1
|
Zhang Z, Han H, Zhao J, Liu Z, Deng L, Wu L, Niu J, Guo Y, Wang G, Gou X, Li C, Li C, Liu CM. Peptide hormones in plants. MOLECULAR HORTICULTURE 2025; 5:7. [PMID: 39849641 PMCID: PMC11756074 DOI: 10.1186/s43897-024-00134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/04/2024] [Indexed: 01/25/2025]
Abstract
Peptide hormones are defined as small secreted polypeptide-based intercellular communication signal molecules. Such peptide hormones are encoded by nuclear genes, and often go through proteolytic processing of preproproteins and post-translational modifications. Most peptide hormones are secreted out of the cell to interact with membrane-associated receptors in neighboring cells, and subsequently activate signal transductions, leading to changes in gene expression and cellular responses. Since the discovery of the first plant peptide hormone, systemin, in tomato in 1991, putative peptide hormones have continuously been identified in different plant species, showing their importance in both short- and long-range signal transductions. The roles of peptide hormones are implicated in, but not limited to, processes such as self-incompatibility, pollination, fertilization, embryogenesis, endosperm development, stem cell regulation, plant architecture, tissue differentiation, organogenesis, dehiscence, senescence, plant-pathogen and plant-insect interactions, and stress responses. This article, collectively written by researchers in this field, aims to provide a general overview for the discoveries, functions, chemical natures, transcriptional regulations, and post-translational modifications of peptide hormones in plants. We also updated recent discoveries in receptor kinases underlying the peptide hormone sensing and down-stream signal pathways. Future prospective and challenges will also be discussed at the end of the article.
Collapse
Affiliation(s)
- Zhenbiao Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Huibin Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Junxiang Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhiwen Liu
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Lei Deng
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Liuji Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junpeng Niu
- College of Life Sciences, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Guodong Wang
- College of Life Sciences, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China.
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Chao Li
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Chuanyou Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| | - Chun-Ming Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
2
|
Mandal SK, Mukherjee N, Ray AS, Hazra S, Saha S, Das S, Joardar N, Saha S, Sinha Babu SP, Rahaman CH. An ethnopharmacological approach to evaluate antiparasitic and health-promoting abilities of Pueraria tuberosa (Willd.) DC. in livestock. PLoS One 2024; 19:e0305667. [PMID: 39028725 PMCID: PMC11259309 DOI: 10.1371/journal.pone.0305667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/03/2024] [Indexed: 07/21/2024] Open
Abstract
In eastern India, the tubers of Pueraria tuberosa (Willd.) DC. are used by the ethnic communities for its wide range of medicinal and nutritional value, especially to rejuvenate livestock health and to treat helminthiasis. The study is aimed to evaluate the ethnoveterinary medicinal importance of P. tuberosa as anthelmintic, to verify its nontoxic nature and identify the most potent phytoconstituents aided by in silico molecular docking technique. Ethnomedicinal data collected from 185 informants were quantitatively analyzed employing eight quantitative indices to highlight the use diversity and most frequently used part of the plant. High scores of certain indices employed, such as Use Value (UV = 0.52), Fidelity Level (FL = 68.42%) and Tissue Importance Value (TIV = 1) clearly illustrate an ethnomedicinal lead regarding medico-nutritional benefits of the tuber part used against intestinal helminthic diseases of veterinary animals. Based on this ethno-guided lead, root tuber has been investigated for its chemical profiling by the estimation of total phenolics, flavonoids, tannins and alkaloids, along with HPLC and GC-MS analyses. Anthelmintic property was evaluated with the tuber extracts by in vitro studies on some helminths of livestock and poultry birds, and it showed promising results against the tested parasites namely Cotylophoron cotylophorum, Raillietina tetragona and Setaria cervi. Toxicity assessments of tuber extract through in vitro and in vivo methods were performed using Vero cells and BALB/c mice. Nontoxic nature of the studied tuber extract was observed even in higher experimental doses. Out of 12 phytocompounds identified by GC-MS analysis, one compound [Morphinan-4,5-epoxy-3,6-di-ol,6- (7-nitrobenzofurazan-4-yl) amino-] exhibited the best binding conformations in cost of the lowest binding energy values with six target proteins that include one anti-inflammatory, one antioxidant, and four anthelmintic proteins. The findings of our study are found very encouraging to evaluate this tuber drug furthermore intensively towards the development of anthelmintic veterinary medicine.
Collapse
Affiliation(s)
- Suman Kalyan Mandal
- Ethnopharmacology Laboratory, Department of Botany, Visva-Bharati, Santiniketan, India
| | - Niladri Mukherjee
- Parasitology Laboratory, Department of Zoology, Visva-Bharati, Santiniketan, India
| | - Anindya Sundar Ray
- Ethnopharmacology Laboratory, Department of Botany, Visva-Bharati, Santiniketan, India
| | - Samik Hazra
- Ethnopharmacology Laboratory, Department of Botany, Visva-Bharati, Santiniketan, India
| | - Sathi Saha
- Ethnopharmacology Laboratory, Department of Botany, Visva-Bharati, Santiniketan, India
| | - Swetarka Das
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Nikhilesh Joardar
- Parasitology Laboratory, Department of Zoology, Visva-Bharati, Santiniketan, India
| | - Saradindu Saha
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | | |
Collapse
|
3
|
DIDARIAN R, EBRAHIMI A, GHORBANPOOR H, BAGHEROGHLI H, DOGAN GÜZEL F, FARHADPOUR M, LOTFIBAKHSHAYESH N, HASHEMPOUR H, AVCI H. On chip microfluidic separation of cyclotides. Turk J Chem 2022; 47:253-262. [PMID: 37720850 PMCID: PMC10504020 DOI: 10.55730/1300-0527.3534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/20/2023] [Accepted: 12/20/2022] [Indexed: 02/25/2023] Open
Abstract
Cyclotides as a cyclic peptide produced by different groups of plants have been a very attractive field of research due to their exceptional properties in biological activities and drug design applications. The importance of cyclotides as new biological activities from nature caused to attract researchers to develop new separation systems. Recent growth and development on chip-based technology for separation and bioassay especially for anticancer having sparklingly advantages comparison with common traditional methods. In this study, the microfluidic separation of Vigno 1-5 cyclotides extracted from Viola ignobilis by using polar and nonpolar forces as a liquid-liquid interaction was investigated through modified microfluidic chips and then the results were compared with a traditional counterpart technique of high-performance liquid chromatography (HPLC). The traditional process of separating cyclotides from plants is a costly and time-consuming procedure. The scientific novelty of this study is to accelerate the separation of cyclotides using modified microfluidic chips with low cost and high efficiency. The results revealed that a novel and simple microfluidic chip concept is an effective approach for separating the Vigno groups in the violet extract. We believe that the concept could potentially be utilized for further drug development process especially for anticancer studies by coupling bioassay chips as online procedures via reducing in time and cost compared with traditional offline methods.
Collapse
Affiliation(s)
- Reza DIDARIAN
- Department of Biomedical Engineering, Ankara Yıldırım Beyazıt University, Ankara,
Turkey
- Department of Metallurgical and Materials Engineering, Eskişehir Osmangazi University Eskişehir,
Turkey
| | - Aliakbar EBRAHIMI
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir,
Turkey
- Department of Metallurgical and Materials Engineering, Eskişehir Osmangazi University Eskişehir,
Turkey
- Department of Biomedical Engineering, Eskişehir Osmangazi University, Eskişehir,
Turkey
| | - Hamed GHORBANPOOR
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir,
Turkey
- Department of Biomedical Engineering, Eskişehir Osmangazi University, Eskişehir,
Turkey
| | - Hesam BAGHEROGHLI
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz,
Iran
| | - Fatma DOGAN GÜZEL
- Department of Biomedical Engineering, Ankara Yıldırım Beyazıt University, Ankara,
Turkey
| | - Mohsen FARHADPOUR
- Department of Plant Bioproducts, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-e Pajoohesh, Tehran,
Iran
| | - Nasrin LOTFIBAKHSHAYESH
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran,
Iran
| | - Hossein HASHEMPOUR
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz,
Iran
| | - Hüseyin AVCI
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir,
Turkey
- Department of Metallurgical and Materials Engineering, Eskişehir Osmangazi University Eskişehir,
Turkey
- Translational Medicine Research and Clinical Center (TATUM), Eskişehir Osmangazi University, Eskişehir,
Turkey
| |
Collapse
|
4
|
Evaluation of the antibacterial and antifungal potentials of peptide-rich extracts from selected Nigerian plants. Eur J Integr Med 2022. [DOI: 10.1016/j.eujim.2022.102163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Attah AF, Akindele OO, Nnamani PO, Jonah UJ, Sonibare MA, Moody JO. Moringa oleifera Seed at the Interface of Food and Medicine: Effect of Extracts on Some Reproductive Parameters, Hepatic and Renal Histology. Front Pharmacol 2022; 13:816498. [PMID: 35350756 PMCID: PMC8958002 DOI: 10.3389/fphar.2022.816498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
The lipid-rich Seed of Moringa oleifera has been promoted as an effective water clarifier. Aside its vital nutritional application as an emerging food additive, the seed has continued to gain a wider acceptance in various global ethnomedicines for managing several communicable and lifestyle diseases, howbeit, its potential toxic effect, particularly on fertility and pregnancy outcomes has remained uninvestigated; the effect of Moringa oleifera seed (MOSE) aqueous-methanol extracts on fertility and pregnancy outcome, was investigated in vivo using female Wistar rats that were divided into 50, 100, 300 and 500 mg per kilogram body weight. Group six was given Moringa oleifera seed treated water ad-libitum (ad-libitum group). Organs harvested for histological assessment included ovary, uterus, liver and kidney. In addition to HPLC fingerprint and a preliminary peptide detection, we determined the physico-chemical characteristics and mineral content of MOSE using standard methods. Data were analyzed with significance at p ≤ 0.05. There was no significant difference in the estrus cycle, mating index, gestation survival index, gestation index, fertility index and sex ratio among all groups. Gestation length was reduced in some groups. While the male pup birth weight was comparable among the different groups, female pups birth weights were significantly reduced in 50 and 100 mg groups. Anogenital distance indices of female pups in ad libitum group were significantly increased. Pathologies were observed in liver and kidneys of dams while kidneys of pups presented a dose dependent reduction in the number of glomeruli. There were no observed pathological changes in the ovary and uterus. This study showed for the first time in rodents, that the lipid-rich MOSE is unsafe to the kidney of rodents while the lipid-free MOSE appears to be safe at doses up to 300 mg/kg body weight. Findings from this study suggested that the female pups were masculinized. In conclusion, the lipid-rich seed extracts of MOSE appear to be unsafe during pregnancy, induce hepatic and renal toxicity while the lipid-free MOSE excludes inherent toxicity as the hydrophobic part has been linked to toxicity as observed in this study due to the developmental programming effect on female offspring in rodents.
Collapse
Affiliation(s)
- Alfred F Attah
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria.,Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Opeyemi O Akindele
- Laboratory for Reproductive Physiology and Developmental Programming, Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Petra O Nnamani
- Drug Delivery and Nanomedicines Research Unit/Public Health and Environmental Sustainability (PHES) Research Group, Department of Pharmaceutics, University of Nigeria, Nsukka, Nigeria
| | | | - Mubo A Sonibare
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Jones O Moody
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
6
|
Hellinger R, Muratspahić E, Devi S, Koehbach J, Vasileva M, Harvey PJ, Craik DJ, Gründemann C, Gruber CW. Importance of the Cyclic Cystine Knot Structural Motif for Immunosuppressive Effects of Cyclotides. ACS Chem Biol 2021; 16:2373-2386. [PMID: 34592097 PMCID: PMC9286316 DOI: 10.1021/acschembio.1c00524] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cyclotide T20K inhibits the proliferation of human immune cells and is currently in clinical trials for multiple sclerosis. Here, we provide novel functional data and mechanistic insights into structure-activity relationships of T20K. Analogs with partial or complete reduction of the cystine knot had loss of function in proliferation experiments. Similarly, an acyclic analog of T20K was inactive in lymphocyte bioassays. The lack of activity of non-native peptide analogs appears to be associated with the ability of cyclotides to interact with and penetrate cell membranes, since cellular uptake studies demonstrated fast fractional transfer only of the native peptide into the cytosol of human immune cells. Therefore, structural differences between cyclic and linear native folded peptides were investigated by NMR to elucidate structure-activity relationships. Acyclic T20K had a less rigid backbone and considerable structural changes in loops 1 and 6 compared to the native cyclic T20K, supporting the idea that the cyclic cystine knot motif is a unique bioactive scaffold. This study provides evidence that this structural motif in cyclotides governs bioactivity, interactions with and transport across biological membranes, and the structural integrity of these peptides. These observations could be useful to understand the structure-activity of other cystine knot proteins due to the structural conservation of the cystine knot motif across evolution and to provide guidance for the design of novel cyclic cysteine-stabilized molecules.
Collapse
Affiliation(s)
- Roland Hellinger
- Center for
Physiology and Pharmacology, Medical University
of Vienna, Schwarzspanierstr. 17, Vienna 1090, Austria
| | - Edin Muratspahić
- Center for
Physiology and Pharmacology, Medical University
of Vienna, Schwarzspanierstr. 17, Vienna 1090, Austria
| | - Seema Devi
- Institute
for Infection Prevention and Hospital Epidemiology, Center for Complementary
Medicine, Faculty of Medicine, University
of Freiburg, Breisacher Str. 115B, Freiburg 79106, Germany
| | - Johannes Koehbach
- Institute
for Molecular Bioscience, Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mina Vasileva
- Center for
Physiology and Pharmacology, Medical University
of Vienna, Schwarzspanierstr. 17, Vienna 1090, Austria
| | - Peta J. Harvey
- Institute
for Molecular Bioscience, Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David J. Craik
- Institute
for Molecular Bioscience, Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Carsten Gründemann
- Translational
Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstr. 80, Basel 4056, Switzerland
| | - Christian W. Gruber
- Center for
Physiology and Pharmacology, Medical University
of Vienna, Schwarzspanierstr. 17, Vienna 1090, Austria
| |
Collapse
|
7
|
Human Myometrial Contractility Assays. Methods Mol Biol 2021. [PMID: 34550566 DOI: 10.1007/978-1-0716-1759-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Traditional contractility assays using an organ bath setup consist of several chambers (or baths) perfused with temperature-controlled, oxygenated physiological saline. Strips or rings of tissue (usually smooth or cardiac muscle) are mounted within the organ bath between a fixed hook and an isometric force transducer. The contraction force is recorded by the transducer and different parameters of contraction are analyzed. Different experimental protocols can be performed to investigate the effect of drugs and reagents on tissue contractility to investigate tissue physiology or determine the in vivo potential of novel pharmaceutical compounds. Here, the application of a modified organ bath to measure ex vivo contractions of small strips of human uterine smooth muscle (myometrium) is described, as well as protocols to study the effect of oxytocin and uterine relaxants on contraction.
Collapse
|
8
|
Ogbole OO, Akinleye TE, Nkumah AO, Awogun AO, Attah AF, Adewumi MO, Adeniji AJ. In vitro antiviral activity of peptide-rich extracts from seven Nigerian plants against three non-polio enterovirus species C serotypes. Virol J 2021; 18:161. [PMID: 34348755 PMCID: PMC8335448 DOI: 10.1186/s12985-021-01628-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/22/2021] [Indexed: 08/30/2023] Open
Abstract
Background As frequent viral outbreaks continue to pose threat to public health, the unavailability of antiviral drugs and challenges associated with vaccine development underscore the need for antiviral drugs discovery in emergent moments (endemic or pandemic). Plants in response to microbial and pest attacks are able to produce defence molecules such as antimicrobial peptides as components of their innate immunity, which can be explored for viral therapeutics. Methods In this study, partially purified peptide-rich fraction (P-PPf) were obtained from aqueous extracts of seven plants by reverse-phase solid-phase extraction and cysteine-rich peptides detected by a modified TLC method. The peptide-enriched fractions and the aqueous (crude polar) were screened for antiviral effect against three non-polio enterovirus species C members using cytopathic effect reduction assay. Results In this study, peptide fraction obtained from Euphorbia hirta leaf showed most potent antiviral effect against Coxsackievirus A13, Coxsackievirus A20, and Enterovirus C99 (EV-C99) with IC50 < 2.0 µg/mL and selective index ≥ 81. EV-C99 was susceptible to all partially purified peptide fractions except Allamanda blanchetii leaf. Conclusion These findings establish the antiviral potentials of plants antimicrobial peptides and provides evidence for the anti-infective use of E. hirta in ethnomedicine. This study provides basis for further scientific investigation geared towards the isolation, characterization and mechanistic pharmacological study of the detected cysteine-rich peptides.
Collapse
Affiliation(s)
- Omonike O Ogbole
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Toluwanimi E Akinleye
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Abraham O Nkumah
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Aminat O Awogun
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Alfred F Attah
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Moses O Adewumi
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Adekunle J Adeniji
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.,WHO Polio National Laboratory, Department of Virology, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
9
|
Gattringer J, Ndogo OE, Retzl B, Ebermann C, Gruber CW, Hellinger R. Cyclotides Isolated From Violet Plants of Cameroon Are Inhibitors of Human Prolyl Oligopeptidase. Front Pharmacol 2021; 12:707596. [PMID: 34322026 PMCID: PMC8311463 DOI: 10.3389/fphar.2021.707596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Traditional medicine and the use of herbal remedies are well established in the African health care system. For instance, Violaceae plants are used for antimicrobial or anti-inflammatory applications in folk medicine. This study describes the phytochemical analysis and bioactivity screening of four species of the violet tribe Allexis found in Cameroon. Allexis cauliflora, Allexis obanensis, Allexis batangae and Allexis zygomorpha were evaluated for the expression of circular peptides (cyclotides) by mass spectrometry. The unique cyclic cystine-rich motif was identified in several peptides of all four species. Knowing that members of this peptide family are protease inhibitors, the plant extracts were evaluated for the inhibition of human prolyl oligopeptidase (POP). Since all four species inhibited POP activity, a bioactivity-guided fractionation approach was performed to isolate peptide inhibitors. These novel cyclotides, alca 1 and alca 2 exhibited IC50 values of 8.5 and 4.4 µM, respectively. To obtain their amino acid sequence information, combinatorial enzymatic proteolysis was performed. The proteolytic fragments were evaluated in MS/MS fragmentation experiments and the full-length amino acid sequences were obtained by de novo annotation of fragment ions. In summary, this study identified inhibitors of the human protease POP, which is a drug target for inflammatory or neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | | | - Christian W. Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
10
|
Attah AF, Fagbemi AA, Olubiyi O, Dada-Adegbola H, Oluwadotun A, Elujoba A, Babalola CP. Therapeutic Potentials of Antiviral Plants Used in Traditional African Medicine With COVID-19 in Focus: A Nigerian Perspective. Front Pharmacol 2021; 12:596855. [PMID: 33981214 PMCID: PMC8108136 DOI: 10.3389/fphar.2021.596855] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is caused by an infectious novel strain of coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which was earlier referred to as 2019-nCoV. The respiratory disease is the most consequential global public health crisis of the 21st century whose level of negative impact increasingly experienced globally has not been recorded since World War II. Up till now, there has been no specific globally authorized antiviral drug, vaccines, supplement or herbal remedy available for the treatment of this lethal disease except preventive measures, supportive care and non-specific treatment options adopted in different countries via divergent approaches to halt the pandemic. However, many of these interventions have been documented to show some level of success particularly the Traditional Chinese Medicine while there is paucity of well reported studies on the impact of the widely embraced Traditional African Medicines (TAM) adopted so far for the prevention, management and treatment of COVID-19. We carried out a detailed review of publicly available data, information and claims on the potentials of indigenous plants used in Sub-Saharan Africa as antiviral remedies with potentials for the prevention and management of COVID-19. In this review, we have provided a holistic report on evidence-based antiviral and promising anti-SARS-CoV-2 properties of African medicinal plants based on in silico evidence, in vitro assays and in vivo experiments alongside the available data on their mechanistic pharmacology. In addition, we have unveiled knowledge gaps, provided an update on the effort of African Scientific community toward demystifying the dreadful SARS-CoV-2 micro-enemy of man and have documented popular anti-COVID-19 herbal claims emanating from the continent for the management of COVID-19 while the risk potentials of herb-drug interaction of antiviral phytomedicines when used in combination with orthodox drugs have also been highlighted. This review exercise may lend enough credence to the potential value of African medicinal plants as possible leads in anti-COVID-19 drug discovery through research and development.
Collapse
Affiliation(s)
- Alfred Francis Attah
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Adeshola Adebayo Fagbemi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Olujide Olubiyi
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich, Germany
| | - Hannah Dada-Adegbola
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Anthony Elujoba
- Department of Pharmacognosy, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Chinedum Peace Babalola
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
- Centre for Drug Discovery, Development and Production, University of Ibadan, Ibadan, Nigeria
- College of Basic Medical Sciences, Chrisland University, Abeokuta, Nigeria
| |
Collapse
|
11
|
Dang TT, Chan LY, Tombling BJ, Harvey PJ, Gilding EK, Craik DJ. In Planta Discovery and Chemical Synthesis of Bracelet Cystine Knot Peptides from Rinorea bengalensis. JOURNAL OF NATURAL PRODUCTS 2021; 84:395-407. [PMID: 33570395 DOI: 10.1021/acs.jnatprod.0c01065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cyclotides are plant-derived peptides that have attracted interest as biocides and scaffolds for the development of stable peptide therapeutics. Cyclotides are characterized by their cyclic backbone and cystine knot framework, which engenders them with remarkably high stability. This study reports the cystine knot-related peptidome of Rinorea bengalensis, a small rainforest tree in the Violaceae family that is distributed from Australia westward to India. Surprisingly, many more acyclic knotted peptides (acyclotides) were discovered than cyclic counterparts (cyclotides), with 32 acyclotides and 1 cyclotide sequenced using combined transcriptome and proteomic analyses. Nine acyclotides were isolated and screened against a panel of mammalian cell lines, showing they had the cytotoxic properties normally associated with cyclotide-like peptides. NMR analysis of the acyclotide ribes 21 and 22 and the cyclotide ribe 33 confirmed that these peptides contained the cystine knot structural motif. The bracelet-subfamily cyclotide ribe 33 was amenable to chemical synthesis in reasonable yield, an achievement that has long eluded previous attempts to synthetically produce bracelet cyclotides. Accordingly, ribe 33 represents an exciting new bracelet cyclotide scaffold that can be subject to chemical modification for future molecular engineering applications.
Collapse
Affiliation(s)
- Tien T Dang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lai Y Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Benjamin J Tombling
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peta J Harvey
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Edward K Gilding
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
12
|
Ogbole OO, Ndabai NC, Akinleye TE, Attah AF. Evaluation of peptide-rich root extracts of Calliandria portoriscensis (Jacq.) Benth (Mimosaceae) for in vitro antimicrobial activity and brine shrimp lethality. BMC Complement Med Ther 2020; 20:30. [PMID: 32020886 PMCID: PMC7076830 DOI: 10.1186/s12906-020-2836-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/28/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Several Host defence peptides (HDPs) are low molecular weight (< 50 amino acids residues) peptides detected in several ethnomedicinal plants and have particularly gained research interest in recent times. Due to their wide range of bioactivity, occurrence, abundance and ability to induce very little resistance, they hold promising potentials in drug development. This study investigated the presence of bioactive peptides in the roots of Calliandra portoricensis (CPr) (Mimosaceae) and evaluated its antimicrobial activity against gram-negative and gram-positive bacteria. METHODS The crude peptide extract was obtained and pre-purified on pre-loaded tube of RP-C18 solid phase cartridges (strata giga tube C18-E; 5 g, 20 mL, Phenomenex, Germany). Peptide enriched fraction was chemically analysed for arginine-rich/aromatic amino acid-rich peptides using a modified G-250 analytical stain and ninhydrin on thin layer chromatography (TLC) for a preliminary screening. Furthermore, MALDI TOF/TOF peptidomics was used to detect the presence and masses of the peptides. Extracts from CPr were used to test the ability to inhibit microbial growth using p-INT (Para-iodonitrotetrazolium violet) dye, with 0.1% gentamycin as positive control. The concentration that inhibits the growth of microorganisms by 50% (IC50) were determined. Toxicity of the two extracts was accessed using freshly hatched nauplii of Artemia salina. Data analysis were evaluated using Microsoft excel and GraphPad Prism5. RESULTS Low molecular weight (LMW) peptides were detected in CPr using TLC and MALDI-TOF MS. Generally, the extracts exhibited good inhibition (70-95%) against the gram-negative and gram-positive bacteria, except MRSA6 typed strain. Enhanced activity was observed in the pre-purified peptide fraction than in the methanol crude, except on MRSA6. The greatest antimicrobial inhibition by pre-purified peptide fraction was against MRSA22 (IC50 = 0.69 ± 0.33 μg/mL). The crude methanol extract (LC50 = 5.13 μg/mL) was slightly more toxic than the peptide extract (LC50 = 6.12 μg/mL). CONCLUSIONS This is the first report on detection of bioactive LMW peptides in Mimosaceae family. These peptides appear to be rich in arginine and aromatic amino acids. The peptide extract, in its pre-purified form showed a lower Brine shrimp cytotoxicity and an enhanced antimicrobial activity against the tested gram-negative and gram-positive bacteria.
Collapse
Affiliation(s)
- Omonike O Ogbole
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria.
| | - Nkiruka C Ndabai
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Toluwanimi E Akinleye
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Alfred F Attah
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin, Nigeria.
| |
Collapse
|
13
|
Abstract
This Review explores the class of plant-derived macrocyclic peptides called cyclotides. We include an account of their discovery, characterization, and distribution in the plant kingdom as well as a detailed analysis of their sequences and structures, biosynthesis and chemical synthesis, biological functions, and applications. These macrocyclic peptides are around 30 amino acids in size and are characterized by their head-to-tail cyclic backbone and cystine knot motif, which render them to be exceptionally stable, with resistance to thermal or enzymatic degradation. Routes to their chemical synthesis have been developed over the past two decades, and this capability has facilitated a wide range of mutagenesis and structure-activity relationship studies. In turn, these studies have both led to an increased understanding of their mechanisms of action as well as facilitated a range of applications in agriculture and medicine, as ecofriendly crop protection agents, and as drug leads or scaffolds for pharmaceutical design. Our overall objective in this Review is to provide readers with a comprehensive overview of cyclotides that we hope will stimulate further work on this fascinating family of peptides.
Collapse
Affiliation(s)
- Simon J de Veer
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Meng-Wei Kan
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| |
Collapse
|
14
|
Niyomploy P, Chan LY, Harvey PJ, Poth AG, Colgrave ML, Craik DJ. Discovery and Characterization of Cyclotides from Rinorea Species. JOURNAL OF NATURAL PRODUCTS 2018; 81:2512-2520. [PMID: 30387611 DOI: 10.1021/acs.jnatprod.8b00572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cyclotides are macrocyclic cystine-knotted peptides most commonly found in the Violaceae plant family. Although Rinorea is the second-largest genera within the Violaceae family, few studies have examined whether or not they contain cyclotides. To further our understanding of cyclotide diversity and evolution, we examined the cyclotide content of two Rinorea species found in Southeast Asia: R. virgata and R. bengalensis. Seven cyclotides were isolated from R. virgata (named Rivi1-7), and a known cyclotide (cT10) was found in R. bengalensis. Loops 2, 5, and 6 of Rivi1-4 contained sequences not previously seen in corresponding loops of known cyclotides, thereby expanding our understanding of the diversity of cyclotides. In addition, the sequence of loop 2 of Rivi3 and Rivi4 were identical to some related noncyclic "acyclotides" from the Poaceae plant family. As only acyclotides, but not cyclotides, have been reported in monocotyledons thus far, our findings support an evolutionary link between monocotyledon-derived ancestral cyclotide precursors and dicotyledon-derived cyclotides. Furthermore, Rivi2 and Rivi3 had comparable cytotoxic activities to the most cytotoxic cyclotide known to date: cycloviolacin O2 from Viola odorata; yet, unlike cycloviolacin O2, they did not show hemolytic activity. Therefore, these cyclotides represent novel scaffolds for use in future anticancer drug design.
Collapse
Affiliation(s)
- Ploypat Niyomploy
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
- Department of Chemistry, Faculty of Science , Chulalongkorn University , Bangkok 10330 , Thailand
| | - Lai Yue Chan
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Peta J Harvey
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Aaron G Poth
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Michelle L Colgrave
- CSIRO Agriculture and Food , 306 Carmody Road , St. Lucia , Queensland 4067 , Australia
- School of Science , Edith Cowan University , 270 Joondalup Drive , Joondalup , WA 6027 , Australia
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| |
Collapse
|
15
|
Arrowsmith S, Keov P, Muttenthaler M, Gruber CW. Contractility Measurements of Human Uterine Smooth Muscle to Aid Drug Development. J Vis Exp 2018. [PMID: 29443077 PMCID: PMC5841565 DOI: 10.3791/56639] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Discovery and characterization of novel pharmaceutical compounds or biochemical probes rely on robust and physiologically relevant assay systems. We describe methods to measure ex vivo myometrium contractility. This assay can be used to investigate factors and molecules involved in the modulation of myometrial contraction and to determine their excitatory or inhibitory actions, and hence their therapeutic potential in vivo. Biopsies are obtained from women undergoing cesarean section delivery with informed consent. Fine strips of myometrium are dissected, clipped and attached to a force transducer within 1 mL organ baths superfused with physiological saline solution at 37 °C. Strips develop spontaneous contractions within 2-3 h under set tension and remain stable for many hours (>6 h). Strips can also be stimulated to contract such as by the endogenous hormones, oxytocin and vasopressin, which cause concentration-dependent modulation of contraction frequency, force and duration, to more closely resemble contractions in labor. Hence, the effect of known and novel drug leads can be tested on spontaneous and agonist-induced contractions. This protocol specifically details how this assay can be used to determine the potency of known and novel agents by measuring their effects on various parameters of human myometrial contraction. We use the oxytocin- and V1a receptor antagonists, atosiban and SR49059 as examples of known compounds which inhibit oxytocin- and vasopressin-induced contractions, and demonstrate how this method can be used to complement and validate pharmacological data obtained from cell-based assays to aid drug development. The effects of novel agonists in comparison to oxytocin and vasopressin can also be characterized. Whilst we use the example of the oxytocin/ vasopressin system, this method can also be used to study other receptors and ion channels that play a role in uterine contraction and relaxation to advance the understanding of human uterine physiology and pathophysiology.
Collapse
Affiliation(s)
- Sarah Arrowsmith
- Harris-Wellbeing Preterm Birth Research Centre, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool;
| | - Peter Keov
- School of Biomedical Sciences, The University of Queensland
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna; Institute for Molecular Bioscience, University of Queensland
| | - Christian W Gruber
- School of Biomedical Sciences, The University of Queensland; Center for Physiology and Pharmacology, Medical University of Vienna;
| |
Collapse
|
16
|
Ravipati AS, Poth AG, Troeira Henriques S, Bhandari M, Huang YH, Nino J, Colgrave ML, Craik DJ. Understanding the Diversity and Distribution of Cyclotides from Plants of Varied Genetic Origin. JOURNAL OF NATURAL PRODUCTS 2017; 80:1522-1530. [PMID: 28471681 DOI: 10.1021/acs.jnatprod.7b00061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cyclotides are a large family of naturally occurring plant-derived macrocyclic cystine-knot peptides, with more than 400 having been identified in species from the Violaceae, Rubiaceae, Cucurbitaceae, Fabaceae, and Solanaceae families. Nevertheless, their specialized distribution within the plant kingdom remains poorly understood. In this study, the diversity of cyclotides was explored through the screening of 197 plants belonging to 43 different families. In total, 28 cyclotides were sequenced from 15 plant species, one of which belonged to the Rubiaceae and 14 to the Violaceae. Every Violaceae species screened contained cyclotides, but they were only sparsely represented in Rubiaceae and nonexistent in other families. The study thus supports the hypothesis that cyclotides are ubiquitous in the Violaceae, and it adds to the list of plants found to express kalata S and cycloviolacin O12. Finally, previous studies suggested the existence of cyclotide isoforms with either an Asn or an Asp at the C-terminal processing site of the cyclotide domain within the precursor proteins. Here we found that despite the discovery of a few cyclotides genuinely containing an Asp in loop 6 as evidenced by gene sequencing, deamidation of Asn during enzymatic digestion resulted in the artifactual presence of Asp isoforms. This result is consistent with studies suggesting that peptides can undergo deamidation after being subjected to external factors, including pH, temperature, and enzymatic digestion.
Collapse
Affiliation(s)
- Anjaneya S Ravipati
- Institute for Molecular Bioscience, The University of Queensland , Brisbane 4072, Queensland Australia
| | - Aaron G Poth
- Institute for Molecular Bioscience, The University of Queensland , Brisbane 4072, Queensland Australia
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience, The University of Queensland , Brisbane 4072, Queensland Australia
| | - Murari Bhandari
- Institute for Molecular Bioscience, The University of Queensland , Brisbane 4072, Queensland Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, The University of Queensland , Brisbane 4072, Queensland Australia
| | - Jaime Nino
- Universidad Tecnológica de Pereira , Cra 27 No 10-02-Los Álamos, Pereira, Risaralda, Colombia
| | - Michelle L Colgrave
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, St Lucia 4067, Queensland, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland , Brisbane 4072, Queensland Australia
| |
Collapse
|
17
|
Cunha NBD, Barbosa AEADD, de Almeida RG, Porto WF, Maximiano MR, Álvares LCS, Munhoz CBR, Eugênio CUO, Viana AAB, Franco OL, Dias SC. Cloning and characterization of novel cyclotides genes from South American plants. Biopolymers 2017; 106:784-795. [PMID: 27554590 DOI: 10.1002/bip.22938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 08/10/2016] [Accepted: 08/21/2016] [Indexed: 01/06/2023]
Abstract
Cyclotides are multifunctional plant cyclic peptides containing 28-37 amino acid residues and a pattern of three disulfide bridges, forming a motif known as the cyclic cystine knot. Due to their high biotechnological potential, the sequencing and characterization of cyclotide genes are crucial not only for cloning and establishing heterologous expression strategies, but also to understand local plant evolution in the context of host-pathogen relationships. Here, two species from the Brazilian Cerrado, Palicourea rigida (Rubiaceae) and Pombalia lanata (A.St.-Hil.) Paula-Souza (Violaceae), were used for cloning and characterizing novel cyclotide genes. Using 3' and 5' RACE PCR and sequencing, two full cDNAs, named parigidin-br2 (P. rigida) and hyla-br1 (P. lanata), were isolated and shown to have similar genetic structures to other cyclotides. Both contained the conserved ER-signal domain, N-terminal prodomain, mature cyclotide domain and a C-terminal region. Genomic sequencing of parigidin-br2 revealed two different gene copies: one intronless allele and one presenting a rare 131-bp intron. In contrast, genomic sequencing of hyla-br1 revealed an intronless gene-a common characteristic of members of the Violaceae family. Parigidin-br2 5' and 3' UTRs showed the presence of 12 putative candidate sites for binding of regulatory proteins, suggesting that the flanking and intronic regions of the parigidin-br2 gene must play important roles in transcriptional rates and in the regulation of temporal and spatial gene expression. The high degree of genetic similarity and structural organization among the cyclotide genes isolated in the present study from the Brazilian Cerrado and other well-characterized plant cyclotides may contribute to a better understanding of cyclotide evolution.
Collapse
Affiliation(s)
- Nicolau Brito da Cunha
- Centro de Analises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916 Módulo B Avenida W5, Brasília, DF, 70790-160, Brazil
| | | | - Renato Goulart de Almeida
- Centro de Analises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916 Módulo B Avenida W5, Brasília, DF, 70790-160, Brazil
| | - William Farias Porto
- Centro de Analises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916 Módulo B Avenida W5, Brasília, DF, 70790-160, Brazil
| | - Mariana Rocha Maximiano
- Centro de Analises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916 Módulo B Avenida W5, Brasília, DF, 70790-160, Brazil
| | - Luana Cristina Silva Álvares
- Centro de Analises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916 Módulo B Avenida W5, Brasília, DF, 70790-160, Brazil
| | - Cassia Beatriz Rodrigues Munhoz
- Departamento de Botânica, Instituto de Ciências Biológicas. Bloco D. Universidade de Brasília. Campus Darcy Ribeiro 70904-970, Asa Norte. Brasília, DF, Brazil
| | - Chesterton Ulysses Orlando Eugênio
- Centro de Analises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916 Módulo B Avenida W5, Brasília, DF, 70790-160, Brazil
| | - Antônio Américo Barbosa Viana
- Centro de Analises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916 Módulo B Avenida W5, Brasília, DF, 70790-160, Brazil
| | - Octavio Luiz Franco
- Centro de Analises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916 Módulo B Avenida W5, Brasília, DF, 70790-160, Brazil.,S-Inova Biotech, Pós Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Simoni Campos Dias
- Centro de Analises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916 Módulo B Avenida W5, Brasília, DF, 70790-160, Brazil
| |
Collapse
|
18
|
Weidmann J, Craik DJ. Discovery, structure, function, and applications of cyclotides: circular proteins from plants. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4801-12. [PMID: 27222514 DOI: 10.1093/jxb/erw210] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cyclotides are plant-derived cyclic peptides that have a head-to-tail cyclic backbone and three conserved disulphide bonds that form a cyclic cystine knot motif. They occur in plants from the Violaceae, Rubiaceae, Cucurbitaceae, Fabaceae, and Solanaceae families, typically with 10-100 cyclotides in a given plant species, in a wide range of tissues, including flowers, leaves, stems, and roots. Some cyclotides are expressed in large amounts (up to 1g kg(-1) wet plant weight) and their natural function appears to be to protect plants from pests or pathogens. This article provides a brief overview of their discovery, distribution in plants, and applications. In particular, their exceptional stability has led to their use as peptide-based scaffolds in drug design applications. They also have potential as natural 'ecofriendly' insecticides, and as protein engineering frameworks.
Collapse
Affiliation(s)
- Joachim Weidmann
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|