paridis total saponins (RPTS) is an active substance isolated from the traditional Chinese medicine Rhizoma Paridis, which possesses multiple biological activities. The aim of the present study was to explore the roles and mechanisms of RPTS in oxidative stress injury of ARPE-19 human retinal pigment epithelial cells. Cell viability, reactive oxygen species (ROS) levels, mitochondrial membrane potential (MMP) and apoptosis were determined by Cell Counting kit-8 assay and flow cytometry, respectively. Enzyme-linked immunosorbent assay was performed to detect the expression of oxidative stress markers. Western blotting and reverse transcription-quantitative polymerase chain reaction were used to determine the expression levels of related genes and proteins. The results revealed that RPTS enhanced cell viability and reduced H2O2-induced oxidative stress of ARPE-19 human retinal pigment epithelial cells. RPTS increased the MMP of ARPE-19 cells compared with in H2O2-treated ARPE-19 cells. In addition, RPTS suppressed ROS production and apoptosis of H2O2-treated ARPE-19 cells. Additionally, RPTS modulated the expression levels of apoptosis-associated proteins and the nuclear factor 2-related factor 2 (Nrf2) pathway. In conclusion, RPTS alleviated H2O2-induced oxidative stress injury by upregulating the Nrf2 pathway. The potential effects of RPTS on protection against H2O2-induced apoptosis of ARPE-19 cells suggested that RPTS may be a potential therapeutic target for preventing age-related macular degeneration.
Collapse
Affiliation(s)
- Baocheng Zhao
- Department of General Surgery, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Zhenjun Wang
- Department of General Surgery, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Jiagang Han
- Department of General Surgery, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Guanghui Wei
- Department of General Surgery, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Bingqiang Yi
- Department of General Surgery, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Zhulin Li
- Department of General Surgery, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| |
Collapse
|
13
|
Liu XW, Tang CL, Zheng H, Wu JX, Wu F, Mo YY, Liu X, Zhu HJ, Yin CL, Cheng B, Ruan JX, Song FM, Chen ZN, Song H, Guo HW, Liang YH, Su ZH. Investigation of the hepatoprotective effect of Corydalis saxicola Bunting on carbon tetrachloride-induced liver fibrosis in rats by 1H-NMR-based metabonomics and network pharmacology approaches. J Pharm Biomed Anal 2018; 159:252-261. [DOI: 10.1016/j.jpba.2018.06.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/30/2018] [Accepted: 06/30/2018] [Indexed: 12/30/2022]
|
14
|
Zhang Y, Zhang M, Li H, Zhao H, Wang F, He Q, Zhang T, Wang S. Serum metabonomics study of the hepatoprotective effect of amarogentin on CCl4-induced liver fibrosis in mice by GC-TOF-MS analysis. J Pharm Biomed Anal 2018; 149:120-127. [DOI: 10.1016/j.jpba.2017.10.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 01/02/2023]
|
15
|
Xu W, Pei Y, Xu S, Wang H, Jin P. Metabolic Profiling Analysis of the Alleviation Effect of the Fractions of Niuhuang Jiedu Tablet on Realgar Induced Toxicity in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:2154603. [PMID: 29599804 PMCID: PMC5828372 DOI: 10.1155/2018/2154603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/05/2017] [Accepted: 12/20/2017] [Indexed: 02/08/2023]
Abstract
Niuhuang Jiedu Tablet (NJT) is a classical formula in treating acute tonsillitis, pharyngitis, and so on. In the formula, significant level of Realgar as a potentially toxic element is contained. Our previous experiments revealed that it was less toxic for combined Realgar in NJT. However, the active fraction of this prescription with toxicity alleviation effect on Realgar was still obscure. NJT was divided into five different polar fractions (NJT-PET, NJT-25, NJT-50, NJT-75, and NJT-95), and we explored the toxicity alleviation effect on Realgar. Based on 1H NMR spectra of urine and serum from rats, PCA and PLS-DA were performed to identify different metabolic profiles. Liver and kidney histopathology examinations and serum clinical chemistry analysis were also performed. With pattern recognition analysis of metabolites in urine and serum, Realgar group showed a clear separation from control group, while the metabolic profiles of NJT-PET, NJT-25, NJT-50, and NJT-95 groups were similar to Realgar group, and the metabolic profiles of NJT and NJT-75 groups were very close to control group. Statistics results were confirmed by the histopathological examination and biochemical assay. The present work indicated that 75% EtOH fraction of NJT was the most valid fraction with the toxicity alleviation effect on Realgar.
Collapse
Affiliation(s)
- Wenfeng Xu
- Department of Pharmacy, National Center of Gerontology, Beijing Hospital, Beijing 100730, China
| | - Yuehu Pei
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuo Xu
- Department of Pharmacy, National Center of Gerontology, Beijing Hospital, Beijing 100730, China
| | - Haifeng Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Pengfei Jin
- Department of Pharmacy, National Center of Gerontology, Beijing Hospital, Beijing 100730, China
| |
Collapse
|
16
|
Wang G, Liu Y, Wang Y, Gao W. Effect of Rhizoma Paridis saponin on the pain behavior in a mouse model of cancer pain. RSC Adv 2018; 8:17060-17072. [PMID: 35539228 PMCID: PMC9080318 DOI: 10.1039/c8ra00797g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/13/2018] [Indexed: 11/21/2022] Open
Abstract
Rhizoma Paridis saponins (RPS) as active parts of P. polyphylla Smith var. yunnanensis has been used as an anti-cancer drug in traditional Chinese medicine. In this study, RPS was first found to demonstrate a potent effect on markedly reducing the pain induced by cancer. Therefore, the aim of this study was to further explore the analgesic effect of RPS and its possible reaction pathway on H22 hepatocarcinoma cells inoculated in the hind right paw of mice. Cancer-induced pain model mice were randomly divided into 5 groups (n = 10) and orally administered with RPS (50–200 mg kg−1) for 2 weeks. On the last day of treatment, the pain behavior of mice was measured using hot-plate test and open field test, and brain tissues were sampled for detection of biochemical indices, malondialdehyde (MDA), superoxide dismutase (SOD), prostaglandin E2 (PGE2), serotonin (5-HT) and β-endorphin (β-EP). Moreover, the concentrations of NF-κB and IL-1β in the blood serum were measured by ELISA reagent kits. In addition, naloxone, the non-selective antagonist of opioid receptors, was used to identify the opioid receptors involved in RPS's action. It has been found that RPS alleviates cancer pain mainly via the suppression of inflammatory pain induced by oxidative damage, such as decreasing MDA and PGE2 levels, renewing activity of SOD, as well as increasing 5-HT and β-EP in the brain and suppressing the expression of NF-κB and IL-1β in the serum in a concentration-dependent manner. Overall, the current study highlights that RPS has widespread potential antinociceptive effects on a mouse model of chronic cancer pain, which may be associated with the peripheral nervous system and the central nervous system. Rhizoma Paridis saponins (RPS) as active parts of P. polyphylla Smith var. yunnanensis has been used as an anti-cancer drug in traditional Chinese medicine.![]()
Collapse
Affiliation(s)
- Genbei Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yuanxue Liu
- Tasly Academy
- Tasly Holding Group Co., Ltd
- Tianjin 300410
- China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine
| | - Yu Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
17
|
Chen G, Li J, Yan S, Lin H, Wu J, Zhai X, Song Y, Li J. Biotransformation of 20(R)-panaxatriol by Mucor racemosus and the anti-hepatic fibrosis activity of some products. Nat Prod Res 2016; 31:1880-1885. [DOI: 10.1080/14786419.2016.1263850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Guangtong Chen
- School of Pharmacy, Nantong University, Nantong, P.R. China
| | - Jie Li
- School of Pharmacy, Nantong University, Nantong, P.R. China
| | - Sensen Yan
- School of Pharmacy, Nantong University, Nantong, P.R. China
| | - Haijun Lin
- School of Pharmacy, Nantong University, Nantong, P.R. China
| | - Juanjuan Wu
- School of Medical, Nantong University, Nantong, P.R. China
| | - Xuguang Zhai
- School of Medical, Nantong University, Nantong, P.R. China
| | - Yan Song
- School of Pharmacy, Nantong University, Nantong, P.R. China
| | - Jianlin Li
- School of Pharmacy, Nantong University, Nantong, P.R. China
| |
Collapse
|
18
|
Hong Y, Han YQ, Wang YZ, Gao JR, Li YX, Liu Q, Xia LZ. Paridis Rhizoma Sapoinins attenuates liver fibrosis in rats by regulating the expression of RASAL1/ERK1/2 signal pathway. JOURNAL OF ETHNOPHARMACOLOGY 2016; 192:114-122. [PMID: 27396351 DOI: 10.1016/j.jep.2016.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/10/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE Paridis Rhizoma is a Chinese medicinal herb that has been used in liver disease treatment for thousands of years. Our previous studies found that Paridis Rhizoma saponins (PRS) are the critical components of Paridis Rhizoma which has good liver protection effect. However, the anti-hepatic fibrosis effect and the mechanism of PRS have seldom been reported. AIM OF THE STUDY To investigate the potential of PRS in the treatment of experimental liver fibrosis and the underlying mechanism. MATERIALS AND METHODS The chemical feature fingerprint of PRS was analyzed by UPLC-PDA. A total of 40 Male Sprague-Dawley (SD) rats were randomly divided into the control group, the model group, the PRS high dose group (PRS H) and the PRS low dose group (PRS L) with 10 rats in each group. The model, PRS H and L groups as liver fibrosis models were established with carbon tetrachloride (CCl4) method. PRS H and L groups were adopted PRS (300 and 150mg/kgd-1) treatment since the twelfth week of modeling till the sixteenth week. Pathological changes in hepatic tissue were examined using hematoxylin and eosin (H&E) and MASSON trichrome staining. Immunohistochemical analysis was performed to determine the protein expression of the RASAL1. RT-PCR and western blotting were used to detect the expression of ERK1/2 mRNA and protein. RESULTS Four saponins in PRS were identified from 19 detected chromatographic peaks on UPLC-PDA by comparing to the standard compounds. PRS can improve the degeneration and necrosis of hepatic tissue, reduce the extent of its fibrous hyperplasia according to H&E and MASSON staining detection. As was detected in PRS H and L groups, PRS down-regulated p-ERK1/2 mRNA and RASAL1 protein, and up-regulated the level of p-ERK1/2 mRNA and RASAL1 protein. CONCLUSION These results demonstrated that PRS can attenuate CCl4-induced liver fibrosis through the regulation of RAS/ERK1/2 signal pathway.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Carbon Tetrachloride
- Chemical and Drug Induced Liver Injury/enzymology
- Chemical and Drug Induced Liver Injury/pathology
- Chemical and Drug Induced Liver Injury/prevention & control
- Chromatography, High Pressure Liquid
- Cytoprotection
- GTPase-Activating Proteins/genetics
- GTPase-Activating Proteins/metabolism
- Gene Expression Regulation, Enzymologic
- Hyperplasia
- Immunohistochemistry
- Liver/drug effects
- Liver/enzymology
- Liver/pathology
- Liver Cirrhosis, Experimental/chemically induced
- Liver Cirrhosis, Experimental/enzymology
- Liver Cirrhosis, Experimental/pathology
- Liver Cirrhosis, Experimental/prevention & control
- Male
- Melanthiaceae/chemistry
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/metabolism
- Necrosis
- Phosphorylation
- Phytotherapy
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Plants, Medicinal
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Reverse Transcriptase Polymerase Chain Reaction
- Saponins/isolation & purification
- Saponins/pharmacology
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Yan Hong
- Anhui University of Chinese Medicine, Hefei, Anhui 230031, China.
| | - Yan-Quan Han
- The First Affiliated Hospital, Anhui University of Chinese Medicine, Grade 3 Laboratory of TCM Preparation, State Administration of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China.
| | - Yong-Zhong Wang
- The First Affiliated Hospital, Anhui University of Chinese Medicine, Grade 3 Laboratory of TCM Preparation, State Administration of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China.
| | - Jia-Rong Gao
- The First Affiliated Hospital, Anhui University of Chinese Medicine, Grade 3 Laboratory of TCM Preparation, State Administration of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China.
| | - Yu-Xin Li
- Anhui University of Chinese Medicine, Hefei, Anhui 230031, China; The First Affiliated Hospital, Anhui University of Chinese Medicine, Grade 3 Laboratory of TCM Preparation, State Administration of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China.
| | - Qing Liu
- Anhui University of Chinese Medicine, Hefei, Anhui 230031, China; The First Affiliated Hospital, Anhui University of Chinese Medicine, Grade 3 Laboratory of TCM Preparation, State Administration of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China.
| | - Lun-Zhu Xia
- The First Affiliated Hospital, Anhui University of Chinese Medicine, Grade 3 Laboratory of TCM Preparation, State Administration of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China.
| |
Collapse
|
19
|
Wu Z, Zhang J, Xu F, Wang Y, Zhang J. Rapid and simple determination of polyphyllin I, II, VI, and VII in different harvest times of cultivated Paris polyphylla Smith var. yunnanensis (Franch.) Hand.-Mazz by UPLC-MS/MS and FT-IR. J Nat Med 2016; 71:139-147. [PMID: 27665608 DOI: 10.1007/s11418-016-1043-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/06/2016] [Indexed: 11/30/2022]
Abstract
Paris Polyphylla Smith var. yunnanensis (Franch.) Hand.-Mazz ("Dian Chonglou" in Chinese) is a famous herbal medicine in China, which is usually well known for activities of anti-cancer, hemolysis, and cytotoxicity. In this study, Fourier transform infrared (FT-IR) spectroscopy coupled with principal component analysis (PCA) and partial least-squares regression (PLSR) was applied to discriminate samples of P. polyphylla var. yunnanensis harvested in different years and determine the content of polyphyllin I, II, VI, and VII in P. polyphylla var. yunnanensis. Meanwhile, ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to study the dynamic changes of P. polyphylla var. yunnanensis harvested in different years (4, 5, 7, 8, 9, 12, and 13 years old). According to the UPLC-MS/MS result, the optimum harvest time of P. polyphylla var. yunnanensis is 8 years, due to the highest yield of four active components. By the PCA model, P. polyphylla var. yunnanensis could be exactly discriminated, except that two 8-year-old samples were misclassified as 9-year-old samples. For the prediction of polyphyllin I, II, VI, and VII, the quantitative results are satisfactory, with a high value for the determination coefficient (R 2) and low values for the root-mean-square error of estimation (RMSEE), root-mean-square error of cross-validation (RMSECV), and root-mean-square error of prediction (RMSEP). In conclusion, FT-IR combined with chemometrics is a promising method to accurately discriminate samples of P. polyphylla var. yunnanensis harvested in different years and determine the content of polyphyllin I, II, VI, and VII in P. polyphylla var. yunnanensis.
Collapse
Affiliation(s)
- Zhe Wu
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, People's Republic of China.,Yunnan Technical Center for Quality of Chinese Materia Medica, Kunming, 650200, People's Republic of China.,College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, People's Republic of China
| | - Ji Zhang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, People's Republic of China.,Yunnan Technical Center for Quality of Chinese Materia Medica, Kunming, 650200, People's Republic of China
| | - Furong Xu
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, People's Republic of China
| | - Yuanzhong Wang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, People's Republic of China. .,Yunnan Technical Center for Quality of Chinese Materia Medica, Kunming, 650200, People's Republic of China.
| | - Jinyu Zhang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, People's Republic of China. .,Yunnan Technical Center for Quality of Chinese Materia Medica, Kunming, 650200, People's Republic of China. .,College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, People's Republic of China.
| |
Collapse
|
20
|
Liu J, Man S, Liu Z, Ma L, Gao W. A synergistic antitumor effect of polyphyllin I and formosanin C on hepatocarcinoma cells. Bioorg Med Chem Lett 2016; 26:4970-4975. [PMID: 27623551 DOI: 10.1016/j.bmcl.2016.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/25/2016] [Accepted: 09/02/2016] [Indexed: 12/22/2022]
Abstract
Polyphyllin I (PPI) and formosanin C (FC) were regarded as effective and imperative components isolated from Rhizoma Paridis saponins (RPS) and exhibited strong anti-tumor effects on a variety of cancers. With the wide application of complex mixtures in clinics, synergistic interactions are of vital importance in phytomedicine. Therefore, it is of inherent importance to study whether there is a synergistic anti-tumor effect on PPI and FC from one herb. In this study, the viability was detected by MTT assay. The combination index (CI) analysis was used to assess their synergistic effect. Consequently, there was a synergistic anti-tumor effect between PPI and FC at a ratio of 1:1. The CI value was less than 1.0. Their combination significantly increased their single G1 phase arrest and mitochondria-dependent apoptotic pathway. Meanwhile, PPI and FC reduced the ability of cell migration. In conclusion, polyphyllin I and formosanin C showed a synergistic anti-tumor effect on hepatocarcinoma cells. The findings would provide the foundation for the use of RPS in the future.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuli Man
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Zhen Liu
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Long Ma
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
21
|
Liu J, Man S, Li J, Zhang Y, Meng X, Gao W. Inhibition of diethylnitrosamine-induced liver cancer in rats by Rhizoma paridis saponin. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 46:103-109. [PMID: 27451357 DOI: 10.1016/j.etap.2016.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/07/2016] [Accepted: 07/10/2016] [Indexed: 06/06/2023]
Abstract
Rhizoma Paridis saponin (RPS) had been regarded as the main active components responsible for the anti-tumor effects of the herb Paris polyphylla var. yunnanensis (Franch.) Hand.-Mazz. In the present research, we set up a rat model of diethylnitrosamine (DEN) induced hepatoma to evaluate antitumor effect of RPS. After 20 weeks treatment, rats were sacrificed to perform histopathological examinations, liver function tests, oxidative stress assays and so forth. As a result, DEN-induced hepatoma formation. RPS alleviated levels of liver injury through inhibiting liver tissues of malondialdehyde (MDA) and nitric oxide (NO) formation, increasing superoxide dismutases (SOD) production, and up-regulating expression of GST-α/μ/π in DEN-induced rats. All in all, RPS would be a potent agent inhibiting chemically induced liver cancer in the prospective application.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Shuli Man
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Jing Li
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yang Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xin Meng
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
22
|
Chen P, Jin H, Sun L, Ma S. Multi‐component determination and chemometric analysis of
Paris polyphylla
by ultra high performance liquid chromatography with photodiode array detection. J Sep Sci 2016; 39:3550-7. [DOI: 10.1002/jssc.201600259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/20/2016] [Accepted: 07/20/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Pei Chen
- National Institutes for Food and Drug Control Beijing China
| | - Hong‐yu Jin
- National Institutes for Food and Drug Control Beijing China
| | - Lei Sun
- National Institutes for Food and Drug Control Beijing China
- Xinjiang Institute for Food and Drug Control Urumqi China
| | | |
Collapse
|
23
|
Zhou LF, He FG, Lu BZ, Chen FY. A Traditional Chinese Medicine Shaoyao Ruangan Heji
Ameliorates Carbon Tetrachloride-induced Liver Injury Through
Multiple Stress and Toxicity Pathways. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.317.328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Zhang H, Siegel CT, Shuai L, Lai J, Zeng L, Zhang Y, Lai X, Bie P, Bai L. Repair of liver mediated by adult mouse liver neuro-glia antigen 2-positive progenitor cell transplantation in a mouse model of cirrhosis. Sci Rep 2016; 6:21783. [PMID: 26905303 PMCID: PMC4764864 DOI: 10.1038/srep21783] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/01/2016] [Indexed: 02/07/2023] Open
Abstract
NG2-expressing cells are a population of periportal vascular stem/progenitors (MLpvNG2(+) cells) that were isolated from healthy adult mouse liver by using a "Percoll-Plate-Wait" procedure. We demonstrated that isolated cells are able to restore liver function after transplantation into a cirrhotic liver, and co-localized with the pericyte marker (immunohistochemistry: PDGFR-β) and CK19. Cells were positive for: stem cell (Sca-1, CD133, Dlk) and liver stem cell markers (EpCAM, CD14, CD24, CD49f); and negative for: hematopoietic (CD34, CD45) and endothelial markers (CD31, vWf, von Willebrand factor). Cells were transplanted (1 × 10(6) cells) in mice with diethylnitrosamine-induced cirrhosis at week 6. Cells showed increased hepatic associated gene expression of alpha-fetoprotein (AFP), Albumin (Alb), Glucose-6-phosphatase (G6Pc), SRY (sex determining region Y)-box 9 (Sox9), hepatic nuclear factors (HNF1a, HNF1β, HNF3β, HNF4α, HNF6, Epithelial cell adhesion molecule (EpCAM), Leucine-rich repeated-containing G-protein coupled receptor 5-positive (Lgr5) and Tyrosine aminotransferase (TAT). Cells showed decreased fibrogenesis, hepatic stellate cell infiltration, Kupffer cells and inflammatory cytokines. Liver function markers improved. In a cirrhotic liver environment, cells could differentiate into hepatic lineages. In addition, grafted MLpvNG2(+) cells could mobilize endogenous stem/progenitors to participate in liver repair. These results suggest that MLpvNG2(+) cells may be novel adult liver progenitors that participate in liver regeneration.
Collapse
Affiliation(s)
- Hongyu Zhang
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Christopher T. Siegel
- Department of Surgery, Division of Hepatobiliary and Abdominal Organ Transplantation, Case Western Reserve University Hospital, Cleveland OH 44106, USA
| | - Ling Shuai
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Jiejuan Lai
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Linli Zeng
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Yujun Zhang
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Xiangdong Lai
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Ping Bie
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Lianhua Bai
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| |
Collapse
|
25
|
Li J, Man S, Qiu P, Fan W, Zhang L, Gao W. Toxicological risks of Rhizoma paridis saponins in rats involved NF-κB and Nrf2 signaling. RSC Adv 2016. [DOI: 10.1039/c5ra27521k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aim of the study is to evaluate the safety of long-term use of Rhizoma paridis saponins (RPS).
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Industrial Microbiology
- Ministry of Education
- College of Biotechnology
- Tianjin University of Science & Technology
- Tianjin
| | - Shuli Man
- Key Laboratory of Industrial Microbiology
- Ministry of Education
- College of Biotechnology
- Tianjin University of Science & Technology
- Tianjin
| | - Peiyu Qiu
- Key Laboratory of Industrial Microbiology
- Ministry of Education
- College of Biotechnology
- Tianjin University of Science & Technology
- Tianjin
| | - Wei Fan
- Key Laboratory of Industrial Microbiology
- Ministry of Education
- College of Biotechnology
- Tianjin University of Science & Technology
- Tianjin
| | - Liming Zhang
- Key Laboratory of Industrial Microbiology
- Ministry of Education
- College of Biotechnology
- Tianjin University of Science & Technology
- Tianjin
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin
- China
| |
Collapse
|
26
|
Shi J, Cao B, Wang XW, Aa JY, Duan JA, Zhu XX, Wang GJ, Liu CX. Metabolomics and its application to the evaluation of the efficacy and toxicity of traditional Chinese herb medicines. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1026:204-216. [PMID: 26657802 DOI: 10.1016/j.jchromb.2015.10.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/27/2015] [Accepted: 10/14/2015] [Indexed: 12/12/2022]
Abstract
Traditional Chinese herb medicines (TCHMs) have been used in the treatment of a variety of diseases for thousands of years in Asian countries. The active components of TCHMs usually exert combined synergistic therapeutic effects on multiple targets, but with less potential therapeutic effect based on routine indices than Western drugs. These complex effects make the assessment of the efficacy of TCHMs and the clarification of their underlying mechanisms very challenging, and therefore hinder their wider application and acceptance. Metabolomics is a crucial part of systems biology. It allows the quantitative measurement of large numbers of the low-molecular endogenous metabolites involved in metabolic pathways, and thus reflects the fundamental metabolism status of the body. Recently, dozens of metabolomic studies have been devoted to prove the efficacy/safety, explore the underlying mechanisms, and identify the potential biomarkers to access the action targets of TCHMs, with fruitful results. This article presents an overview of these studies, focusing on the progress made in exploring the pharmacology and toxicology of various herbal medicines.
Collapse
Affiliation(s)
- Jian Shi
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, Jiangsu Key laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China; Pharmacy Department, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Bei Cao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, Jiangsu Key laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China; Pharmacy Department, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Xin-Wen Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, Jiangsu Key laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Ji-Ye Aa
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, Jiangsu Key laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China.
| | - Jin-Ao Duan
- Key Lab of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuan-Xuan Zhu
- Key Lab of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guang-Ji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, Jiangsu Key laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Chang-Xiao Liu
- Research Center of New Drug Evaluation, The National Laboratory of Pharmacodynamics and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| |
Collapse
|
27
|
Man S, Li J, Fan W, Chai H, Liu Z, Gao W. Inhibition of pulmonary adenoma in diethylnitrosamine-induced rats by Rhizoma paridis saponins. J Steroid Biochem Mol Biol 2015. [PMID: 26196122 DOI: 10.1016/j.jsbmb.2015.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Nowadays, people pay more and more attention to the natural products based on their multiple targets in the antitumor treatment. In our previous research, Rhizoma paridis saponins (RPS) were regarded as potent anticancer agent that elicits programmed cell death and inhibits metastases in murine lung adenocarcinoma in vivo. In the present study, we set up a rat model of diethylnitrosamine (DEN) induced pulmonary adenoma to evaluate the antitumor effects of RPS again. After 20 weeks treatment, rats were sacrificed in order to perform histopathological examinations, blood biochemistry, immunohistochemistry, western blot, PCR and metabonomics. As a result, DEN induced pulmonary adenoma generation in the lungs and damaged hepatocytes and hepatoma formation in the livers. RPS effectively attenuated hepatotoxic and inhibited pulmonary adenoma through down-regulating expression of MMP-9 and up-regulating level of TIMP-2 in DEN-induced rats. Meanwhile, RPS remarkably decreased energy metabolism, and glycine, serine and threonine metabolism to block the tumor growth. In conclusion, RPS would be a potent anticancer agent used in the prospective application.
Collapse
Affiliation(s)
- Shuli Man
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jing Li
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Fan
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Hongyan Chai
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhen Liu
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenyuan Gao
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
28
|
Yan S, Tian S, Kang Q, Xia Y, Li C, Chen Q, Zhang S, Li Z. Rhizoma Paridis Saponins Suppresses Tumor Growth in a Rat Model of N-Nitrosomethylbenzylamine-Induced Esophageal Cancer by Inhibiting Cyclooxygenases-2 Pathway. PLoS One 2015; 10:e0131560. [PMID: 26147856 PMCID: PMC4493120 DOI: 10.1371/journal.pone.0131560] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/27/2015] [Indexed: 11/19/2022] Open
Abstract
Rhizoma Paridis Saponins (RPS), a natural compound purified from Rhizoma Paridis, has been found to inhibit cancer growth in vitro and in animal models of cancer. However, its effects on esophageal cancer remain unexplored. The purpose of this study was to investigate the effects of RPS on tumor growth in a rat model of esophageal cancer and the molecular mechanism underlying the effects. A rat model of esophageal cancer was established by subcutaneous injection of N-nitrosomethylbenzylamine (NMBA, 1mg/kg) for 10 weeks. RPS (350 mg/kg or 100mg/kg) was administered by oral gavage once daily for 24 weeks starting at the first NMBA injection. RPS significantly reduced the size and number of tumors in the esophagus of rats exposed to NMBA and inhibited the viability, migration, and invasion of esophageal cancer cells EC9706 and KYSE150 in a dose dependent manner (all P < 0.01). Flow cytometry revealed that RPS induced apoptosis and cell cycle G2/M arrest in the esophageal cancer cells. The expression of cyclooxygenases-2 (COX-2) and Cyclin D1 in rat esophageal tissues and the esophageal cancer cells were also significantly reduced by RPS (all P < 0.01). Consistently, RPS also significantly decreased the release of prostaglandin E2, a downstream molecule of COX-2, in a dose-dependent manner (P < 0.01). Our study suggests that RPS inhibit esophageal cancer development by promoting apoptosis and cell cycle arrest and inhibiting the COX-2 pathway. RPS might be a promising therapeutic agent for esophageal cancer.
Collapse
Affiliation(s)
- Shu Yan
- Departments of Pharmacology, Nankai Hospital, Tianjin, P. R. China
| | - Shuxia Tian
- Departments of Pharmacology, Nankai Hospital, Tianjin, P. R. China
| | - Qingwei Kang
- Departments of Pharmacology, Nankai Hospital, Tianjin, P. R. China
| | - Yafei Xia
- Departments of Pharmacology, Nankai Hospital, Tianjin, P. R. China
| | - Caixia Li
- Institute of Integrative Medicine Therapy for Acute Abdominal Diseases of Tianjin, Nankai Hospital, Tianjin, P. R. China
| | - Qing Chen
- Department of Pharmacology, Taizhou Hospital, Taizhou City, Zhejiang Province, P.R. China
| | - Shukun Zhang
- Institute of Integrative Medicine Therapy for Acute Abdominal Diseases of Tianjin, Nankai Hospital, Tianjin, P. R. China
| | - Zhigang Li
- Department of Thoracic Surgery, Nankai Hospital, Nankai District, Tianjin, P. R. China
- * E-mail:
| |
Collapse
|