1
|
Francis MF, Vianney SJM, Heitz-Tokpa K, Kreppel K. Risks of snakebite and challenges to seeking and providing treatment for agro-pastoral communities in Tanzania. PLoS One 2023; 18:e0280836. [PMID: 36763599 PMCID: PMC9916632 DOI: 10.1371/journal.pone.0280836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/09/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Continuous occurrence of snakebite incidences and the vulnerability of some communities remain a critical problem in sub-Saharan Africa. Despite causing permanent disability to almost half a million people annually and numerous deaths, snakebite and associated complications are still largely neglected. This study aimed at elucidating risk factors associated with snakebite cases, treatment availability and case management practices for vulnerable agro-pastoralist communities in Northern Tanzania. METHODS Data was collected in the Monduli (Arusha region) and the Simanjiro (Manyara region) districts in Tanzania. Interviews with 101 snakebite victims or their guardians and 13 health professionals from 3 health centers in the districts were conducted. Additionally, case records of patients admitted between 2007 and 2019 to the Meserani Snakebite Clinic were obtained. RESULTS This study showed that appropriate treatment for snakebite including anti-venom, is difficult to access and that snakebite incidences were significantly linked to factors such as gender, age, socio-economic activity, season of the year, and whether being at home or out in the fields. Anti-venom and trained health professionals were only available at the Meserani Snake Park Clinic. Men were bitten most often (χ2 = 62.08, df = 4, p-value < 0.0001). Overall, adults between the ages of 18 and 60 years (χ2 = 62.08, df = 4, p-value < 0.0001) received most bites, usually while outdoors herding cattle in the dry season. A significant majority of victims looked for traditional treatment first (52.7%, χ2 = 29.541, df = 2, p-value = 0.0001). The results of this study present crucial information on what is needed to improve the accessibility to appropriate treatment after a snakebite among agro-pastoral communities. CONCLUSION The situation regarding morbidity and mortality due to the inaccessibility of common treatment for snakebite in northern Tanzania is challenging. Reliance on traditional medicine exacerbates the situation. There is dire need to involve affected communities, researchers, the government, clinicians and the public in general, to work together and take part in the global snakebite initiative. Communities and health professionals recognise the underlying challenges and have valuable suggestions on how to improve the situation.
Collapse
Affiliation(s)
- Monica Fredrick Francis
- Department of Global Health and Biomedical Sciences, School of Life Sciences and Bio-Engineering, Nelson Mandela - African Institution of Science and Technology, Arusha, Tanzania
- * E-mail:
| | - Sr. John-Mary Vianney
- Department of Global Health and Biomedical Sciences, School of Life Sciences and Bio-Engineering, Nelson Mandela - African Institution of Science and Technology, Arusha, Tanzania
| | - Kathrin Heitz-Tokpa
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Katharina Kreppel
- Department of Global Health and Biomedical Sciences, School of Life Sciences and Bio-Engineering, Nelson Mandela - African Institution of Science and Technology, Arusha, Tanzania
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
2
|
Konrath EL, Strauch I, Boeff DD, Arbo MD. The potential of Brazilian native plant species used in the therapy for snakebites: A literature review. Toxicon 2022; 217:17-40. [PMID: 35952835 DOI: 10.1016/j.toxicon.2022.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 01/14/2023]
Abstract
Snakebite envenoming is a potentially fatal disease categorized as a neglected public health issue for not receiving the appropriate attention from national and international health authorities. The most affected people by this problem usually live in poor rural communities, where medical resources are often sparse and, in some instances, there is even a scarcity of serum therapy. The administration of the appropriate antivenom is the only specific treatment available, however it has limited efficacy against venom-induced local effects. In this scenario, various plant species are used as local first aid for the treatment of snakebite accidents in Brazil, and some of them can effectively inhibit lethality, neurotoxicity, hemorrhage, and venom enzymes activities. This review compiles a list of plants used in the treatment of snakebites in Brazil, focusing on the native Brazilian species registered in the databases Pubmed, Scielo, Scopus and Google Scholar. All these searches were limited to peer-reviewed journals written in English, with the exception of a few articles written in Portuguese. The most cited native plant species were Casearia sylvestris Sw., Eclipta prostrata (L.) L., Mikania glomerata Spreng., Schizolobium parahyba (Vell.) S.F.Blake and Dipteryx alata Vogel, all used to decrease the severity of toxic signs, inhibit proteolytic and hemorrhagic activities, thus increasing survival time and neutralizing myotoxicity effects. Different active compounds showing important activity against the snake venoms and their toxins include flavonoids, alkaloids and tannins. Although some limitations to the experimental studies with medicinal plants were observed, including lack of comparison with control drugs and unknown active extracts compounds, species with anti-venom characteristics are effective and considered as candidates for the development of adjuvants in the treatment of snake envenomation. Further studies on the chemistry and pharmacology of traditionally used plant species will help to understand the role that snakebite herbal remedies may display in local medical health systems. It might also contribute to the development of alternative or complementary treatments to reduce the number of severe disabilities and deaths.
Collapse
Affiliation(s)
- Eduardo Luis Konrath
- Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, 90610-000, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, 90610-000, Porto Alegre, RS, Brazil.
| | - Iara Strauch
- Laboratório de Toxicologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, 90620-170, Porto Alegre, RS, Brazil
| | - Daiana Daniele Boeff
- Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, 90610-000, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, 90610-000, Porto Alegre, RS, Brazil
| | - Marcelo Dutra Arbo
- Laboratório de Toxicologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, 90620-170, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, 90610-000, Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Otho AA, Memon RA, Abro SA, Memon AA. Elemental Analysis of Medicinal Herb Fagonia indica Burm. f. and Its Rhizospheric Soil from Six Geographical Locations of South-eastern Sindh Province, Pakistan, During Spring and Summer Seasons. Biol Trace Elem Res 2022; 200:2439-2454. [PMID: 34398418 DOI: 10.1007/s12011-021-02873-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
This study hypothesized that seasons and geography may affect the elemental composition of Fagonia indica. The plant was sampled along with rhizospheric soil, from six hilly geographical sites of Sindh, during March (Spring) and July (Summer) and analyzed through ICP-OES. Among 20 elements detected, the elemental concentration of rhizospheric soil was significantly affected by geography rather than seasons. The rhizospheric soil elements, Fe, Mg, Hg, K, Mn, Na, Zn, Al, were hyper-concentrated, B, Ba, Cr, Cu, Pb, Sr were moderately concentrated, and As, Cd, Ni, Rb, Ti, V were concentrated in trace levels. Contrarily, elements in Fagonia indica biomass were significantly affected by both seasons and geography. K, Na, Fe, Hg, Al, Mn, Sr, Cr, Ti, V were hyperaccumulated during summer, while Mg, Zn, As, Ba, Cd, and Cu accumulated higher during spring. PCA reveals that elements with high variances were homogenously distributed to all sites except Rohri during spring, while during summer most elements were accumulated at Johi, Dadu, Jamshoro, and Karachi. In conclusion, the plant accumulates high concentration of heavy metals during summer and higher concentration of essential nutrients during spring; therefore, its collection for oral use can be recommended during spring.
Collapse
Affiliation(s)
- Aijaz Ali Otho
- Plant Ecology & Environmental Biology Lab., Institute of Plant Sciences, University of Sindh, Jamshoro, Pakistan
| | - Rabia Asma Memon
- Plant Ecology & Environmental Biology Lab., Institute of Plant Sciences, University of Sindh, Jamshoro, Pakistan
| | - Saeed Akhter Abro
- Plant Ecology & Environmental Biology Lab., Institute of Plant Sciences, University of Sindh, Jamshoro, Pakistan.
| | - Ayaz Ali Memon
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| |
Collapse
|
4
|
Chakkinga Thodi R, Ibrahim JM, Nair AS, Thacheril Sukumaran S. Exploring the potent inhibitor β-stigmasterol from Pittosporum dasycaulon Miq. leaves against snake venom phospholipase A2 protein through in vitro and molecular dynamics behavior approach. TOXIN REV 2022. [DOI: 10.1080/15569543.2021.2021946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Junaida M. Ibrahim
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, India
| | - Achuthsankar S. Nair
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, India
| | | |
Collapse
|
5
|
Oliveira ICF, Yoshida EH, Dini MMJ, Paschoal ABO, Cogo JC, da Cruz-Höfling MA, Hyslop S, Oshima-Franco Y. Evaluation of Protection by Caffeic Acid, Chlorogenic Acid, Quercetin and Tannic Acid against the In Vitro Neurotoxicity and In Vivo Lethality of Crotalus durissus terrificus (South American Rattlesnake) Venom. Toxins (Basel) 2021; 13:toxins13110801. [PMID: 34822584 PMCID: PMC8623703 DOI: 10.3390/toxins13110801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Systemic envenomation by Crotalus durissus terrificus (South American rattlesnake) can cause coagulopathy, rabdomyolysis, acute kidney injury, and peripheral neuromuscular blockade, the latter resulting in flaccid paralysis. Previous studies have shown that plant products such as tannic acid and theaflavin can protect against the neuromuscular blockade caused by C. d. terrificus venom in vitro. In this work, we used mouse-isolated phrenic nerve-diaphragm preparations to examine the ability of caffeic acid, chlorogenic acid, and quercetin to protect against C. d. terrificus venom-induced neuromuscular blockade in vitro. In addition, the ability of tannic acid to protect against the systemic effects of severe envenomation was assessed in rats. Preincubation of venom with caffeic acid (0.5 mg/mL), chlorogenic acid (1 mg/mL), or quercetin (0.5 mg/mL) failed to protect against venom (10 μg/mL)-induced neuromuscular blockade. In rats, venom (6 mg kg−1, i.p.) caused death in ~8 h, which was prevented by preincubation of venom with tannic acid or the administration of antivenom 2 h post-venom, whereas tannic acid given 2 h post-venom prolonged survival (~18.5 h) but did not prevent death. Tannic acid (in preincubation protocols or given 2 h post-venom) had a variable effect on blood creatinine and urea and blood/urine protein levels and prevented venom-induced leukocytosis. Tannic acid attenuated the histological lesions associated with renal damage in a manner similar to antivenom. The protective effect of tannic acid appeared to be mediated by interaction with venom proteins, as assessed by SDS-PAGE. These findings suggest that tannic acid could be a potentially useful ancillary treatment for envenomation by C. d. terrificus.
Collapse
Affiliation(s)
- Isadora Caruso Fontana Oliveira
- Post-Graduate Program in Pharmaceutical Sciences, University of Sorocaba (UNISO), Rodovia Raposo Tavares km 92.5, Sorocaba 18023-000, SP, Brazil; (I.C.F.O.); (E.H.Y.); (M.M.J.D.); (A.B.O.P.)
| | - Edson Hideaki Yoshida
- Post-Graduate Program in Pharmaceutical Sciences, University of Sorocaba (UNISO), Rodovia Raposo Tavares km 92.5, Sorocaba 18023-000, SP, Brazil; (I.C.F.O.); (E.H.Y.); (M.M.J.D.); (A.B.O.P.)
| | - Murilo Melo Juste Dini
- Post-Graduate Program in Pharmaceutical Sciences, University of Sorocaba (UNISO), Rodovia Raposo Tavares km 92.5, Sorocaba 18023-000, SP, Brazil; (I.C.F.O.); (E.H.Y.); (M.M.J.D.); (A.B.O.P.)
| | - Ana Beatriz Olívio Paschoal
- Post-Graduate Program in Pharmaceutical Sciences, University of Sorocaba (UNISO), Rodovia Raposo Tavares km 92.5, Sorocaba 18023-000, SP, Brazil; (I.C.F.O.); (E.H.Y.); (M.M.J.D.); (A.B.O.P.)
| | - José Carlos Cogo
- Bioengineering and Biomedical Engineering Programs, Technological and Scientific Institute, Brazil University, Rua Carolina Fonseca, 584/235, São Paulo 08230-030, SP, Brazil;
| | - Maria Alice da Cruz-Höfling
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas 13083-862, SP, Brazil;
| | - Stephen Hyslop
- Department of Translational Medicine (Section of Pharmacology), Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Campinas 13083-970, SP, Brazil;
| | - Yoko Oshima-Franco
- Post-Graduate Program in Pharmaceutical Sciences, University of Sorocaba (UNISO), Rodovia Raposo Tavares km 92.5, Sorocaba 18023-000, SP, Brazil; (I.C.F.O.); (E.H.Y.); (M.M.J.D.); (A.B.O.P.)
- Correspondence: ; Tel.: +55-15-21010-7197; Fax: +55-15-2101-7112
| |
Collapse
|
6
|
Gutiérrez JM, Albulescu LO, Clare RH, Casewell NR, Abd El-Aziz TM, Escalante T, Rucavado A. The Search for Natural and Synthetic Inhibitors That Would Complement Antivenoms as Therapeutics for Snakebite Envenoming. Toxins (Basel) 2021; 13:451. [PMID: 34209691 PMCID: PMC8309910 DOI: 10.3390/toxins13070451] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 12/28/2022] Open
Abstract
A global strategy, under the coordination of the World Health Organization, is being unfolded to reduce the impact of snakebite envenoming. One of the pillars of this strategy is to ensure safe and effective treatments. The mainstay in the therapy of snakebite envenoming is the administration of animal-derived antivenoms. In addition, new therapeutic options are being explored, including recombinant antibodies and natural and synthetic toxin inhibitors. In this review, snake venom toxins are classified in terms of their abundance and toxicity, and priority actions are being proposed in the search for snake venom metalloproteinase (SVMP), phospholipase A2 (PLA2), three-finger toxin (3FTx), and serine proteinase (SVSP) inhibitors. Natural inhibitors include compounds isolated from plants, animal sera, and mast cells, whereas synthetic inhibitors comprise a wide range of molecules of a variable chemical nature. Some of the most promising inhibitors, especially SVMP and PLA2 inhibitors, have been developed for other diseases and are being repurposed for snakebite envenoming. In addition, the search for drugs aimed at controlling endogenous processes generated in the course of envenoming is being pursued. The present review summarizes some of the most promising developments in this field and discusses issues that need to be considered for the effective translation of this knowledge to improve therapies for tackling snakebite envenoming.
Collapse
Affiliation(s)
- José María Gutiérrez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica; (T.E.); (A.R.)
| | - Laura-Oana Albulescu
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (L.-O.A.); (R.H.C.); (N.R.C.)
| | - Rachel H. Clare
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (L.-O.A.); (R.H.C.); (N.R.C.)
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (L.-O.A.); (R.H.C.); (N.R.C.)
| | - Tarek Mohamed Abd El-Aziz
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt;
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | - Teresa Escalante
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica; (T.E.); (A.R.)
| | - Alexandra Rucavado
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica; (T.E.); (A.R.)
| |
Collapse
|
7
|
Dey A, Hazra AK, Mukherjee A, Nandy S, Pandey DK. Chemotaxonomy of the ethnic antidote Aristolochia indica for aristolochic acid content: Implications of anti-phospholipase activity and genotoxicity study. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113416. [PMID: 32980485 DOI: 10.1016/j.jep.2020.113416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/02/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aristolochia indica L. (Aristolochiaceae) is a common medicinal plant described in many traditional medicine as well as in Ayurveda used against snakebites. Besides, the plant has also been reported traditionally against fever, rheumatic arthritis, madness, liver ailments, dyspepsia, oedema, leishmaniasis, leprosy, dysmenorrhoea, sexual diseases etc. The plant is known to contain its major bioactive constituent aristolochic acid (AA) known for its anti-snake venom, abortifacient, antimicrobial and antioxidant properties. MATERIALS AND METHODS This present work describes a validated, fast and reproducible high performance thin layer chromatography (HPTLC) method to estimate AA from the roots of 20 chemotypes of A. indica procured from 20 diverse geographical locations from the state of West Bengal, India. Further, an evidence-based approach was adopted to investigate the reported anti-venom activity of the aqueous extracts of the A. indica roots by assessing its phospholipase A2 (PLA2) inhibitory properties since PLA2 is a major component of many snake-venoms. Finally, the cytotoxicity and genotoxicity of the aqueous root extract of the Purulia (AI 1) chemotype were assessed at various concentrations using Allium cepa root meristematic cells. RESULTS The highest amount of AA (7643.67 μg/g) was determined in the roots of A. indica chemotype collected from Purulia district followed by the chemotypes collected from Murshidabad, Jalpaiguri and Birbhum districts (7398.34, 7345.09 and 6809.97 μg/g respectively). This study not only determines AA in the plants to select pharmacologically elite chemotypes of A. indica, but it also identifies high AA producing A. indica for further domestication and propagation of the plants for pharmacological and industrial applications. The method was validated via analyzing inter-day and intra-day precision, repeatability, reproducibility, instrumental precision, limit of detection (LOD) and limit of quantification (LOQ) and specificity. Chemotypes with high AA content exhibited superior anti-PLA2 activity by selectively inhibiting human-group PLA2. Moreover, A. indica root extract significantly inhibited mitosis in Allium cepa root tips as a potent clastogen. CONCLUSIONS The present quick, reproducible and validated HPTLC method provides an easy tool to determine AA in natural A. indica plant populations as well as in food and dietary supplements, a potential antivenin at one hand and a possible cause of aristolochic acid nephropathy (AAN) at another. Besides, the cytotoxic and mitotoxic properties of the root extracts should be used with caution especially for oral administration.
Collapse
Affiliation(s)
- Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India.
| | - Alok Kumar Hazra
- IRDM Faculty Centre, Ramakrishna Mission Ashrama, Kolkata, India
| | | | - Samapika Nandy
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Devendra Kumar Pandey
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, India.
| |
Collapse
|
8
|
Plenge-Tellechea LF, Acosta-Lara S, Rodrigo-García J, Álvarez-Parrilla E, Meléndez-Martínez D, Gatica-Colima A, Sierra-Fonseca JA. Cytoprotective effects of creosote bush ( Larrea tridentata) and Southern live oak ( Quercus virginiana) extracts against toxicity induced by venom of the black-tailed rattlesnake ( Crotalus ornatus). Drug Chem Toxicol 2020; 45:1698-1706. [PMID: 33297789 DOI: 10.1080/01480545.2020.1856864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The venom of Crotalus ornatus (vCo) poses a threat to human health, as it contains a mixture of toxins that can cause cytotoxic, necrotic, and hemolytic effects. The present study assessed methanolic and acetone extracts from leaves and flowers of Larrea tridentata, as well as the bark of Quercus virginiana as potential suppressors of the toxic effects of vCo in vitro. The content of total phenols, flavonoids, and tannins of the plant extracts were quantified for the suppression of vCo cytotoxicity in two cell culture models, human lymphocytes and porcine aortic endothelial (PAE) cells. Extracts from Q. virginiana displayed a greater concentration of total phenols, flavonoids, and tannins. Co-incubation of lymphocytes and PAE cells with fixed concentrations of vCo and plant extracts resulted in decreased vCo-induced cytotoxicity. A 24-hour co-incubation of lymphocytes with vCo (2.36 ± 0.17 µg/mL) and 0.5 µg/mL of methanolic leaf extract from L. tridentata (LLM) significantly suppressed the venom-induced cytotoxicity by 37.33 ± 8.33%. Similarly, the LLM extract (4 µg/mL) caused a significant decrease in vCo cytotoxicity after 24 hours in PAE cells. In contrast, while the acetone extract of Q. virginiana bark (QA) suppressed cytotoxicity by 29.20 ± 3.51% (p < 0.001) in lymphocytes, it failed to protect PAE cells against vCo after 24 hours. In PAE cells, a shorter 4-hour co-incubation showed significant suppression of cytotoxicity with both extracts. Our results collectively suggest that LLM and QA possess cytoprotective properties against the in vitro toxic effects of vCo, and thus establish extracts from these plants as potential therapeutic interventions against Crotalus envenomation.
Collapse
Affiliation(s)
| | - Sergio Acosta-Lara
- Departamento de Ciencias Químico-Biológicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | - Joaquín Rodrigo-García
- Departamento de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Chihuahua, México
| | - Emilio Álvarez-Parrilla
- Departamento de Ciencias Químico-Biológicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | - David Meléndez-Martínez
- Departamento de Ciencias Químico-Biológicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | - Ana Gatica-Colima
- Departamento de Ciencias Químico-Biológicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | - Jorge A Sierra-Fonseca
- Departamento de Ciencias Químico-Biológicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| |
Collapse
|
9
|
Nayak AG, Kumar N, Shenoy S, Roche M. Anti-snake venom and methanolic extract of Andrographis paniculata: a multipronged strategy to neutralize Naja naja venom acetylcholinesterase and hyaluronidase. 3 Biotech 2020; 10:476. [PMID: 33083200 PMCID: PMC7561646 DOI: 10.1007/s13205-020-02462-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/03/2020] [Indexed: 12/15/2022] Open
Abstract
The study investigates the ability of methanolic extract of Andrographis paniculata (MAP) to supplement polyvalent anti-snake venom (ASV) in inhibiting neurotoxic enzyme acetylcholinesterase (AChE) and ‘spreading factor’ hyaluronidase from Naja naja (N.N) venom. AChE and hyaluronidase activity were measured in 100 or 200 µg of crude venom, respectively, and designated as ‘control’. In Test Group I, enzyme assays were performed immediately after the addition of ASV/MAP/ASV + MAP to the venom. Inhibition of AChE by ASV (100–367 µg) was 12–17%, and of hyaluronidase (22–660 µg) was 33–41%. Under the same conditions, MAP (100–400 µg) inhibited AChE and hyaluronidase to the extent of 17–33% and 17–52%, respectively. When ASV (220 µg) and MAP (100–200 µg) were added together, AChE and hyaluronidase were inhibited to a greater extent from 39–63 to 36–44%, than when either of them was used alone. In Test Group 2, the venom was incubated with ASV/MAP/ASV + MAP for 10–30 min at 37 °C prior to the assay which enhanced AChE inhibition by 6%, 82% and 18% respectively, when compared to Test Group I. Though there was no change in inhibition of hyaluronidase in the presence of ASV, MAP could further increase the extent of inhibition by 27% and ASV + MAP upto 4%. In Test Group III, venom and substrate were incubated for 90 min and hyaluronidase activity was measured after the addition of inhibitors. Here, ASV + MAP caused increased inhibition by 69% compared to ASV alone. The study confirms the ability of phytochemicals in MAP to contribute to a multipronged strategy by supplementing, thereby augmenting the efficacy of ASV.
Collapse
Affiliation(s)
- Akshatha Ganesh Nayak
- Department of Biochemistry, Melaka Manipal Medical College (Manipal Campus), Manipal Academy of Higher Education, Manipal-576104, Karnataka India
| | - Nitesh Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka India
| | - Maya Roche
- Department of Biochemistry, Melaka Manipal Medical College (Manipal Campus), Manipal Academy of Higher Education, Manipal-576104, Karnataka India
| |
Collapse
|
10
|
S Cesar PH, Trento MV, Sales TA, A Simão A, C Ramalho T, Marcussi S. Vanillic acid as phospholipase A 2 and proteases inhibitor: In vitro and computational analyses. Biotechnol Appl Biochem 2020; 68:486-496. [PMID: 32420666 DOI: 10.1002/bab.1943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
Abstract
Enzymatic inhibition by natural compounds may represent a valuable adjuvant in snakebite serum therapy. The objective in this work was to evaluate possible in vitro interactions between vanillic acid and enzymes from Bothrops spp. and Crotalus durissus terrificus venoms, and also suggest a theory as how they interact based on molecular docking. Vanillic acid inhibited the phospholipase activity induced by Bothrops alternatus (∼25% inhibition); the caseinolytic activity induced by Bothrops atrox (∼30%), Bothrops jararacussu (∼44%), and C. d. terrificus (∼33%); the fibrinogenolysis induced by B. jararacussu, B. atrox, and C. d. terrificus (100%); the serine protease activity induced by Bothrops moojeni (∼45%) and Bothrops jararaca (∼66%); the hemolytic activity induced by B. moojeni (∼26%); the thrombolysis activity induced by B. atrox (∼30%) and B. jararacussu (∼20%); and the thrombotic activity induced by C. d. terrificus (∼8%). The compound was also capable of delaying the coagulation time in citrated plasma by 60, 35, and 75 Sec, when incubated with B. moojeni, B. atrox, and B. jararaca, respectively. The results obtained expand the possibilities for future pharmaceutical use of vanillic acid, considering the high homology degree among human and snake venom phospholipases A2 and proteases (involved in chronic inflammatory diseases). Also, this compound can be used as adjuvant to improve currently available treatments for ophidism victims.
Collapse
Affiliation(s)
- Pedro H S Cesar
- Biochemistry Laboratory, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Marcus V Trento
- Biochemistry Laboratory, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Thais A Sales
- Computational Chemistry Laboratory, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Anderson A Simão
- Biochemistry Laboratory, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Teodorico C Ramalho
- Computational Chemistry Laboratory, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Silvana Marcussi
- Biochemistry Laboratory, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| |
Collapse
|
11
|
Rahmat E, Kang Y. Adventitious root culture for secondary metabolite production in medicinal plants: A Review. ACTA ACUST UNITED AC 2019. [DOI: 10.5010/jpb.2019.46.3.143] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Endang Rahmat
- University of Science & Technology (UST), Campus of Korea Institute of Oriental Medicine, Korean Convergence Medicine major, Daejeon 34054, Republic of Korea
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju-si, Jeollanam-do, 58245, Republic of Korea
| | - Youngmin Kang
- University of Science & Technology (UST), Campus of Korea Institute of Oriental Medicine, Korean Convergence Medicine major, Daejeon 34054, Republic of Korea
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju-si, Jeollanam-do, 58245, Republic of Korea
| |
Collapse
|
12
|
Yirgu A, Chippaux JP. Ethnomedicinal plants used for snakebite treatments in Ethiopia: a comprehensive overview. J Venom Anim Toxins Incl Trop Dis 2019; 25:e20190017. [PMID: 31428140 PMCID: PMC6682375 DOI: 10.1590/1678-9199-jvatitd-2019-0017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/07/2019] [Indexed: 12/01/2022] Open
Abstract
Traditional medicine plays an important role in the daily lives of people living in rural parts of Ethiopia. Despite the fact that Ethiopia has a long history of using traditional medicinal plants as an alternative medicine source, there is no checklist compiling these plants used for snakebite treatment. This review collected and compiled available knowledge on and practical usage of such plants in the country. A literature review on medicinal plants used to treat snakebites was conducted from 67 journal articles, PhD dissertation and MSc theses available online. Data that summarize scientific and folk names, administration methods, plant portion used for treatment and method of preparation of recipes were organized and analyzed based on citation frequency. The summarized results revealed the presence of 184 plant species distributed among 67 families that were cited for treating snakebite in Ethiopia. In this literature search, no single study was entirely dedicated to the study of traditional medicinal plants used for the treatment of snakebite in Ethiopia. Most of the species listed as a snakebite remedy were shrubs and climbers (44%) followed by herbs (33%) and trees (23%). Fabaceae was the most predominant family with the greatest number of species, followed by Solanaceae and Vitaceae. Remedies are mainly prepared from roots and leaves, through decoctions, infusions, powders and juices. Most remedies were administered orally (69%). The six most frequently mentioned therapeutically important plants were Nicotiana tabacum, Solanum incanum, Carissa spinanrum, Calpurnia aurea, Croton macrostachyus and Cynodon dactylon. Authors reviewed the vegetal substances involved in snakebite management and their action mode. In addition to screening the biologically active ingredients and pharmacological activities of these plant materials, future studies are needed to emphasize the conservation and cultivation of important medicinal plants of the country.
Collapse
Affiliation(s)
- Abraham Yirgu
- Central Ethiopia Environment and Forest Research Center, Addis
Ababa, Ethiopia
| | - Jean-Philippe Chippaux
- MERIT, IRD, Paris Descartes University, Sorbonne Paris Cité, Paris,
France
- Centre de Recherche Translationnelle, Institut Pasteur, Paris,
France
| |
Collapse
|
13
|
Pérez-González MZ, Macías-Rubalcava ML, Hernández-Ortega S, Siordia-Reyes AG, Jiménez-Arellanes MA. Additional compounds and the therapeutic potential of Cnidoscolus chayamansa (McVaugh) against hepatotoxicity induced by antitubercular drugs. Biomed Pharmacother 2019; 117:109140. [PMID: 31387195 DOI: 10.1016/j.biopha.2019.109140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 01/16/2023] Open
Abstract
Previously non-isolated compounds (scopoletin and β-D-Glucopyranoside, (1R)-O-isopropyl 6-O-(2,3,4-tri-O-acetyl-β-D-xylopyranosyl)-2,3,4-triacetate) were isolated from an organic extract of the Cnidoscolus chayamansa stem. Also, lupeol acetate (main compound, 49.7 mg/g of dry extract) and scopoletin (0.19 mg/g of dry extract) were quantified by HPLC analysis from this organic extract. The protective activity of the C. chayamansa organic extract against hepatotoxicity induced by antitubercular drugs [Rifampicin (50 mg/kg), Isoniazid (50 mg/kg), and Pyrazinamide (100 mg/kg)] are reported. The extract was tested at 200 and 400 mg/kg in Balb/C mice during 85 days, using silymarin (2.5 mg/kg) as positive control. Liver damage was determined using biochemical parameters (AST, ALT, ALP, CHOL, HDL TG, Urea, and CREA), histological analysis, and evaluation of oxidative stress (SOD, CAT, Gpx, Lpx and POx). The extract at both doses favored body weight gain with respect to the anti-TB group; the dose of 200 mg/kg was better. Also, the extract at both doses decreased the values of transaminases (AST, ALT) enzymes (p < 0.05) vs. anti-TB group. In oxidative stress parameters, the SOD value was decreased, as were the levels of peroxidation of lipids and oxidative protein in the group with C. chayamansa extract at 200 and 400 mg/kg vs. the anti-TB group. Histological analyses from liver showed the absence of steatosis in the extract group at 400 mg/kg, and moderate steatosis in the silymarin and extract (at 200 mg/kg) groups with respect to anti-TB group, which demonstrated a steatosis. It should be noted that during the study period, none of the treated mice died. In conclusion, the CHCl3: MeOH extract of C. chayamansa has a hepatoprotective effect against hepatotoxicity induced by anti-TB drugs.
Collapse
Affiliation(s)
- Mariana Z Pérez-González
- Unidad de Investigación Médica (UIM) en Farmacología, UMAE Hospital de Especialidades, CORSE 2º piso, Centro Médico Nacional Siglo XXI (CMN-SXXI), Instituto Mexicano del Seguro Social (IMSS), Av. Cuauhtémoc 330, Col. Doctores, 06720, Ciudad de México (CDMX), Mexico
| | - Martha L Macías-Rubalcava
- Instituto de Química (I.Q.), Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Alcaldía Coyoacán, 04510, CDMX, Mexico; Departamento de Productos Naturales, I.Q., UNAM, Ciudad Universitaria, Alcaldía Coyoacán, 04510 CDMX, Mexico
| | - Simón Hernández-Ortega
- Instituto de Química (I.Q.), Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Alcaldía Coyoacán, 04510, CDMX, Mexico; Laboratorio de Rayos X, UNAM, Ciudad Universitaria, Alcaldía Coyoacán, 04510 CDMX, Mexico
| | - A Georgina Siordia-Reyes
- División de Histopatología, UMAE Hospital de Pediatría, CMN-SXXI, IMSS, Av. Cuauhtémoc 330, Col. Doctores, 06729, CDMX, Mexico
| | - María Adelina Jiménez-Arellanes
- Unidad de Investigación Médica (UIM) en Farmacología, UMAE Hospital de Especialidades, CORSE 2º piso, Centro Médico Nacional Siglo XXI (CMN-SXXI), Instituto Mexicano del Seguro Social (IMSS), Av. Cuauhtémoc 330, Col. Doctores, 06720, Ciudad de México (CDMX), Mexico.
| |
Collapse
|
14
|
Quílez AM, Fernández-Arche MA, García-Giménez MD, De la Puerta R. Potential therapeutic applications of the genus Annona: Local and traditional uses and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2018; 225:244-270. [PMID: 29933016 DOI: 10.1016/j.jep.2018.06.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/14/2018] [Indexed: 05/14/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE Annona species (Annonaceae) have long been used as traditional herbal medicines by native peoples in tropical areas. In different countries they are used against a large variety of illnesses, such as parasitic and infectious diseases, cancer, diabetes, peptic ulcers, and mental disorders. AIM OF THE STUDY This review aims to achieve a comprehensive understanding of the research conducted so far on the local and traditional uses, pharmacological activities, mechanism of actions of active compounds, toxicity, and possible interactions with other drugs of the Annona species. Through analysis of these findings, evidences supporting their applications in ethno-medicines are described. We discuss the possible research opportunities and stand out the weak points in our knowledge that deserves further investigation. MATERIAL AND METHODS Information on ethno-medicinal uses and pharmacological activities of the Annona genus was collected. The main scientific biomedical literature databases (Cochrane, PubMed, Scopus, Lilacs, SeCiMed, Elsevier, SpringerLink, Google Scholar, SciFinder) were consulted. The search covered all the literature available until September 2017. National and regional databases of Herbal Medicine and Complementary and Alternative Medicine were also revised in order to explore further data. For a better understanding of the therapeutic importance of these species, we have classified the pharmacological activities within each group of disorders. The International Classification of Diseases (ICD), used from WHO Member States, was chosen as the reference classification. RESULTS From among the 27 species revised, four species are highlighted for their important pharmacological activities in most of the groups of illnesses: A. muricata, A. squamosa, A. senegalensis, and A. cherimola. Many investigations have been performed with extracts from the leaves, bark, fruit and seeds and have shown a wide range of pharmacological activities, such as antiprotozoal, antitumoural, antidiabetic, hepato-protective, anti-inflammatory and anxiolytic activities. The chemistry on the annonaceous acetogenins (ACGs) has been extensively investigated due to their potent antitumoural activity. Many of the assays were carried out with the isolated acetogenins in different lines of tumour culture cells and were found effective at very low doses even in multidrug-resistant tumours, and hence constitute promising compounds in the treatment of different types of cancers. No studies were found with extracts rich in acetogenins in the clinical field. CONCLUSIONS The experimental results from the pharmacological research enable the validation of their traditional uses in several of the groups of diseases in the countries of origin and reveal these plants to be a valuable source for therapeutic molecules. However, more toxicity assays and clinical trials would be necessary to establish optimal and safe doses of consumption on the application of these medicinal plants.
Collapse
Affiliation(s)
- A M Quílez
- Pharmacology Department, School of Pharmacy, Seville University, C/Profesor García González, 2; 41012 Sevilla, Spain
| | - M A Fernández-Arche
- Pharmacology Department, School of Pharmacy, Seville University, C/Profesor García González, 2; 41012 Sevilla, Spain
| | - M D García-Giménez
- Pharmacology Department, School of Pharmacy, Seville University, C/Profesor García González, 2; 41012 Sevilla, Spain
| | - R De la Puerta
- Pharmacology Department, School of Pharmacy, Seville University, C/Profesor García González, 2; 41012 Sevilla, Spain.
| |
Collapse
|
15
|
Da Silva BJM, Hage AAP, Silva EO, Rodrigues APD. Medicinal plants from the Brazilian Amazonian region and their antileishmanial activity: a review. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2018; 16:211-222. [DOI: 10.1016/j.joim.2018.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/07/2018] [Indexed: 12/15/2022]
|
16
|
Makdisi JR, Kim DP, Klein PA, Klein JA. Tumescent contravenom: murine model for prehospital treatment of Naja naja
neurotoxic snake envenomation. Int J Dermatol 2018; 57:605-610. [DOI: 10.1111/ijd.13877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/15/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Joy R. Makdisi
- Department of Dermatology; University of California, Irvine; Irvine CA USA
| | - Dennis P. Kim
- Department of Dermatology; University of California, Irvine; Irvine CA USA
| | | | - Jeffrey A. Klein
- Department of Dermatology; University of California, Irvine; Irvine CA USA
| |
Collapse
|
17
|
Félix-Silva J, Silva-Junior AA, Zucolotto SM, Fernandes-Pedrosa MDF. Medicinal Plants for the Treatment of Local Tissue Damage Induced by Snake Venoms: An Overview from Traditional Use to Pharmacological Evidence. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:5748256. [PMID: 28904556 PMCID: PMC5585606 DOI: 10.1155/2017/5748256] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/09/2017] [Indexed: 01/21/2023]
Abstract
Snakebites are a serious problem in public health due to their high morbimortality. Most of snake venoms produce intense local tissue damage, which could lead to temporary or permanent disability in victims. The available specific treatment is the antivenom serum therapy, whose effectiveness is reduced against these effects. Thus, the search for complementary alternatives for snakebite treatment is relevant. There are several reports of the popular use of medicinal plants against snakebites worldwide. In recent years, many studies have been published giving pharmacological evidence of benefits of several vegetal species against local effects induced by a broad range of snake venoms, including inhibitory potential against hyaluronidase, phospholipase, proteolytic, hemorrhagic, myotoxic, and edematogenic activities. In this context, this review aimed to provide an updated overview of medicinal plants used popularly as antiophidic agents and discuss the main species with pharmacological studies supporting the uses, with emphasis on plants inhibiting local effects of snake envenomation. The present review provides an updated scenario and insights into future research aiming at validation of medicinal plants as antiophidic agents and strengthens the potentiality of ethnopharmacology as a tool for design of potent inhibitors and/or development of herbal medicines against venom toxins, especially local tissue damage.
Collapse
Affiliation(s)
- Juliana Félix-Silva
- Laboratório de Tecnologia & Biotecnologia Farmacêutica (TecBioFar), Faculdade de Farmácia, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Arnóbio Antônio Silva-Junior
- Laboratório de Tecnologia & Biotecnologia Farmacêutica (TecBioFar), Faculdade de Farmácia, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Silvana Maria Zucolotto
- Grupo de Pesquisa em Produtos Naturais Bioativos (PNBio), Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratório de Tecnologia & Biotecnologia Farmacêutica (TecBioFar), Faculdade de Farmácia, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| |
Collapse
|
18
|
Aqueous Leaf Extract of Jatropha mollissima (Pohl) Bail Decreases Local Effects Induced by Bothropic Venom. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6101742. [PMID: 27847818 PMCID: PMC5101363 DOI: 10.1155/2016/6101742] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/03/2016] [Accepted: 09/29/2016] [Indexed: 12/19/2022]
Abstract
Snakebites are a serious worldwide public health problem. In Brazil, about 90% of accidents are attributed to snakes from the Bothrops genus. The specific treatment consists of antivenom serum therapy, which has some limitations such as inability to neutralize local effects, difficult access in some regions, risk of immunological reactions, and high cost. Thus, the search for alternative therapies to treat snakebites is relevant. Jatropha mollissima (Euphorbiaceae) is a medicinal plant popularly used in folk medicine as an antiophidic remedy. Therefore, this study aims to evaluate the effect of the aqueous leaf extract from J. mollissima on local effects induced by Bothrops venoms. High Performance Liquid Chromatography with Diode Array Detection analysis and Mass Spectrometry analysis of aqueous leaf extract confirmed the presence of the flavonoids isoschaftoside, schaftoside, isoorientin, orientin, vitexin, and isovitexin. This extract, at 50–200 mg/kg doses administered by intraperitoneal route, showed significant inhibitory potential against local effects induced by Bothrops erythromelas and Bothrops jararaca snake venoms. Local skin hemorrhage, local edema, leukocyte migration, and myotoxicity were significantly inhibited by the extract. These results demonstrate that J. mollissima extract possesses inhibitory potential, especially against bothropic venoms, suggesting its potential as an adjuvant in treatment of snakebites.
Collapse
|
19
|
OLIVEIRA CARLOSH, SIMÃO ANDERSONA, TRENTO MARCUSV, CÉSAR PEDROH, MARCUSSI SILVANA. Inhibition of proteases and phospholipases A2 from Bothrops atrox and Crotalus durissus terrificus snake venoms by ascorbic acid, vitamin E, and B-complex vitamins. AN ACAD BRAS CIENC 2016; 88:2005-2016. [DOI: 10.1590/0001-3765201620160030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/26/2016] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT The enzyme inhibition by natural and/ or low-cost compounds may represent a valuable adjunct to traditional serotherapy performed in cases of snakebite, mainly with a view to mitigate the local effects of envenoming. The objective of this study was to evaluate possible interactions between vitamins and enzymes that comprise Bothrops atrox and Crotalus durissus terrificus venoms, in vitro. Proteolysis inhibition assays (substrates: azocasein, collagen, gelatin and fibrinogen), hemolysis, coagulation, hemagglutination were carried out using different proportions of vitamins in face of to inhibit minimum effective dose of each venom. The vitamins were responsible for reducing 100% of breaking azocasein by C.d.t. venom, thrombolysis induced by B. atrox and fibrinogenolysis induced by both venoms. It is suggested the presence of interactions between vitamin and the active site of enzymes, for example the interactions between hydrophobic regions present in the enzymes and vitamin E, as well as the inhibitions exercised by antioxidant mechanism.
Collapse
|
20
|
Price JA. An in vitro evaluation of the Native American ethnomedicinal plant Eryngium yuccifolium as a treatment for snakebite envenomation. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2016; 5:219-25. [PMID: 27366346 PMCID: PMC4927125 DOI: 10.5455/jice.20160421070136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/16/2016] [Indexed: 12/23/2022]
Abstract
AIM At least seven North American tribes specifically mention the use of Eryngium (typically roots) as an anti-snake venom therapy. As snake envenomation is an endemic, life-threatening medical risk, is there a scientific basis for the Native American ethnomedicine? Could this be demonstrated in an assay amenable to mechanistic evaluation and high throughput screening for later isolation and possible evaluation as a source for a lead drug? MATERIALS AND METHODS Proteases, mainly metalloproteases, are thought to be the main pathological agents in most American snake venoms. Water extracts of four plant parts of Eryngium yuccifolium were tested for enzyme inhibition in three highly sensitive in vitro protease assays, with multiple venoms. RESULTS Interestingly, activity was found in all plant parts, not just the roots, in the general protease assay, also in the most specific assay for collagenases, but less so for elastases where enzymatic activity was low, and against five species of American snake venoms. Inhibition spared the activity of a mammalian elastase, suggesting it has some specificity. In dose response assays, inhibitory activity in extracts of Eryngium was noticeably more effective than randomly chosen plants and comparable to some others. CONCLUSIONS All data shown here are consistent with pharmacological inhibition of proteases in at least selected venoms of common venomous snakes by Eryngium extracts. Moreover, as the genus is widely distributed in America, the ethnological practice of using this plant as an anti-snake venom treatment is supportable, may have been common, and suggests further bioactivity and phytochemical studies are warranted.
Collapse
Affiliation(s)
- Joseph A Price
- Department of Pathology, OSU-COM, Tulsa, OK 74107-1898, USA
| |
Collapse
|