1
|
Huang Q, Yang J, Zhang J, Yao L, Jiang B, Du S, Li F, Peng Q, Qin L, Wang Y, Qi L. Eupalinolide B suppresses pancreatic cancer by ROS generation and potential cuproptosis. iScience 2024; 27:110496. [PMID: 39100694 PMCID: PMC11295471 DOI: 10.1016/j.isci.2024.110496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/15/2024] [Accepted: 07/10/2024] [Indexed: 08/06/2024] Open
Abstract
Pancreatic cancer is highly lethal with limited effective treatments. This study explores the therapeutic effects of eupalinolide B (EB) from Eupatorium lindleyanum DC on pancreatic cancer cells. Through cellular functional assays, we observed that EB effectively inhibits cell viability, proliferation, migration, and invasion. In a xenograft mouse model, EB treatment resulted in reduced pancreatic cancer tumor growth and decreased expression of Ki-67. Mechanistically, EB induces apoptosis, elevates reactive oxygen species (ROS) levels, and disrupts copper homeostasis. RNA sequencing (RNA-seq) and gene set enrichment analysis (GSEA) identified copper ion binding pathways and potential involvement in cuproptosis. Furthermore, EB enhances the cytotoxic effects of elesclomol (ES), increasing ROS levels in a copper-dependent manner and exhibiting synergistic cytotoxicity. These findings suggest that EB, either alone or in combination with ES, represents a promising strategy for targeting metal ion dysregulation and inducing potential cuproptosis in pancreatic cancer, offering a potential improvement in therapeutic outcomes.
Collapse
Affiliation(s)
- Qingtian Huang
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
- Department of Pathology, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Jie Yang
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Jiaxing Zhang
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Leyi Yao
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Baoyi Jiang
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Siyuan Du
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Fengjin Li
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Qian Peng
- Biological Sample Resource Centre, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Lingsha Qin
- Biological Sample Resource Centre, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Yanfen Wang
- Department of Pathology, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Ling Qi
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
- Biological Sample Resource Centre, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
- Division of Gastroenterology, Institute of Digestive Disease, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| |
Collapse
|
2
|
Lu J, Zheng C, Xue S, Gao Y, Chen G, Shan C, Ding N, Peng G, Li C, Zheng Y. Comprehensive Comparison of Three Different Medicinal Parts of Eupatorium lindleyanum DC. Using the RRLC-Q-TOF-MS-Based Metabolic Profile and In Vitro Anti-Inflammatory Activity. Molecules 2024; 29:3551. [PMID: 39124956 PMCID: PMC11313985 DOI: 10.3390/molecules29153551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Eupatorium lindleyanum DC. (EL) is a traditional Chinese herb known for its phlegm-reducing, cough-relieving and asthma-calming properties. It is widely used for treating cough and bronchitis. However, preliminary experiments have revealed wide variations in the composition of its different medicinal parts (flowers, leaves and stems), and the composition and efficacy of its different medicinal parts remain largely underexplored at present. In this study, non-targeted rapid resolution liquid chromatography coupled with a quadruple time-of-flight mass spectrometry (RRLC-Q-TOF-MS)-based metabolomics approach was developed to investigate the differences in the chemical composition of different medicinal parts of EL. We identified or tentatively identified 9 alkaloids, 11 flavonoids, 14 sesquiterpene lactones, 3 diterpenoids and 24 phenolic acids. In addition, heatmap visualization, quantitative analysis by high-performance liquid chromatography (HPLC-PDA) and ultra-high-performance liquid chromatography-triple quadrupole tandem mass spectrometry (UPLC-MS/MS) showed particularly high levels of sesquiterpene lactones, flavonoids and phenolic acids in the flowers, such as eupalinolide A and B and chlorogenic acid, among others. The leaves also contained some flavonoid sesquiterpene lactones and phenolic acids, while the stems were almost absent. The findings of in vitro activity studies indicated that the flowers exhibited a notable inhibitory effect on the release of the inflammatory factors TNF-α and IL-6, surpassing the anti-inflammatory efficacy observed in the leaves. Conversely, the stems demonstrated negligible anti-inflammatory activity. The variations in anti-inflammatory activity among the flowers, leaves and stems of EL can primarily be attributed to the presence of flavonoids, phenolic acids and sesquiterpene lactones in both the flowers and leaves. Additionally, the flowers contain a higher concentration of these active components compared to the leaves. These compounds mediate their anti-inflammatory effects through distinct biochemical pathways. The results of this study are anticipated to provide a scientific basis for the rational and effective utilization of EL resources.
Collapse
Affiliation(s)
- Jiaojiao Lu
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (J.L.); (C.Z.); (S.X.); (Y.G.); (G.C.); (C.S.); (N.D.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
| | - Chengbo Zheng
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (J.L.); (C.Z.); (S.X.); (Y.G.); (G.C.); (C.S.); (N.D.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
| | - Simin Xue
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (J.L.); (C.Z.); (S.X.); (Y.G.); (G.C.); (C.S.); (N.D.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
| | - Ye Gao
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (J.L.); (C.Z.); (S.X.); (Y.G.); (G.C.); (C.S.); (N.D.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
| | - Guijin Chen
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (J.L.); (C.Z.); (S.X.); (Y.G.); (G.C.); (C.S.); (N.D.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
| | - Chenxiao Shan
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (J.L.); (C.Z.); (S.X.); (Y.G.); (G.C.); (C.S.); (N.D.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ning Ding
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (J.L.); (C.Z.); (S.X.); (Y.G.); (G.C.); (C.S.); (N.D.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guoping Peng
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (J.L.); (C.Z.); (S.X.); (Y.G.); (G.C.); (C.S.); (N.D.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cunyu Li
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (J.L.); (C.Z.); (S.X.); (Y.G.); (G.C.); (C.S.); (N.D.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yunfeng Zheng
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (J.L.); (C.Z.); (S.X.); (Y.G.); (G.C.); (C.S.); (N.D.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
3
|
Sun X, Zhu M, Xia W, Xu X, Zhang J, Jiang X. Total sesquiterpenoids from Eupatorium lindleyanum DC. attenuate bleomycin-induced lung fibrosis by suppressing myofibroblast transition. Fitoterapia 2023; 169:105567. [PMID: 37315715 DOI: 10.1016/j.fitote.2023.105567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
Eupatorium lindleyanum DC. has been used as a functional food in China for a long time. However, the antifibrotic activity of total sesquiterpenoids from Eupatorium lindleyanum DC. (TS-EL) is still unknown. In this study, we discovered that TS-EL reduced the increase in α-smooth muscle actin (α-SMA), type I collagen and fibronectin content, the formation of cell filaments and collagen gel contraction in transforming growth factor-β1-stimulated human lung fibroblasts. Intriguingly, TS-EL did not change the phosphorylation of Smad2/3 and Erk1/2. TS-EL decreased the levels of serum response factor (SRF), a critical transcription factor of α-SMA, and SRF knockdown alleviated the transition of lung myofibroblasts. Furthermore, TS-EL significantly attenuated bleomycin (BLM)-induced lung pathology and collagen deposition and reduced the levels of two profibrotic markers, total lung hydroxyproline and α-SMA. TS-EL also decreased the levels of SRF protein expression in BLM-induced mice. These results suggested that TS-EL attenuates pulmonary fibrosis by inhibiting myofibroblast transition via the downregulation of SRF.
Collapse
Affiliation(s)
- Xionghua Sun
- College of Pharmaceutical Sciences, Soochow University, China
| | - Mei Zhu
- College of Pharmaceutical Sciences, Soochow University, China
| | - Wei Xia
- Department of Pathology, The Second Affiliated Hospital of Soochow University, China
| | - Xihan Xu
- Suzhou Foreign Language School, China
| | - Jian Zhang
- College of Pharmaceutical Sciences, Soochow University, China.
| | - Xiaogang Jiang
- College of Pharmaceutical Sciences, Soochow University, China.
| |
Collapse
|
4
|
Yang L, Chen H, Hu Q, Liu L, Yuan Y, Zhang C, Tang J, Shen X. Eupalinolide B attenuates lipopolysaccharide-induced acute lung injury through inhibition of NF-κB and MAPKs signaling by targeting TAK1 protein. Int Immunopharmacol 2022; 111:109148. [PMID: 35988521 DOI: 10.1016/j.intimp.2022.109148] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/19/2022] [Accepted: 08/07/2022] [Indexed: 11/05/2022]
Abstract
Acute lung injury (ALI) is a life-threatening disease characterized by severe inflammatory response, which has no pharmacological therapy in clinic. In this study, we found that eupalinolide B (EB), a sesquiterpene lactone isolated from Eupatorium lindleyanum, significantly ameliorated lipopolysaccharide (LPS)-induced ALI in mice, which manifests as reduction in lung injury score, activity of myeloperoxidase, and release of cytokines interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α), and monocyte chemoattractant protein-1 (MCP-1). In RAW264.7 murine macrophages, EB effectively inhibited LPS-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2) by down-regulating the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2), respectively. Mechanistically, EB not only blocked LPS-induced phosphorylation of inhibitor of nuclear factor kappa B kinase-α/β (IKKα/β), phosphorylation and degradation of inhibitor of nuclear factor-kappa B alpha (IκBα), and phosphorylation and nuclear translocation of nuclear factor-kappa B (NF-κB) P65, but also suppressed LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs) in vitro or in vivo. Through cellular thermal shift assay and western blotting, EB was demonstrated to target and inactivate transforming growth factor β activated kinase-1 (TAK1), which is an important upstream kinase for the activation of NF-κB and MAPKs pathways. Additionally, EB-mediated actions were markedly abolished by dithiothreitol in LPS-exposed RAW264.7 cells, suggesting a crucial role of the α,γ-unsaturated lactone for the anti-inflammatory activity of EB. In conclusion, our findings showed that EB could effectively alleviate ALI in mice, and attenuate inflammatory response by inhibiting the activation of TAK1, and TAK1-mediated activation of NF-κB and MAPKs cascades.
Collapse
Affiliation(s)
- Luyao Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongqing Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiongying Hu
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Lu Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137 Chengdu, China
| | - Yun Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, 610072 Chengdu, China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Xiaofei Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
5
|
Eupalinolide B inhibits hepatic carcinoma by inducing ferroptosis and ROS-ER-JNK pathway. Acta Biochim Biophys Sin (Shanghai) 2022; 54:974-986. [PMID: 35866605 PMCID: PMC9827796 DOI: 10.3724/abbs.2022082] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Primary hepatic carcinoma is a common malignant tumor. The classic molecular targeted drug sorafenib is costly and is only effective for some patients. Therefore, it is of great clinical significance to search for new molecular targeted drugs. Eupalinolide B (EB) from Eupatorium lindleyanum DC. is used to treat chronic tracheitis in clinical practice. However, the role of EB in hepatic carcinoma is unknown. In this study, we first measure the effect of EB on tumor growth in a xenograft model and PDX model. The cell proliferation and migration are also detected in human hepatocarcinoma cell lines (SMMC-7721 and HCCLM3). Then, we investigate cell cycle, cell apoptosis, cell necrosis, cell autophagy, and ferroptosis by flow cytometry, western blot analysis and electron microscopy. The results demonstrate that EB exerts anti-proliferative activity in hepatic carcinoma by blocking cell cycle arrest at S phase and inducing ferroptosis mediated by endoplasmic reticulum (ER) stress, as well as HO-1 activation. When HO-1 is inhibited, EB-induced cell death and ER protein expression are rescued. The migration-related mechanism consists of activation of the ROS-ER-JNK signaling pathway and is not connected to ferroptosis. In summary, we first discover that EB inhibits cell proliferation and migration in hepatic carcinoma, and thus EB is a promising anti-tumor compound that can be used for hepatic carcinoma.
Collapse
|
6
|
Liu Y, Wang M, Cao Y, Zeng M, Zhang Q, Ren Y, Chen X, He C, Fan X, Zheng X, Feng W. Chemical Constituents from the Flowers of Carthamus tinctorius L. and Their Lung Protective Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113573. [PMID: 35684510 PMCID: PMC9182397 DOI: 10.3390/molecules27113573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022]
Abstract
A new flavonoid, saffloflavanside (1), a new sesquiterpene, safflomegastigside (2), and a new amide, saffloamide (3), together with twenty-two known compounds (4-25), were isolated from the flowers of Carthamus tinctorius L. Their structures were determined based on interpretation of their spectroscopic data and comparison with those reported in the literature. The protective effects against lipopolysaccharide (LPS)-stimulated damage on human normal lung epithelial (BEAS-2B) cells of the compounds were evaluated using MTT assay and cellular immunofluorescence assay. The results showed that compounds 2-3, 8-11, and 15-19 exhibited protective effects against LPS-induced damage to BEAS-2B cells. Moreover, compounds 2-3, 8-11, and 15-19 can significantly downregulate the level of nuclear translocation of NF-κB p-p65. In summary, this study revealed chemical constituents with lung protective activity from C. tinctorius, which may be developed as a drug for the treatment of lung injury.
Collapse
Affiliation(s)
- Yanling Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (Y.L.); (M.W.); (Y.C.); (M.Z.); (Q.Z.); (Y.R.); (X.C.); (C.H.); (X.F.)
- The Engineering and Technology Center for Chinese Medicine, Development of Henan Province China, Zhengzhou 450046, China
| | - Mengna Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (Y.L.); (M.W.); (Y.C.); (M.Z.); (Q.Z.); (Y.R.); (X.C.); (C.H.); (X.F.)
- The Engineering and Technology Center for Chinese Medicine, Development of Henan Province China, Zhengzhou 450046, China
| | - Yangang Cao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (Y.L.); (M.W.); (Y.C.); (M.Z.); (Q.Z.); (Y.R.); (X.C.); (C.H.); (X.F.)
- The Engineering and Technology Center for Chinese Medicine, Development of Henan Province China, Zhengzhou 450046, China
| | - Mengnan Zeng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (Y.L.); (M.W.); (Y.C.); (M.Z.); (Q.Z.); (Y.R.); (X.C.); (C.H.); (X.F.)
- The Engineering and Technology Center for Chinese Medicine, Development of Henan Province China, Zhengzhou 450046, China
| | - Qinqin Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (Y.L.); (M.W.); (Y.C.); (M.Z.); (Q.Z.); (Y.R.); (X.C.); (C.H.); (X.F.)
- The Engineering and Technology Center for Chinese Medicine, Development of Henan Province China, Zhengzhou 450046, China
| | - Yingjie Ren
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (Y.L.); (M.W.); (Y.C.); (M.Z.); (Q.Z.); (Y.R.); (X.C.); (C.H.); (X.F.)
- The Engineering and Technology Center for Chinese Medicine, Development of Henan Province China, Zhengzhou 450046, China
| | - Xu Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (Y.L.); (M.W.); (Y.C.); (M.Z.); (Q.Z.); (Y.R.); (X.C.); (C.H.); (X.F.)
- The Engineering and Technology Center for Chinese Medicine, Development of Henan Province China, Zhengzhou 450046, China
| | - Chen He
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (Y.L.); (M.W.); (Y.C.); (M.Z.); (Q.Z.); (Y.R.); (X.C.); (C.H.); (X.F.)
- The Engineering and Technology Center for Chinese Medicine, Development of Henan Province China, Zhengzhou 450046, China
| | - Xiling Fan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (Y.L.); (M.W.); (Y.C.); (M.Z.); (Q.Z.); (Y.R.); (X.C.); (C.H.); (X.F.)
- The Engineering and Technology Center for Chinese Medicine, Development of Henan Province China, Zhengzhou 450046, China
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (Y.L.); (M.W.); (Y.C.); (M.Z.); (Q.Z.); (Y.R.); (X.C.); (C.H.); (X.F.)
- The Engineering and Technology Center for Chinese Medicine, Development of Henan Province China, Zhengzhou 450046, China
- Correspondence: (X.Z.); (W.F.)
| | - Weisheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (Y.L.); (M.W.); (Y.C.); (M.Z.); (Q.Z.); (Y.R.); (X.C.); (C.H.); (X.F.)
- The Engineering and Technology Center for Chinese Medicine, Development of Henan Province China, Zhengzhou 450046, China
- Correspondence: (X.Z.); (W.F.)
| |
Collapse
|
7
|
Huang L, Xu DQ, Chen YY, Fu RJ, Yue SJ, Yin JF, Tang YP. Qualitative and quantitative analysis of chemical components in Eupatorium lindleyanum DC. by ultra-performance liquid chromatography-mass spectrometry integrated with anti-inflammatory activity research. J Sep Sci 2021; 44:3174-3187. [PMID: 34184412 DOI: 10.1002/jssc.202100208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/25/2021] [Accepted: 06/23/2021] [Indexed: 11/11/2022]
Abstract
As a traditional Chinese medicine, Eupatorium lindleyanum DC. has an effect on resolving phlegm, relieving cough, and relieving asthma. In this study, an ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry method was established for qualitative analysis of Eupatorium lindleyanum. Besides, we developed an ultra high performance liquid chromatography with triple quadrupole tandem mass spectrometry method in positive and negative multiple reaction monitor modes for the quantitative analysis of 27 chemical constituents from 19 different batches of Eupatorium lindleyanum. The methodology validated linearity, intraday and interday precision, stability, repeatability, and recovery. The results showed that there were some differences in different batches of Eupatorium lindleyanum, which might be attributed to the influence of different growth environments and climatic conditions on the accumulation of compounds. The variable importance of projection value of orthogonal partial least square discriminant analysis and anti-inflammatory activity test showed that eupalinolide A, B, C, and K have high content and strong activity, which could provide a reference for the follow-up study of the quality markers of Eupatorium lindleyanum. Collectively, we developed a rapid and efficient method for the qualitative analysis and simultaneous quantification of Eupatorium lindleyanum, which was beneficial for the comprehensive utilization and development of resources.
Collapse
Affiliation(s)
- Lu Huang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Province, P. R. China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Province, P. R. China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Province, P. R. China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Province, P. R. China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Province, P. R. China
| | - Jian-Feng Yin
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Province, P. R. China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Province, P. R. China
| |
Collapse
|
8
|
Li C, Chen S, Sha J, Cui J, He J, Fu J, Shen Y. Extraction and purification of total flavonoids from Eupatorium lindleyanum DC. and evaluation of their antioxidant and enzyme inhibitory activities. Food Sci Nutr 2021; 9:2349-2363. [PMID: 34026054 PMCID: PMC8116873 DOI: 10.1002/fsn3.1999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 11/18/2022] Open
Abstract
The health benefits and promising medical treatment potential of total flavonoids from Eupatorium lindleyanum DC. (TFELDC) have been recognized. The process parameters of extracting total flavonoids from Eupatorium lindleyanum DC. by ultrasonic-microwave synergistic extraction (UMSE) were optimized, and they were purified by AB-8 macroporous resin in the current study. In addition, the antioxidant and enzyme inhibitory activities of the purified TFELDC (PTFELDC) were evaluated. The results showed that the optimal parameters of UMSE were as follows: ethanol volume fraction 71.5%, L/S ratio 12.2 ml/g, microwave power 318 W, and extraction time 143 s. After TFELDC were purified by AB-8 macroporous resin, the total flavonoid contents of PTFELDC increased from 208.18 ± 1.60 to 511.19 ± 3.21 mg RE/g FDS. Compared with TFELDC, the content of total flavonoids in PTFELDC was increased by 2.46 times. The antioxidant activities of PTFELDC were assessed using DPPH radical, superoxide anion radical, reducing power, and ferric reducing antioxidant power assays, and the IC50 values were found to be 37.13, 19.62, 81.22, and 24.72 μg/ml, respectively. The enzyme inhibitory activities of PTFELDC were measured using lipase, α-amylase, α-glucosidase, and acetylcholinesterase assays with the IC50 values 1.38, 2.08, 1.63, and 0.58 mg/ml, respectively. By comparing with their positive controls, it was found that PTFELDC had good antioxidant activities, and lipase, α-amylase, and α-glucosidase inhibitory activities, However, the acetylcholinesterase inhibitory activity was relatively weaker. These results suggested that PTFELDC have a promising potential as natural antioxidant, antilipidemic, and hypoglycemic drugs used in functional foods or pharmaceuticals.
Collapse
Affiliation(s)
- Chao Li
- College of Food and BioengineeringXuzhou University of TechnologyXuzhouChina
| | - Shanglong Chen
- College of Food and BioengineeringXuzhou University of TechnologyXuzhouChina
| | - Jin Sha
- College of Food and BioengineeringXuzhou University of TechnologyXuzhouChina
| | - Jue Cui
- College of Food and BioengineeringXuzhou University of TechnologyXuzhouChina
| | - Juping He
- College of Food and BioengineeringXuzhou University of TechnologyXuzhouChina
| | - Junning Fu
- Department of Food Science and EngineeringJinan UniversityGuangzhouChina
| | - Yingbin Shen
- School of Life SciencesGuangzhou UniversityGuangzhouChina
| |
Collapse
|
9
|
Wang X, Ma S, Lai F, Wang Y, Lou C. Traditional Applications, Phytochemistry, and Pharmacological Activities of Eupatorium lindleyanum DC.: A Comprehensive Review. Front Pharmacol 2020; 8:577124. [PMID: 33519495 PMCID: PMC7845744 DOI: 10.3389/fphar.2020.577124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/10/2020] [Indexed: 12/31/2022] Open
Abstract
Eupatorium lindleyanum DC. (EL) has a long history of traditional use in China to cure coughs, chronic bronchitis, lobar pneumonia, and hypertension. Because of this extensive use of EL in traditional medicine, this present review gives a systematic overview of the conventional applications, phytochemistry, and pharmacological effects of the herb. Literature was systematically searched using the scientific databases ScienceDirect, SciFinder, CNKI, Wiley, Baidu Scholar, SpringerLink, PubMed, Web of Science, and other professional websites. Information was also gathered from books on traditional Chinese herbal medicine, the Chinese Pharmacopoeia and Chinese Materia Medica. To date, many preparations of EL have been widely used clinically to treat various diseases of the respiratory system. More than 100 compounds have been isolated from the herb, including triterpenes, sesquiterpenes, sesquiterpene lactones, flavonoids, acyclic diterpenoids, sterols, and so on. Among them, terpenoids are considered to be the most important bioactive substances in EL. The pharmacological functions of EL, including anti-asthmatic, anti-tussive, anti-inflammatory, anti-hyperlipidemic, anti-hypertensive, anti-virus, and anti-tumor activities, have been widely investigated. However, most of the studies are preclinical research. Further studies are required to examine the underlying mechanisms of action. Traditionally, EL is used for treating many diseases, especially respiratory diseases. Unfortunately, up to now, modern studies have not yet well elucidated the conventional usage of EL. Most importantly, its biological activities and the corresponding constituents are still unclear. Moreover, studies on the pharmacokinetics and toxicity of EL are few, so data on the clinical safety of EL are lacking. Taken together, research work on EL is quite preliminary. More in-depth studies of phytochemistry, pharmacological activities, pharmacokinetics, and toxicity of the herb are needed. This review aims to provide valuable information on EL to guide future investigations and applications.
Collapse
Affiliation(s)
- Xueyi Wang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shangying Ma
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Feifan Lai
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiqi Wang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenghua Lou
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
10
|
Yan G, Zhou Y, Hu Y, Zhao L, Wang W. Rapid screening and isolation of antioxidants from Eupatorium lindleyanum DC. using CCC target-guided by on-line HPLC-DPPH assay. Prep Biochem Biotechnol 2020; 51:530-535. [PMID: 33135958 DOI: 10.1080/10826068.2020.1836653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Counter-current chromatography (CCC) target-guided by on-line HPLC with post-column DPPH assay was established for efficient screening and isolation of large amount of antioxidants from Eupatorium lindleyanum DC. On-line HPLC with post-column DPPH reaction was used to screen the antioxidants and optimize the biphasic solvent system of CCC, then the targeted peaks were purified using CCC. In the present study, three compounds, nepetin, cirsiliol and jaceosidin, were targeted and successively separated from n-butanol fraction of E. lindleyanum DC. by this strategy. All three compounds showed strong DPPH radical scavenging activity. These results confirmed that the strategy would be an efficient and effective method to isolate antioxidants from complex mixtures.
Collapse
Affiliation(s)
- Guilong Yan
- Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation, Huaiyin Normal University, Huaian, China.,School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Yuzhen Zhou
- School of Life Sciences, Huaiyin Normal University, Huaian, China.,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian, China
| | - Yonghong Hu
- College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Liqin Zhao
- School of Life Sciences, Huaiyin Normal University, Huaian, China.,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian, China
| | - Wei Wang
- School of Life Sciences, Huaiyin Normal University, Huaian, China.,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian, China
| |
Collapse
|
11
|
Grigore A, Neagu G, Dobre N, Albulescu A, Ionita L, Ionita C, Albulescu R. Evaluation of antiproliferative and protective effects of Eupatorium cannabinum L. extracts. Turk J Biol 2018; 42:334-344. [PMID: 30814897 PMCID: PMC6353279 DOI: 10.3906/biy-1803-72] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Eupatorium cannabinum L. (Asteraceae) has been used for a long time for medicinal purposes due to its various pharmacological effects and richness in active compounds such as phenolics, sesquiterpenes, pyrrolizidine alkaloids, and polysaccharides. Despite the high content of compounds that have important roles in medicinal plants, there are still limited literature data regarding this valuable species. The plant was fractioned using chloroform (EC) and distilled water (EA) and HPLC analysis revealed the presence of eupatorin, eupatilin, and quercetin in EC and caefic acid and rutin in EA. The antiproliferative potential on BT-20, HepG2, Caco-2, and Jurkat cancer cell lines was assessed by MTS test. Jurkat cells were more sensitive to both extracts (IC50 of 7.35 ± 0.35 for EC and 13.77 ± 2.16 µg/mL for EA), while the other lines were susceptible only to EC (IC50 88.27 ± 1.34 on Caco-2 cells and over 100 µg/mL on BT20 and HepG2 cells) after 24 h of exposure. In an LPS-induced damage mouse model of endotoxemia, we showed that preventive administration increases the survival times of mice and leads to inhibition of proinflammatory cytokines. Both polar and nonpolar compounds are involved in exerting these effects, but further analytical studies are needed to identify the key responsible compounds and their biochemical pathways.
Collapse
Affiliation(s)
- Alice Grigore
- Department of Pharmaceutical Biotechnologies, National Institute of Chemical-Pharmaceutical Research and Development (ICCF) , Bucharest , Romania
| | - Georgeta Neagu
- Department of Pharmacology, National Institute of Chemical-Pharmaceutical Research and Development (ICCF) , Bucharest , Romania
| | - Nicoleta Dobre
- Department of Analytics, National Institute of Chemical-Pharmaceutical Research and Development (ICCF) , Bucharest , Romania
| | - Adrian Albulescu
- Department of Pharmacology, National Institute of Chemical-Pharmaceutical Research and Development (ICCF) , Bucharest , Romania
| | - Lucian Ionita
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest , Bucharest , Romania
| | - Carmen Ionita
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest , Bucharest , Romania
| | - Radu Albulescu
- Department of Pharmacology, National Institute of Chemical-Pharmaceutical Research and Development (ICCF) , Bucharest , Romania
| |
Collapse
|
12
|
Fu PK, Yang CY, Huang SC, Hung YW, Jeng KC, Huang YP, Chuang H, Huang NC, Li JP, Hsu MH, Chen JK. Evaluation of LPS-Induced Acute Lung Injury Attenuation in Rats by Aminothiazole-Paeonol Derivatives. Molecules 2017; 22:molecules22101605. [PMID: 28946699 PMCID: PMC6151495 DOI: 10.3390/molecules22101605] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 12/19/2022] Open
Abstract
Paeonol is a key phenolic compound in the root bark of Moutan Cortex Radicis that has been used in traditional Chinese Medicine to ameliorate inflammation. A series of aminothiazole-paeonol derivatives (APDs) were synthesized in this work and subjected to preliminary evaluation in cells followed by verification in animals. Quantification of monocyte chemotactic protein-1 (MCP-1) and interleukin-6 (IL-6) in culture media of LPS-activated A549 cells, a lung epithelial adenocarcinoma cell line, were used to investigate the anti-inflammatory capability of APDs. ALI-bearing rats were employed to verify therapeutic efficacy of APDs according to observations of total cells, protein amounts, MCP-1 and IL-6 in bronchoalveolar lavage fluid (BALF). Histopathological examinations of lung tissues were consequently applied for validation of APDs. Among these compounds, 2-(2-aminothiazol-4-yl)-5-methoxyphenol (4) had the most potent activity, showing comparable inhibition of MCP-1/IL-6 and superior elimination of neutrophil infiltration and protein exudation in lungs compared to others as well as dexamethasone. This study demonstrated a comprehensive strategy to evaluate APDs through integration of cell-based screening and animal-based verification. In order to fulfill unmet needs of treating acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), APDs introduced in this work could be promising lead compounds to develop high potent anti-inflammation agents.
Collapse
Affiliation(s)
- Pin-Kuei Fu
- Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan.
- Department of Biotechnology, Hungkuang University, Taichung 43302, Taiwan.
- School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan.
| | - Chi-Yu Yang
- Animal Technology Laboratory, Agriculture Technology Research Institute, Miaoli 35053, Taiwan.
| | - Su-Chin Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan.
| | - Yu-Wen Hung
- Animal Technology Laboratory, Agriculture Technology Research Institute, Miaoli 35053, Taiwan.
| | - Kee-Ching Jeng
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung 43503, Taiwan.
| | - Ying-Pei Huang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Hong Chuang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Nai-Chun Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan.
| | - Jui-Ping Li
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan.
| | - Ming-Hua Hsu
- Department of Chemistry, National Changhua University of Education, Changhua County 50007, Taiwan.
| | - Jen-Kun Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan.
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan.
- School of Dentistry, National Defense Medical Center, Taipei 11490, Taiwan.
| |
Collapse
|
13
|
Yuk HJ, Lee JW, Park HA, Kwon OK, Seo KH, Ahn KS, Oh SR, Ryu HW. Protective effects of coumestrol on lipopolysaccharide-induced acute lung injury via the inhibition of proinflammatory mediators and NF-κB activation. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.04.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
14
|
Post-Intake of S-Ethyl Cysteine and S-Methyl Cysteine Improved LPS-Induced Acute Lung Injury in Mice. Nutrients 2016; 8:nu8080507. [PMID: 27548215 PMCID: PMC4997420 DOI: 10.3390/nu8080507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/27/2016] [Accepted: 08/16/2016] [Indexed: 01/06/2023] Open
Abstract
The effects of S-ethyl cysteine (SEC) and S-methyl cysteine (SMC) on lipopolysaccharide (LPS)-induced acute lung injury in mice were examined. Eight hours after LPS challenge, SEC or SMC was supplied in drinking water at 0.5% or 1% for 3 days. LPS increased lung myeloperoxidase activity, neutrophil counts and edema. SEC or SMC post-intake attenuated these events. SEC or SMC suppressed LPS-induced lung expression of cyclooxygenase-2, nuclear factor-κB and mitogen-activated protein kinase, and lowered the generation of tumor necrosis factor-alpha, monocyte chemoattractant protein-1 and prostaglandin E2. LPS enhanced the expression of p47phox, gp91phox, Bax and cleaved caspase-3, and increased the production of reactive oxygen species in the lung. SEC or SMC post-intake reversed these alterations. These findings suggest that these agents could protect the lung through their anti-inflammatory, anti-oxidative and anti-apoptotic activities.
Collapse
|