1
|
Yin Y, Niu Q, Wei Z, Wang Y, Li G, Zhang W, Guo K, Yao X. Research on the toxicological prognostic significance of age-related genes in endometrial cancer unveiling key factors in patient prognosis. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 38591852 DOI: 10.1002/tox.24219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/11/2024] [Accepted: 03/04/2024] [Indexed: 04/10/2024]
Abstract
This study investigates the influence of aging-related genes on endometrial cancer, a prominent gynecological malignancy with rising incidence and mortality. By analyzing gene expression differences between cancerous and normal endometrial tissues, 42 aging-related genes were identified as differentially expressed. Utilizing the TCGA-UCEC sample, consensus clustering divided the samples into two molecular subgroups, Aging low and Aging high, based on their expression profiles. These subgroups showed distinct prognoses and survival rates, with the Aging high group associated with DNA repair and cell cycle pathways, and the Aging low group showing suppressed metabolic pathways and increased immune cell infiltration, suggesting a potential for better immunotherapy outcomes. Mutation analysis did not find significant differences in mutation frequencies between the groups, but a high Tumor Mutation Burden (TMB) correlated with better prognosis. A risk score model was also developed, showcasing significant prognostic power. Further analysis of the SIX1 gene revealed its overexpression in cancer cells. Drug sensitivity tests indicated that the low-risk group might respond better to chemotherapy. This research underscores the significance of aging-related genes in endometrial cancer, offering insights into their prognostic value and therapeutic potential, which could lead to personalized treatment approaches and enhanced patient management.
Collapse
Affiliation(s)
- Yongchao Yin
- Department of Second Ward of Gynecology, Xingtai People's Hospital, Xingtai, China
| | - Qian Niu
- Department of Ouclar Trauma, Hebei Provincial Eye Hospital, Xingtai, China
| | - Zhiqiang Wei
- Department of Operating Room, Xingtai People's Hospital, Xingtai, China
| | - Yefei Wang
- Department of Operating Room, Xingtai People's Hospital, Xingtai, China
| | - Gang Li
- Department of Operating Room, Xingtai People's Hospital, Xingtai, China
| | - Weican Zhang
- Department of Fourth Ward of Gynecology, Xingtai People's Hospital, Xingtai, China
| | - Kai Guo
- Department of Neurosurgery, Xingtai People's Hospital, Xingtai, China
| | - Xinyu Yao
- Department of Anesthesiology, Xingtai People's Hospital, Xingtai, China
| |
Collapse
|
2
|
Lee H, Kim E, Hwang N, Yoo J, Nam Y, Hwang I, Park JG, Park SE, Chung KS, Won Chung H, Song C, Ji MJ, Park HM, Lee IK, Lee KT, Joo Roh E, Hur W. Discovery of N-benzylbenzamide-based allosteric inhibitors of Aurora kinase A. Bioorg Med Chem 2024; 102:117658. [PMID: 38460487 DOI: 10.1016/j.bmc.2024.117658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
Aurora kinases (AurkA/B/C) regulate the assembly of bipolar mitotic spindles and the fidelity of chromosome segregation during mitosis, and are attractive therapeutic targets for cancers. Numerous ATP-competitive AurkA inhibitors have been developed as potential anti-cancer agents. Recently, a few allosteric inhibitors have been reported that bind to the allosteric Y-pocket within AurkA kinase domain and disrupt the interaction between AurkA and its activator TPX2. Herein we report a novel allosteric AurkA inhibitor (6h) of N-benzylbenzamide backbone. Compound 6h suppressed the both catalytic activity and non-catalytic functions of AurkA. The inhibitory activity of 6h against AurkA (IC50 = 6.50 μM) was comparable to that of the most potent allosteric AurkA inhibitor AurkinA. Docking analysis against the Y-pocket revealed important pharmacophores and interactions that were coherent with structure-activity relationship. In addition, 6h suppressed DNA replication in G1-S phase, which is a feature of allosteric inhibition of AurA. Our current study may provide a useful insight in designing potent allosteric AurkA inhibitors.
Collapse
Affiliation(s)
- Hyomin Lee
- Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Biomedical Science and Technology, UST KIST School, Seoul 02792, Republic of Korea
| | - Euijung Kim
- Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Narae Hwang
- Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jesik Yoo
- Division of Biomedical Science and Technology, UST KIST School, Seoul 02792, Republic of Korea; Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yunju Nam
- Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Injeoung Hwang
- Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; HY-KIST Bioconvergence, Hanyang University, Seoul 04763, Republic of Korea
| | - Jin-Gyeong Park
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Eun Park
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hwan Won Chung
- Computational Science Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Chiman Song
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Mi-Jung Ji
- Advanced Analysis Data Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyun-Mee Park
- Advanced Analysis Data Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - In-Kyun Lee
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eun Joo Roh
- Division of Biomedical Science and Technology, UST KIST School, Seoul 02792, Republic of Korea; Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | - Wooyoung Hur
- Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; HY-KIST Bioconvergence, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
3
|
Liang Y, Wang J, Liu X, Chen S, He G, Fang X, Yang J, Teng Z, Liu HB. Anti-adhesion multifunctional poly(lactic-co-glycolic acid)/polydimethylsiloxane wound dressing for bacterial infection monitoring and photodynamic antimicrobial therapy. Int J Biol Macromol 2024; 260:129501. [PMID: 38224803 DOI: 10.1016/j.ijbiomac.2024.129501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Wound infection and adhesion are important factors affecting wound healing. Early detection of pathogen infection and reduction of wound-to-dressing adhesion are critical for improving wound healing. Herein, Ester-J, which can rapidly respond to lipase secreted by bacteria, was designed and synthesized. Then, Ester-J was co-spun with poly(lactic-co-glycolic acid) (PLGA) and polydimethylsiloxane (PDMS) to prepare a PP-EsJ hydrophobic anti-adhesion dressing with a contact angle of 140.7°. When the PP-EsJ membrane came into contact with the bacteria, the loaded Ester-J was hydrolyzed to Tph-TSF-OH, releasing bright cyan-blue fluorescence, thus providing a fluorescence switch for an early warning of infection. The detection limits of PP-EsJ for Pseudomonas aeruginosa and Staphylococcus aureus were 1.0 × 105 and 1.0 × 106 CFU/mL, respectively. Subsequently, Tph-TSF-OH released 1O2 through light irradiation, which rapidly killed P. aeruginosa and S. aureus, and accelerated wound healing. Compared with the control group, enhanced wound closure (up to 99.80 ± 1.10 %) was observed in mice treated with the PP-EsJ membrane. The PP-EsJ membrane not only effectively reduced the risk of external infection but also reduced adhesions to the skin during dressing changes. These characteristics make PP-EsJ membranes potentially useful for clinical treatment.
Collapse
Affiliation(s)
- Yuehui Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, PR China
| | - Jing Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, PR China
| | - Xu Liu
- Medical College of Guangxi University, Guangxi University, Nanning 53004, PR China
| | - Shirong Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, PR China
| | - Guangpeng He
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, PR China
| | - Xiru Fang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, PR China
| | - Jiaying Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, PR China
| | - Zhongshan Teng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, PR China
| | - Hai-Bo Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, PR China.
| |
Collapse
|
4
|
Choi JY, Jeong M, Lee K, Kim JO, Lee WH, Park I, Kwon HC, Choi JH. Sedum middendorffianum Maxim Induces Apoptosis and Inhibits the Invasion of Human Ovarian Cancer Cells via Oxidative Stress Regulation. Antioxidants (Basel) 2023; 12:1386. [PMID: 37507925 PMCID: PMC10376315 DOI: 10.3390/antiox12071386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Sedum middendorffianum Maxim (SMM) is a Korean endemic plant belonging to the Crassulaceae family. This study aimed to investigate the antitumor effects of the SMM extract on human ovarian cancer cells. Among five endemic plants grown in Korea, the SMM extract showed the most potent cytotoxicity in ovarian cancer cells and had little effect on normal ovarian surface epithelial cells. Furthermore, we revealed that the SMM extract dose-dependently induced apoptosis in human ovarian cancer A2780 and SKOV3 cells. The SMM extract markedly stimulated the activation of caspase-3/8, while the broad-spectrum caspase inhibitor and caspase-8 selective inhibitor significantly reversed SMM extract-induced apoptosis. In addition, the SMM extract significantly inhibited cell invasion and the expression levels of matrix metalloproteinase (MMP)-2 and MMP-9 in ovarian cancer cells. Notably, the SMM extract increased the generation of intracellular ROS, and pretreatment with antioxidant N-acetyl-L-cysteine (NAC) significantly suppressed SMM-induced cytotoxicity and anti-invasive activity. Moreover, NAC treatment reversed the SMM-induced inhibition of MMP-2/9 expression. Taken together, these data suggest that the SMM extract induces caspase-dependent apoptotic cell death and inhibits MMP-dependent invasion via ROS regulation.
Collapse
Affiliation(s)
- Ju-Yeon Choi
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Miran Jeong
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kijun Lee
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jin-Ok Kim
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wan Hee Lee
- Hantaek Botanical Garden, Yongin 17183, Republic of Korea
| | - InWha Park
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung 25451, Republic of Korea
| | - Hak Cheol Kwon
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung 25451, Republic of Korea
| | - Jung-Hye Choi
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
- Hantaek Botanical Garden, Yongin 17183, Republic of Korea
| |
Collapse
|
5
|
Zhou X, Zeng Y, Zheng R, Wang Y, Li T, Song S, Zhang S, Huang J, Ren Y. Natural products modulate cell apoptosis: a promising way for treating endometrial cancer. Front Pharmacol 2023; 14:1209412. [PMID: 37361222 PMCID: PMC10285317 DOI: 10.3389/fphar.2023.1209412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Endometrial cancer (EC) is a prevalent epithelial malignancy in the uterine corpus's endometrium and myometrium. Regulating apoptosis of endometrial cancer cells has been a promising approach for treating EC. Recent in-vitro and in-vivo studies show that numerous extracts and monomers from natural products have pro-apoptotic properties in EC. Therefore, we have reviewed the current studies regarding natural products in modulating the apoptosis of EC cells and summarized their potential mechanisms. The potential signaling pathways include the mitochondria-dependent apoptotic pathway, endoplasmic reticulum stress (ERS) mediated apoptotic pathway, the mitogen-activated protein kinase (MAPK) mediated apoptotic pathway, NF-κB-mediated apoptotic pathway, PI3K/AKT/mTOR mediated apoptotic pathway, the p21-mediated apoptotic pathway, and other reported pathways. This review focuses on the importance of natural products in treating EC and provides a foundation for developing natural products-based anti-EC agents.
Collapse
Affiliation(s)
- Xin Zhou
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiwei Zeng
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Runchen Zheng
- School of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuemei Wang
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Li
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shanshan Song
- School of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Su Zhang
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinzhu Huang
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Gynecology, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulan Ren
- School of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Zhu D, Li B, Wang C, Jiang P, Tang F, Li Y. Echinocystic acid induces the apoptosis, and inhibits the migration and invasion of non-small cell lung cancer cells. Med Oncol 2023; 40:182. [PMID: 37202561 DOI: 10.1007/s12032-023-02029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/09/2022] [Indexed: 05/20/2023]
Abstract
An increasing amount of evidence has demonstrated the anticancer activity of triterpenes extracted from traditional medicines. Echinocystic acid (EA), a natural triterpene isolated from Eclipta prostrata (L.) L., has previously been shown to exhibit anticancer activity in HepG2 and HL-60 cells. The aim of the present study was to investigate the anticancer activity of EA in non-small cell lung cancer (NSCLC) cells. For this purpose, the viability and proliferation of A549 cells were determined using a Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine staining. The migratory and invasive ability of the A549 cells were measured using wound healing and Transwell assays. Hoechst staining was also performed to detect the apoptosis of A549 cells. The proliferation of A549 cells and the distributions of different growth phases were determined using a flow cytometer. Western blot analysis was used to detect the expression levels of cyclin D, partitioning defective 3 homolog (Par3), PI3K, Akt, mTOR, Bax, Bcl-2 and caspase-3. EA inhibited the proliferation, and the migratory and invasive abilities of cultured lung carcinoma cells (A549 cells), and induced cell cycle arrest in the G1 phase of the cell cycle. Treatment with EA upregulated Par3 expression and inhibited the PI3K/Akt/mTOR pathway in vitro. In addition, EA treatment inhibited tumor growth, suppressed proliferation and induced the apoptosis of tumor cells in NSCLC tumor xenografts in mice. On the whole, these results suggest that EA may represent a potential therapeutic agent for NSCLC.
Collapse
Affiliation(s)
- Duojie Zhu
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, People's Republic of China
| | - Bin Li
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, People's Republic of China
| | - Cheng Wang
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, People's Republic of China
| | - Peng Jiang
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, People's Republic of China
| | - Futian Tang
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Yumin Li
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
7
|
Llorens de los Ríos MC, Lanza PA, Barbieri CL, González ML, Chabán MF, Soria G, Vera DMA, Carpinella MC, Joray MB. The thiophene α-terthienylmethanol isolated from Tagetes minuta inhibits angiogenesis by targeting protein kinase C isozymes α and β2. Front Pharmacol 2022; 13:1007790. [PMID: 36313304 PMCID: PMC9597362 DOI: 10.3389/fphar.2022.1007790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/30/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Tumor angiogenesis is considered as a crucial pathologic feature of cancer with a key role in multidrug resistance (MDR). Adverse effects of the currently available drugs and the development of resistance to these remain as the hardest obstacles to defeat. Objetive: This work explores flora from Argentina as a source of new chemical entities with antiangiogenic activity. Methods: Tube formation assay using bovine aortic endothelial cells (BAECs) was the experiment of choice to assess antiangiogenic activity. The effect of the pure compound in cell invasiveness was investigated through the trans-well migration assay. The inhibitory effect of the pure compound on VEGFR-2 and PKC isozymes α and β2 activation was studied by molecular and massive dynamic simulations. Cytotoxicity on peripheral blood mononuclear cells and erythrocyte cells was evaluated by means of MTT and hemolysis assay, respectively. In silico prediction of pharmacological properties (ADME) and evaluation of drug-likeness features were performed using the SwissADME online tool. Results: Among the plants screened, T. minuta, showed an outstanding effect with an IC50 of 33.6 ± 3.4 μg/ml. Bio-guided isolation yielded the terthiophene α-terthienylmethanol as its active metabolite. This compound inhibited VEGF-induced tube formation with an IC50 of 2.7 ± 0.4 μM and significantly impaired the invasiveness of bovine aortic endothelial cells (BAECs) as well as of the highly aggressive breast cancer cells, MDA-MB-231, when tested at 10 μM. Direct VEGFR-2 and PKC inhibition were both explored by means of massive molecular dynamics simulations. The results obtained validated the inhibitory effect on protein kinase C (PKC) isozymes α and β2 as the main mechanism underlying its antiangiogenic activity. α-terthienylmethanol showed no evidence of toxicity against peripheral blood mononuclear and erythrocyte cells. Conclusion: These findings support this thiophene as a promising antiangiogenic phytochemical to fight against several types of cancer mainly those with MDR phenotype.
Collapse
Affiliation(s)
| | - Priscila A. Lanza
- Department of Chemistry and Biochemistry, QUIAMM–INBIOTEC–CONICET, College of Exact and Natural Sciences, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Cecilia L. Barbieri
- Department of Chemistry and Biochemistry, QUIAMM–INBIOTEC–CONICET, College of Exact and Natural Sciences, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - María L. González
- Fine Chemical and Natural Products Laboratory, IRNASUS CONICET-UCC, School of Chemistry, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Macarena Funes Chabán
- Fine Chemical and Natural Products Laboratory, IRNASUS CONICET-UCC, School of Chemistry, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Gastón Soria
- CIBICI CONICET and Department of Clinical Biochemistry, Faculty of Chemical Science, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - D. Mariano A. Vera
- Department of Chemistry and Biochemistry, QUIAMM–INBIOTEC–CONICET, College of Exact and Natural Sciences, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
- *Correspondence: D. Mariano A. Vera, ; María C. Carpinella, ; Mariana B. Joray,
| | - María C. Carpinella
- Fine Chemical and Natural Products Laboratory, IRNASUS CONICET-UCC, School of Chemistry, Universidad Católica de Córdoba, Córdoba, Argentina
- *Correspondence: D. Mariano A. Vera, ; María C. Carpinella, ; Mariana B. Joray,
| | - Mariana B. Joray
- Fine Chemical and Natural Products Laboratory, IRNASUS CONICET-UCC, School of Chemistry, Universidad Católica de Córdoba, Córdoba, Argentina
- *Correspondence: D. Mariano A. Vera, ; María C. Carpinella, ; Mariana B. Joray,
| |
Collapse
|
8
|
Ibrahim SRM, Omar AM, Bagalagel AA, Diri RM, Noor AO, Almasri DM, Mohamed SGA, Mohamed GA. Thiophenes-Naturally Occurring Plant Metabolites: Biological Activities and In Silico Evaluation of Their Potential as Cathepsin D Inhibitors. PLANTS (BASEL, SWITZERLAND) 2022; 11:539. [PMID: 35214871 PMCID: PMC8877444 DOI: 10.3390/plants11040539] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/03/2022] [Accepted: 02/12/2022] [Indexed: 05/03/2023]
Abstract
Naturally, thiophenes represent a small family of natural metabolites featured by one to five thiophene rings. Numerous plant species belonging to the family Asteraceae commonly produce thiophenes. These metabolites possessed remarkable bioactivities, including antimicrobial, antiviral, anti-inflammatory, larvicidal, antioxidant, insecticidal, cytotoxic, and nematicidal properties. The current review provides an update over the past seven years for the reported natural thiophene derivatives, including their sources, biosynthesis, spectral data, and bioactivities since the last review published in 2015. Additionally, with the help of the SuperPred webserver, an AI (artificial intelligence) tool, the potential drug target for the compounds was predicted. In silico studies were conducted for Cathepsin D with thiophene derivatives, including ADMET (drug absorption/distribution/metabolism/excretion/and toxicity) properties prediction, molecular docking for the binding interaction, and molecular dynamics to evaluate the ligand-target interaction stability under simulated physiological conditions.
Collapse
Affiliation(s)
- Sabrin R. M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Abdelsattar M. Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Alaa A. Bagalagel
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.B.); (R.M.D.); (A.O.N.); (D.M.A.)
| | - Reem M. Diri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.B.); (R.M.D.); (A.O.N.); (D.M.A.)
| | - Ahmad O. Noor
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.B.); (R.M.D.); (A.O.N.); (D.M.A.)
| | - Diena M. Almasri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.B.); (R.M.D.); (A.O.N.); (D.M.A.)
| | | | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
9
|
Timalsina D, Devkota HP. Eclipta prostrata (L.) L. (Asteraceae): Ethnomedicinal Uses, Chemical Constituents, and Biological Activities. Biomolecules 2021; 11:1738. [PMID: 34827736 PMCID: PMC8615741 DOI: 10.3390/biom11111738] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Eclipta prostrata (L.) L. (Syn.: Eclipta alba (L.) Hassak, Family: Asteraceae) is an important medicinal plant in the tropical and subtropical regions. It is widely used in treating various diseases of skin, liver and stomach in India, Nepal, Bangladesh, and other countries. The main aim of this review was to collect and analyze the available information on traditional uses, phytoconstituents, and biological activities of E. prostrata. The scientific information was collected from the online bibliographic databases such as Scopus, MEDLINE/PubMed, Google Scholar, SciFinder, etc. and books and proceedings. The active phytochemicals were coumestan derivatives, phenolic acid derivatives, flavonoids, triterpenoid and steroid saponins, substituted thiophenes, etc. Various extracts and isolated compounds of E. prostrata showed a wide range of biological activities such as antimicrobial, anticancer, hepatoprotective, neuroprotective and hair growth promoting activities. Relatively a few studies have been performed to reveal the exact phytoconstituents responsible for their corresponding pharmacological activities. Future studies should focus on detailed mechanism based studies using animal models and clinical studies.
Collapse
Affiliation(s)
- Deepak Timalsina
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal;
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-Ku, Kumamoto 862-0973, Japan
- Headquarters for Admissions and Education, Kumamoto University, 2-40-1 Kurokami, Chuo-Ku, Kumamoto 860-8555, Japan
| |
Collapse
|
10
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
11
|
Le DD, Nguyen DH, Ma ES, Lee JH, Min BS, Choi JS, Woo MH. PTP1B Inhibitory and Anti-inflammatory Properties of Constituents from Eclipta prostrata L. Biol Pharm Bull 2021; 44:298-304. [PMID: 33361652 DOI: 10.1248/bpb.b20-00994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The white-flowered leaves of Eclipta prostrata L. together with leaves of Scoparia dulcis and Cynodon dactylon are mixedly boiled in water and given to diabetic patients resulting in the significant improvement in the management of diabetes. However, the active constituents from this plant for antidiabetic and anti-obesity properties are remaining unclear. Thus, this study was to discover anti-diabetes and anti-obesity activities through protein tyrosine phosphatases (PTP)1B inhibitory effects. We found that the fatty acids (23, 24) showed potent PTP1B inhibition with IC50 values of 2.14 and 3.21 µM, respectively. Triterpenoid-glycosides (12-15) also exhibited strong to moderate PTP1B inhibitory effects, with IC50 values ranging from 10.88 to 53.35 µM. Additionally, active compounds were investigated for their PTP1B inhibitory mechanism and docking analysis. On the other hand, the anti-inflammatory activity from our study revealed that compounds (1-4, 7, 8, 10) displayed the significant inhibition nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Especially, compound 9 showed the potent inhibitory effects in LPS-induced NO production on RAW264.7 cell. Therefore, further Western blot analysis was performed to identify the inhibitory expression including heme oxygenase-1 (HO-1) and inhibitor of kappaB (IκB) phosphorylation.
Collapse
Affiliation(s)
- Duc Dat Le
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University.,Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University.,Faculty of Pharmacy, Ton Duc Thang University
| | - Duc Hung Nguyen
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University.,Department of Biotechnology, V-Kist
| | - Eun Sook Ma
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University
| | | | - Byung Sun Min
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University
| | - Mi Hee Woo
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University
| |
Collapse
|
12
|
Yang Y, Liu PY, Bao W, Chen SJ, Wu FS, Zhu PY. Hydrogen inhibits endometrial cancer growth via a ROS/NLRP3/caspase-1/GSDMD-mediated pyroptotic pathway. BMC Cancer 2020; 20:28. [PMID: 31924176 PMCID: PMC6954594 DOI: 10.1186/s12885-019-6491-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/23/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Pyroptosis belongs to a novel inflammatory programmed cell death pathway, with the possible prognosis of endometrial cancer related to the terminal protein GSDMD. Hydrogen exerts a biphasic effect on cancer by promoting tumor cell death and protecting normal cells, which might initiate GSDMD pathway-mediated pyroptosis. METHODS We performed immunohistochemical staining and western immunoblotting analysis to observe expression of NLRP3, caspase-1, and GSDMD in human and xenograft mice endometrial cancer tissue and cell lines. We investigated treatment with hydrogen could boost ROS accumulation in endometrial cancer cells by intracellular and mitochondrial sources. GSDMD shRNA lentivirus was used to transfect endometrial cancer cells to investigate the function of GSDMD protein in pyroptosis. Propidium iodide (PI) staining, TUNEL assay, measurement of lactate dehydrogenase (LDH) release and IL-1β ELISA were used to analysis pyroptosis between hydrogen-supplemented or normal culture medium. We conducted in vivo human endometrial tumor xenograft mice model to observe anti-tumor effect in hydrogen supplementation. RESULTS We observed overexpression of NLRP3, caspase-1, and GSDMD in human endometrial cancer and cell lines by IHC and western immunoblotting. Hydrogen pretreatment upregulated ROS and the expression of pyroptosis-related proteins, and increased the number of PI- and TUNEL-positive cells, as well as the release of LDH and IL-1β, however, GSDMD depletion reduced their release. We further demonstrated that hydrogen supplementation in mice was sufficient for the anti-tumor effect to inhibit xenograft volume and weight of endometrial tumors, as mice subjected to hydrogen-rich water displayed decreased radiance. Tumor tissue sections in the HRW groups presented moderate-to-strong positive expression of NLRP3, caspase-1 and GSDMD. Hydrogen attenuated tumor volume and weight in a xenograft mouse model though the pyroptotic pathway. CONCLUSIONS This study extended our original analysis of the ability of hydrogen to stimulate NLRP3 inflammasome/GSDMD activation in pyroptosis and revealed possible mechanism (s) for improvement of anti-tumor effects in the clinical management of endometrial cancer.
Collapse
Affiliation(s)
- Ye Yang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai, 200080, People's Republic of China
| | - Ping Yin Liu
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, 85 Wujin Road, Hongkou, Shanghai, 200080, People's Republic of China
| | - Wei Bao
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai, 200080, People's Republic of China
| | - Song Jun Chen
- Department of Systems Biomedicine, Shanghai Jiaotong University, 800 Dongchuan Road, Biomedical Research Institute Building, Minhang, 200241, Shanghai, People's Republic of China
| | - Fang Su Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai, 200080, People's Republic of China.
| | - Ping Ya Zhu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
13
|
Feng L, Zhai YY, Xu J, Yao WF, Cao YD, Cheng FF, Bao BH, Zhang L. A review on traditional uses, phytochemistry and pharmacology of Eclipta prostrata (L.) L. JOURNAL OF ETHNOPHARMACOLOGY 2019; 245:112109. [PMID: 31395303 DOI: 10.1016/j.jep.2019.112109] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eclipta prostrata, a traditional herbal medicine, has long been used in Asia and South America for the therapy of hemorrhagic diseases (e.g. hemoptysis, hematemesis, hematuria, epistaxis and uterine bleeding), skin diseases, respiratory disorders, coronary heart disease, hair loss, vitiligo, snake bite and those caused by the deficiency of liver and kidney. AIM OF THE REVIEW In this review, we highlight relatively comprehensive and up-to-date information of E. prostrata on traditional uses, phytochemistry, pharmacology and toxicity, along with featuring the gaps in current knowledge, aiming to provide references for future research and possible opportunities for well applications of this medicinal plant. MATERIALS AND METHODS Information on E. prostrata was gathered from scientific databases (Google Scholar, Web of Science, Scifinder, Baidu Scholar, PubMed and CNKI). Information was also obtained from local books, Ph.D. theses and M.Sc. dissertations and Chinese Pharmacopoeia. The plant taxonomy was validated by the database "The Plant List". RESULTS Various phytochemical classes has been identified and isolated from the plant covering triterpenes, flavonoids, thiopenes, coumestans, steroids and others. Among these, coumestans are reported as the most common ingredients. The isolated crude extracts and individual compounds have been reported to exhibit promising pharmacological properties, such as hepatoprotective, osteoprotective, cytotoxic, hypoglycaemic, anti-inflammatory, anti-microbial, hypolipidemic, promoting hair growth, rejuvenative and neuroprotective effects. CONCLUSIONS Until now, significant progress has been witnessed in phytochemistry and pharmacology of E. prostrata. Thus, some traditional uses has been well supported and clarified by modern pharmacological studies. Moreover, E. prostrata also showed therapeutic potential in some refractory diseases such as cancer, dementia and diabetes. But, present findings are still insufficient that cannot satisfactorily explain some mechanisms of action. More well-designed studies in vitro especially in vivo are required to establish links between the traditional uses and bioactivities, discover new skeletons and activity molecules, as well as ensure safety before clinical use.
Collapse
Affiliation(s)
- Li Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yuan-Yuan Zhai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jia Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Wei-Feng Yao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yu-Dan Cao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Fang-Fang Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Bei-Hua Bao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Li Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
14
|
Stanisavljevic D, Popovic J, Petrovic I, Davidovic S, Atkinson MJ, Anastasov N, Stevanovic M. Radiation effects on early phase of NT2/D1 neural differentiation in vitro. Int J Radiat Biol 2019; 95:1627-1639. [PMID: 31509479 DOI: 10.1080/09553002.2019.1665207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Purpose: Widespread medical use of radiation in diagnosis, imaging and treatment of different central nervous system malignancies lead to various consequences. Aim of this study was to further elucidate mechanism of cell response to radiation and possible consequence on neural differentiation.Materials and methods: NT2/D1 cells that resemble neural progenitors were used as a model system. Undifferentiated NT2/D1 cells and NT2/D1 cells in the early phase of neural differentiation were irradiated with low (0.2 Gy) and moderate (2 Gy) doses of γ radiation. The effect was analyzed on apoptosis, cell cycle, senescence, spheroid formation and the expression of genes and miRNAs involved in the regulation of pluripotency or neural differentiation.Results: Two grays of irradiation induced apoptosis, senescence and cell cycle arrest of NT2/D1 cells, accompanied with altered expression of several genes (SOX2, OCT4, SOX3, PAX6) and miRNAs (miR-219, miR-21, miR124-a). Presented results show that 2 Gy of radiation significantly affected early phase of neural differentiation in vitro.Conclusions: These results suggest that 2 Gy of radiation significantly affected early phase of neural differentiation and affect the population of neural progenitors. These findings might help in better understanding of side effects of radiotherapy in treatments of central nervous system malignancies.
Collapse
Affiliation(s)
- Danijela Stanisavljevic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| | - Jelena Popovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| | - Isidora Petrovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| | - Slobodan Davidovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| | - Michael J Atkinson
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany.,Chair of Radiation Biology, Technical University of Munich, Munich, Germany
| | - Nataša Anastasov
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Milena Stevanovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia.,University of Belgrade, Faculty of Biology, Belgrade, Serbia.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
15
|
16-Hydroxy-Lycopersene, a Polyisoprenoid Alcohol Isolated from Tournefortia hirsutissima, Inhibits Nitric Oxide Production in RAW 264.7 Cells and Induces Apoptosis in Hep3B Cells. Molecules 2019; 24:molecules24132366. [PMID: 31248041 PMCID: PMC6651038 DOI: 10.3390/molecules24132366] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 01/11/2023] Open
Abstract
Three polyisoprenoid alcohols were isolated from the leaves of Tournefortia hirsutissima by a bioassay-guided phytochemical investigation. The compounds were identified as 16-hydroxy-lycopersene (Compound 1), (Z8,E3,ω)-dodecaprenol (Compound 2) and (Z9,E3,ω)-tridecaprenol (Compound 3). Compound 1, an unusual polyisoprenoid, was characterized by 1D and 2D NMR. We also determined the absolute configuration at C-16 by the modified Mosher’s method. The in vitro antiproliferative and anti-inflammatory activities of the isolated compounds were evaluated. Among isolates, Compound 1 moderately inhibited the nitric oxide production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. On the other hand, Compound 1 displayed selective antiproliferative activity against HeLa, PC3, HepG2 and Hep3B cancer cells and was less potent against IHH non-cancerous cells. Compound 1 in Hep3B cells showed significant inhibition of cell cycle progression increasing the sub-G1 phase, suggesting cell death. Acridine orange/ethidium bromide staining and Annexin V-FITC/PI staining demonstrated that cell death induced by Compound 1 in cells Hep3B was by apoptosis. Further study showed that apoptosis induced by Compound 1 in Hep3b cells is associated with the increase of the ratio of Bax/Bcl-2, and caspase 3/7 activation. These results suggest that Compound 1 induce apoptotic cell death by the mitochondrial pathway. To our knowledge, this is the first report about the presence of polyprenol Compounds 1–3 in T. hirsutissima, and the apoptotic and anti-inflammatory action of Compound 1.
Collapse
|
16
|
Guenné S, Ouattara N, Ouédraogo N, Ciobica A, Hilou A, Kiendrebéogo M. Phytochemistry and neuroprotective effects of Eclipta alba (L.) Hassk. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2019; 17:/j/jcim.ahead-of-print/jcim-2019-0026/jcim-2019-0026.xml. [PMID: 31116703 DOI: 10.1515/jcim-2019-0026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/06/2019] [Indexed: 11/15/2022]
Abstract
Eclipta alba (L.) Hassk. or Eclipta prostrata (Linn.) or Eclipta erecta (Linn.) is an herbaceous plant well known in Asian as African traditional medicines. These extracts are used in traditional medicine for treatment of microbial diseases and certain metabolic disorders. This review aimed to investigate phytochemical profile and neuroprotective effects of E. alba (L.) Hassk. Several compounds belonging to the families of phenolics, alkaloids, terpenoids and polysaccharides have been isolated, identified or characterized from E. alba extracts. This plant has a diverse neuropharmacological profile. Thus, its extract improves cognitive deficits and also attenuated epileptic seizures. Phytomolecules implicated in these potentials are Eclalbasaponin II and luteolin, respectively. This document updates isolated and identified organic compounds from the extracts of E. alba and reviews their neuropharmacological activities.
Collapse
Affiliation(s)
- Samson Guenné
- Laboratory of Applied Biochemistry and Chemistry (LA.BIO.C.A), University Ouaga I Pr Joseph KI-ZERBO, 03 P.O. Box: 7021, Ouagadougou 03, Burkina Faso
| | - Nabèrè Ouattara
- University of Dedougou, BP 176, Dedougou, Burkina Faso.,Laboratory of Applied Biochemistry and Chemistry (LA.BIO.C.A), University Ouaga I Pr Joseph KI-ZERBO, 03 P.O. Box: 7021, Ouagadougou 03, Burkina Faso
| | - Noufou Ouédraogo
- Laboratory of Applied Biochemistry and Chemistry (LA.BIO.C.A), University Ouaga I Pr Joseph KI-ZERBO, 03 P.O. Box: 7021, Ouagadougou 03, Burkina Faso
| | - Alin Ciobica
- Academy of Romanian Scientists, Splaiul Independentei nr. 54, sector 5, 050094 Bucuresti Romania.,Center of Biomedical Research, Romanian Academy, Iasi, B dul Carol I, no 8Romania.,Department of Research, Faculty of Biology, Alexandru Ioan Cuza University, B dul Carol I, no 11, Iasi, Romania
| | - Adama Hilou
- Laboratory of Applied Biochemistry and Chemistry (LA.BIO.C.A), University Ouaga I Pr Joseph KI-ZERBO, 03 P.O. Box: 7021, Ouagadougou 03, Burkina Faso
| | - Martin Kiendrebéogo
- Laboratory of Applied Biochemistry and Chemistry (LA.BIO.C.A), University Ouaga I Pr Joseph KI-ZERBO, 03 P.O. Box: 7021, Ouagadougou 03, Burkina Faso
| |
Collapse
|
17
|
Liao MY, Chuang CY, Hsieh MJ, Chou YE, Lin CW, Chen WR, Lai CT, Chen MK, Yang SF. Antimetastatic effects of Eclipta prostrata extract on oral cancer cells. ENVIRONMENTAL TOXICOLOGY 2018; 33:923-930. [PMID: 29962088 DOI: 10.1002/tox.22577] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/02/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
Eclipta prostrata, a traditional Chinese medication, has been used for the treatment of several diseases. However, the molecular mechanism underlying the effects of Eclipta prostrata extracts (EPE) on human oral cancer cell metastasis remains unclear. We thus examined the effects of EPE on metastasis promoting proteins in oral cancer. Our results revealed that the EPE attenuated SCC-9, HSC-3, and TW2.6 cell migration and invasiveness by reducing matrix metalloproteinase (MMP)-2 enzyme activities. In addition, Western blot analysis revealed that EPE significantly reduced the levels of phosphorylated extracellular signal-regulated kinase 1/2 (ERK 1/2) but not those of c-Jun N-terminal kinase (JNK) 1/2 and p38. In conclusion, we found that EPE could inhibit oral cancer metastasis through the inhibition of MMP-2 expression. Therefore, EPE may be used to prevent the metastasis of oral cancer, and has the potential to be applied to cancer treatment.
Collapse
Affiliation(s)
- Miao-Yu Liao
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Family Medicine, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Chun-Yi Chuang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Ju Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Ying-Erh Chou
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wen-Rong Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chih-Ting Lai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Mu-Kuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
18
|
Sesquiterpene lactone from Artemisia argyi induces gastric carcinoma cell apoptosis via activating NADPH oxidase/reactive oxygen species/mitochondrial pathway. Eur J Pharmacol 2018; 837:164-170. [PMID: 30075222 DOI: 10.1016/j.ejphar.2018.07.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 12/27/2022]
Abstract
Apoptosis is an essential type of programmed cell death. Previous studies have demonstrated that a wide range of natural-derived anticancer agents induce apoptosis by trigging oxidative stress. Artemisia argyi is a traditional Chinese herb for treating diverse diseases including dyspepsia, arthroncus, and anaphylactic disease. In this study, sesquiterpene lactone 3 (SL3), a bioactive ingredient isolated from Artemisia argyi was found to show obvious inhibitory effect on two gastric carcinoma cells. Mechanism study revealed that SL3 promoted the membrane translocation of p47, activated nicotinamide adenine dinucleotide (NADPH) oxidase, and evaluated intracellular reactive oxygen species production, leading to the activation of mitochondria-dependent caspase apoptosis pathway. Collectively, these findings show that SL3 is a promising anticancer candidate against gastric carcinoma by activating NADPH oxidase/reactive oxygen species/mitochondrial pathway.
Collapse
|
19
|
Wang H, Li N, Zhu C, Shi S, Jin H, Wang S. Anti-complementary activity of two homogeneous polysaccharides from Eclipta prostrata. Biochem Biophys Res Commun 2017; 493:887-893. [DOI: 10.1016/j.bbrc.2017.09.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 09/23/2017] [Indexed: 12/13/2022]
|
20
|
Chung IM, Rajakumar G, Lee JH, Kim SH, Thiruvengadam M. Ethnopharmacological uses, phytochemistry, biological activities, and biotechnological applications of Eclipta prostrata. Appl Microbiol Biotechnol 2017. [PMID: 28623383 DOI: 10.1007/s00253-017-8363-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Eclipta prostrata belongs to a family of medicinal plants (Asteraceae) and plays a role in the treatment of several diseases, including infectious hepatitis, snake venom poisoning, gastritis, and respiratory diseases such as a cough and asthma. A number of compounds, including thiophene derivatives, steroids, triterpenes, flavonoids, polyacetylenes, polypeptides, and coumestans, have been isolated from E. prostrata. The plant functional compounds can act as reducing agent in the field of nanoparticle synthesis. The extracts of E. prostrata are widely used for green biosynthesis of various metal and metal oxide nanoparticles, nanoparticles, which showed a potential for pharmaceutical, biotechnological, and biomedical applications. Establishment of a efficient in vitro regeneration and genetic transformation method of E. prostrata is a vital prerequisite for application of biotechnology in order to improve secondary metabolite yields. The present mini-review discusses its pharmacological profile, chemical constituents, biotechnological, and ethnomedical uses, mainly focusing on antimyotoxic, antihemorrhagic, antiproliferative, antioxidant, antitumor, antihyperglycemic, antidementia, antimicrobial, antihyperlipidemic, antivenom, anti-HIV, and larvicidal activities, so that the pharmaceutical potential of the plant can be better evaluated. The mini review, providing up-to-date phytochemical and other information on E. prostrata, will serve a reference for further studies.
Collapse
Affiliation(s)
- Ill-Min Chung
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Govindasamy Rajakumar
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ji-Hee Lee
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Seung-Hyun Kim
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
21
|
Preya UH, Lee KT, Kim NJ, Lee JY, Jang DS, Choi JH. The natural terthiophene α-terthienylmethanol induces S phase cell cycle arrest of human ovarian cancer cells via the generation of ROS stress. Chem Biol Interact 2017; 272:72-79. [PMID: 28506552 DOI: 10.1016/j.cbi.2017.05.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 04/19/2017] [Accepted: 05/11/2017] [Indexed: 12/11/2022]
Abstract
Ovarian cancer is the most lethal gynecological malignancy worldwide. Thiophenes such as terthiophene have been shown to have anti-tumor effects on several cancer cell lines, including ovarian cancer cells. However, the underlying mechanisms behind the anti-proliferative effect of thiophenes are poorly understood. In this study, we investigated the molecular mechanisms underlying the anti-proliferative effect of α-terthienylmethanol, a terthiophene isolated from Eclipta prostrata (False Daisy), on human ovarian cancer cells. We found that α-terthienylmethanol is a more potent inhibitor of cell growth than is cisplatin in human ovarian cancer cells. α-Terthienylmethanol induces cell cycle arrest in ovarian cancer cells, as shown by the accumulation of cells in S phase. In addition, α-terthienylmethanol induced a change in S phase-related proteins cyclin A, cyclin-dependent kinase 2, and cyclin D2. Knockdown of cyclin A using specific siRNAs significantly compromised α-terthienylmethanol-induced S phase arrest. We further demonstrated that α-terthienylmethanol induced an increase in intracellular ROS, and the antioxidant N-acetyl-l-cysteine significantly reversed the S phase arrest induced by α-terthienylmethanol. Moreover, α-terthienylmethanol significantly increased the levels of p-H2AX, a DNA damage marker. These results suggest that α-terthienylmethanol inhibits the growth of human ovarian cancer cells by S phase cell cycle arrest via induction of ROS stress and DNA damage.
Collapse
Affiliation(s)
- Umma Hafsa Preya
- Department of Life and Nanopharamceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, South Korea
| | - Kyung-Tae Lee
- Department of Life and Nanopharamceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, South Korea; College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, South Korea
| | - Nam-Jung Kim
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, South Korea
| | - Jung-Yun Lee
- Department of Plant Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Dae Sik Jang
- Department of Life and Nanopharamceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, South Korea; College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, South Korea
| | - Jung-Hye Choi
- Department of Life and Nanopharamceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, South Korea; College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, South Korea.
| |
Collapse
|
22
|
Meng L, Xia X, Yang Y, Ye J, Dong W, Ma P, Jin Y, Liu Y. Co-encapsulation of paclitaxel and baicalein in nanoemulsions to overcome multidrug resistance via oxidative stress augmentation and P-glycoprotein inhibition. Int J Pharm 2016; 513:8-16. [DOI: 10.1016/j.ijpharm.2016.09.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/12/2016] [Accepted: 09/01/2016] [Indexed: 12/18/2022]
|
23
|
Márquez J, Mena J, Hernandez-Unzueta I, Benedicto A, Sanz E, Arteta B, Olaso E. Ocoxin® oral solution slows down tumor growth in an experimental model of colorectal cancer metastasis to the liver in Balb/c mice. Oncol Rep 2015; 35:1265-72. [PMID: 26676882 PMCID: PMC4750781 DOI: 10.3892/or.2015.4486] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/06/2015] [Indexed: 12/12/2022] Open
Abstract
Liver metastatic disease is the main cause of death in colorectal cancer (CRC) patients. During metastatic spread of the disease an imbalance in the oxidative stress and inflammation plays a crucial role in tumor progression. In order to improve the efficacy of current therapies, new complementary therapeutic approaches are being analyzed including biologically active compounds with low side effects. The anti-inflammatory and anti-oxidant properties of Ocoxin® oral solution (OOS) prompt us to analyze its effect on the metastatic development of CRC to the liver. First, in vitro effect of OOS in tumor cell viability and migration was analyzed. Second, in vivo effect of different dosage patterns and concentrations in the development of hepatic metastasis was analyzed by intrasplenic inoculation of C26 colon carcinoma cells in Balb/c mice. Third, the expression of alpha smooth muscle actin, caspase-3 and Ki-67 expression was quantified by immunohistochemistry, then gene expression levels of inflammatory factors were measured by quantitative RT-PCR. According to our results, OOS reduced tumor cell viability and migration in vitro. Moreover, in vivo daily administration of OOS from the 7th day after tumor cell inoculation decreased the total area and size of metastatic foci in the liver. Furthermore, cell proliferation and fibroblast recruitment was decreased in tumor foci while a higher number of apoptotic cells were observed. Finally, RNA levels for the inflammatory mediators COX-2, IFNγ, IL1β, IL6 and TNFα were reduced in total liver. In conclusion, OOS reduced the metastatic development of colorectal cancer to the liver by increasing apoptosis, and decreasing tumor cell proliferation and fibroblast recruitment in the tumor foci, as well as the expression of inflammatory mediators in total liver. These results point out OOS as a potential supplement to be applied as complementary therapy for the treatment of liver metastasis from colorectal cancer.
Collapse
Affiliation(s)
- Joana Márquez
- Department of Cellular Biology and Histology, School of Medicine and Dentistry, Basque Country University, Leioa, Bizkaia E-48940, Spain
| | - Jorge Mena
- Department of Cellular Biology and Histology, School of Medicine and Dentistry, Basque Country University, Leioa, Bizkaia E-48940, Spain
| | - Iera Hernandez-Unzueta
- Department of Cellular Biology and Histology, School of Medicine and Dentistry, Basque Country University, Leioa, Bizkaia E-48940, Spain
| | - Aitor Benedicto
- Department of Cellular Biology and Histology, School of Medicine and Dentistry, Basque Country University, Leioa, Bizkaia E-48940, Spain
| | | | - Beatriz Arteta
- Department of Cellular Biology and Histology, School of Medicine and Dentistry, Basque Country University, Leioa, Bizkaia E-48940, Spain
| | - Elvira Olaso
- Department of Cellular Biology and Histology, School of Medicine and Dentistry, Basque Country University, Leioa, Bizkaia E-48940, Spain
| |
Collapse
|
24
|
Yin J, Miao P. Apoptosis Evaluation by Electrochemical Techniques. Chem Asian J 2015; 11:632-41. [DOI: 10.1002/asia.201501045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Jian Yin
- CAS Key Lab of Bio-Medical Diagnostics; Suzhou Institute of Biomedical Engineering and Technology; Chinese Academy of Sciences; Suzhou 215163 P.R. China
| | - Peng Miao
- CAS Key Lab of Bio-Medical Diagnostics; Suzhou Institute of Biomedical Engineering and Technology; Chinese Academy of Sciences; Suzhou 215163 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| |
Collapse
|
25
|
Shi L, Sun G. Low-Dose DMC Significantly Enhances the Effect of TMZ on Glioma Cells by Targeting Multiple Signaling Pathways Both In Vivo and In Vitro. Neuromolecular Med 2015; 17:431-42. [DOI: 10.1007/s12017-015-8372-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/03/2015] [Indexed: 11/28/2022]
|