1
|
Sarkar A, Singh MP. A Complex Interplay of DJ-1, LRRK2, and Nrf2 in the Regulation of Mitochondrial Function in Cypermethrin-Induced Parkinsonism. Mol Neurobiol 2024; 61:953-970. [PMID: 37674036 DOI: 10.1007/s12035-023-03591-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
Cypermethrin impairs mitochondrial function, induces redox imbalance, and leads to Parkinsonism in experimental animals. Knockdown of deglycase-1 (DJ-1) gene, which encodes a redox-sensitive antioxidant protein, aggravates cypermethrin-mediated α-synuclein overexpression and oxidative alteration of proteins. DJ-1 is also reported to be essential for maintaining stability of nuclear factor erythroid 2-related factor 2 (Nrf2), shielding cells against oxidative insult. Leucine-rich repeat kinase 2 (LRRK2), another protein associated with Parkinson's disease, is also involved in regulating mitochondrial function. However, underlying molecular mechanisms remain elusive. The study intended to explore an interaction of DJ-1, LRRK2, and Nrf2 in the regulation of mitochondrial function in cypermethrin-induced Parkinsonism. Small interfering RNA-mediated knockdown of DJ-1 and LRRK2 gene and pharmacological activation of Nrf2 were performed in rats and/or human neuroblastoma cells with or without cypermethrin. Indexes of oxidative stress, mitochondrial impairment, and Parkinsonism along with α-synuclein expression, post-translational modification, and aggregation were measured. DJ-1 gene knockdown exacerbated cypermethrin-induced increase in oxidative stress and intrinsic apoptosis and reduction in expression of mitochondrial antioxidant proteins via inhibiting nuclear translocation of Nrf2. Additionally, cypermethrin-induced oxidative stress, mitochondrial impairment, and α-synuclein expression and aggregation were found to be suppressed by LRRK2 gene knockdown, by promoting Nrf2 nuclear translocation and expression of mitochondrial antioxidant proteins. Furthermore, Nrf2 activator, sulforaphane, ameliorated cypermethrin-induced mitochondrial impairment and oxidative stress and provided protection against dopaminergic neuronal death. The findings indicate that DJ-1 and LRRK2 independently alter Nrf2-mediated changes and a complex interplay among DJ-1, LRRK2, and Nrf2 exists in the regulation of mitochondrial function in cypermethrin-induced Parkinsonism.
Collapse
Affiliation(s)
- Alika Sarkar
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Mahendra Pratap Singh
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
2
|
Cai Z, Liu M, Zeng L, Zhao K, Wang C, Sun T, Li Z, Liu R. Role of traditional Chinese medicine in ameliorating mitochondrial dysfunction via non-coding RNA signaling: Implication in the treatment of neurodegenerative diseases. Front Pharmacol 2023; 14:1123188. [PMID: 36937876 PMCID: PMC10014574 DOI: 10.3389/fphar.2023.1123188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Neurodegenerative diseases (NDs) are common chronic disorders associated with progressive nervous system damage, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, among others. Mitochondria are abundant in various nervous system cells and provide a bulk supply of the adenosine triphosphate necessary for brain function, considered the center of the free-radical theory of aging. One common feature of NDs is mitochondrial dysfunction, which is involved in many physiopathological processes, including apoptosis, inflammation, oxidative stress, and calcium homeostasis. Recently, genetic studies revealed extensive links between mitochondrion impairment and dysregulation of non-coding RNAs (ncRNAs) in the pathology of NDs. Traditional Chinese medicines (TCMs) have been used for thousands of years in treating NDs. Numerous modern pharmacological studies have demonstrated the therapeutic effects of prescription, herbal medicine, bioactive ingredients, and monomer compounds of TCMs, which are important for managing the symptoms of NDs. Some highly effective TCMs exert protective effects on various key pathological features regulated by mitochondria and play a pivotal role in recovering disrupted signaling pathways. These disrupted signaling pathways are induced by abnormally-expressed ncRNAs associated with mitochondrial dysfunction, including microRNAs, long ncRNAs, and circular RNAs. In this review, we first explored the underlying ncRNA mechanisms linking mitochondrial dysfunction and neurodegeneration, demonstrating the implication of ncRNA-induced mitochondrial dysfunction in the pathogenesis of NDs. The ncRNA-induced mitochondrial dysfunctions affect mitochondrial biogenesis, dynamics, autophagy, Ca2+ homeostasis, oxidative stress, and downstream apoptosis. The review also discussed the targeting of the disease-related mitochondrial proteins in NDs and the protective effects of TCM formulas with definite composition, standardized extracts from individual TCMs, and monomeric compounds isolated from TCM. Additionally, we explored the ncRNA regulation of mitochondrial dysfunction in NDs and the effects and potential mechanisms of representative TCMs in alleviating mitochondrial pathogenesis and conferring anti-inflammatory, antioxidant, and anti-apoptotic pathways against NDs. Therefore, this review presents an overview of the role of mitochondrion-related ncRNAs and the target genes for TCM-based therapeutic interventions in NDs, providing insight into understanding the "multi-level compound-target-pathway regulatory" treatment mechanism of TCMs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rui Liu
- *Correspondence: Zhuorong Li, ; Rui Liu,
| |
Collapse
|
3
|
Chen P, Zhang J, Wang C, Chai YH, Wu AG, Huang NY, Wang L. The pathogenesis and treatment mechanism of Parkinson's disease from the perspective of traditional Chinese medicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154044. [PMID: 35338993 DOI: 10.1016/j.phymed.2022.154044] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/26/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease with no treatment currently available to modify its progression. Traditional Chinese medicine (TCM) has gained attention for its unique theoretical basis and clinical effects. Many studies have reported on the clinical effects and pharmacological mechanisms of Chinese herbs in PD. However, few studies have focused on the treatment mechanisms of anti-PD TCM drugs from the perspective of TCM itself. PURPOSE To elaborate the treatment mechanisms of anti-PD TCM drugs in the perspective of TCM. METHODS We performed a literature survey using traditional books of Chinese medicine and online scientific databases including PubMed, Web of Science, Google Scholar, China National Knowledge Infrastructure (CNKI), and others up to July 2021. RESULTS TCM theory states that PD is caused by a dysfunction of the zang-fu organs (liver, spleen, kidney, and lung) and subsequent pathogenic factors (wind, fire, phlegm, and blood stasis). Based on the pathogenesis, removing pathogenic factors and restoring visceral function are two primary treatment principles for PD in TCM. The former includes dispelling wind, clearing heat, resolving phlegm, and promoting blood circulation, while the latter involves nourishing the liver and kidney and strengthening the spleen. The anti-PD mechanisms of the active ingredients of TCM compounds and herbs at different levels include anti-apoptosis, anti-inflammation, and anti-oxidative stress, as well as the restoration of mitochondrial function and the regulation of autophagy and neurotransmitters. CONCLUSION Chinese herbs and prescriptions can be used to treat PD by targeting multiple pharmacological mechanisms.
Collapse
Affiliation(s)
- Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China; Accreditation Center of Traditional Chinese Medicine Physician, National Administration of Traditional Chinese Medicine, Beijing, China.
| | - Jie Zhang
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Chen Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yi-Hui Chai
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - An-Guo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ning-Yu Huang
- Accreditation Center of Traditional Chinese Medicine Physician, National Administration of Traditional Chinese Medicine, Beijing, China.
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
4
|
Cheng C, Gao Y, Gai C, Feng W, Yang L, Ma H, Feng J, Guo Z, Zhang J, Zhang S, Sun H. Mechanism of mitochondrial protection by Buyinqianzheng formula in a Parkin overexpression cell model. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
5
|
Ma H, Guo Z, Gai C, Cheng C, Zhang J, Zhang Y, Yang L, Feng W, Gao Y, Sun H. Protective effects of Buyinqianzheng Formula on mitochondrial morphology by PINK1/Parkin pathway in SH-SY5Y cells induced by MPP+. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2020. [DOI: 10.1016/j.jtcms.2020.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
6
|
Zhang Y, Gong XG, Sun HM, Guo ZY, Hu JH, Wang YY, Feng WD, Li L, Li P, Wang ZZ, Chen NH. Da-Bu-Yin-Wan Improves the Ameliorative Effect of DJ-1 on Mitochondrial Dysfunction Through Augmenting the Akt Phosphorylation in a Cellular Model of Parkinson's Disease. Front Pharmacol 2018; 9:1206. [PMID: 30405418 PMCID: PMC6200911 DOI: 10.3389/fphar.2018.01206] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 10/02/2018] [Indexed: 11/21/2022] Open
Abstract
Da-Bu-Yin-Wan (DBYW) is recorded originally in China over six centuries ago, and it is used to treat Parkinson’s disease (PD) clinically in recent decades. DJ-1 is a homodimeric protein linked to early-onset PD, and found in the mitochondria. In addition, DJ-1 could protect the cells by regulating gene transcription and modulating the Akt signal pathways. Therefore, in this research, we aimed to investigate the ameliorative effect of DBYW on mitochondria in the view of the DJ-1 and Akt signaling. Rat adrenal pheochromocytoma cell line PC-12 was transfected with the plasmid pcDNA3-Flag-DJ-1 (pDJ-1). Subsequently, PC-12 cells were exposed to the PD-related mitochondrial toxin (1-methyl-4-phenylpyridinium) without/with the DBYW. After transfected with the plasmid pDJ-1, the 1-methyl-4-phenylpyridinium-induced toxicity was decreased, and the DJ-1 expression in protein level was increased. DJ-1 overexpression not only increased the mitochondrial mass, but also improved the total ATP content. Moreover, Akt phosphorylation was augmented by DJ-1 overexpression. Additionally, DBYW enhanced the above effects. Conclusively, these findings indicate that DBYW promotes the ameliorative effects of DJ-1 on mitochondrial dysfunction at least through augmenting the Akt phosphorylation in 1-methyl-4-phenylpyridinium-treated PC-12 cells.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Gang Gong
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,College of Special Education, Beijing Union University, Beijing, China
| | - Hong-Mei Sun
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhen-Yu Guo
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing-Hong Hu
- Center for Scientific Research, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuan-Yuan Wang
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wan-Di Feng
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lin Li
- Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Capital Medical University, Beijing, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Neuroscience Center, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Neuroscience Center, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
7
|
Bushen-Yizhi Formula Alleviates Neuroinflammation via Inhibiting NLRP3 Inflammasome Activation in a Mouse Model of Parkinson's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3571604. [PMID: 30224927 PMCID: PMC6129340 DOI: 10.1155/2018/3571604] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/20/2018] [Accepted: 08/08/2018] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disease, is characterized by the progressive loss of dopaminergic neurons in the substantia nigra. Although the molecular mechanisms underlying dopaminergic neuronal degeneration in PD remain unclear, neuroinflammation is considered as the vital mediator in the pathogenesis and progression of PD. Bushen-Yizhi Formula (BSYZ), a traditional Chinese medicine, has been demonstrated to exert antineuroinflammation in our previous studies. However, it remains unclear whether BSYZ is effective for PD. Here, we sought to assess the neuroprotective effects and explore the underlying mechanisms of BSYZ in a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine- (MPTP-) induced mouse model of PD. Our results indicate that BSYZ significantly alleviates the motor impairments and dopaminergic neuron degeneration of MPTP-treated mice. Furthermore, BSYZ remarkably attenuates microglia activation, inhibits NLPR3 activation, and decreases the levels of inflammatory cytokines in MPTP-induced mouse brain. Also, BSYZ inhibits NLRP3 activation and interleukin-1β production of the 1-methyl-4-phenyl-pyridinium (MPP+) stimulated BV-2 microglia cells. Taken together, our results indicate that BSYZ alleviates MPTP-induced neuroinflammation probably via inhibiting NLRP3 inflammasome activation in microglia. Collectively, BSYZ may be a potential therapeutic agent for PD and the related neurodegeneration diseases.
Collapse
|
8
|
Li X, Sun H, Zhang A, Liu Z, Zou D, Song Y, Liu L, Wang X. High-throughput LC-MS method for the rapid characterization of multiple chemical constituents and metabolites of Da-Bu-Yin-Wan. J Sep Sci 2017; 40:4102-4112. [DOI: 10.1002/jssc.201700568] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/12/2017] [Accepted: 08/11/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Xianna Li
- Sino-America Chinmedomics Technology Collaboration Center, National Traditional Chinese Medicine Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of Traditional Chinese Medicine, Laboratory of Metabolomics, Department of Pharmaceutical Analysis; Heilongjiang University of Chinese Medicine; Harbin China
| | - Hui Sun
- Sino-America Chinmedomics Technology Collaboration Center, National Traditional Chinese Medicine Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of Traditional Chinese Medicine, Laboratory of Metabolomics, Department of Pharmaceutical Analysis; Heilongjiang University of Chinese Medicine; Harbin China
| | - Aihua Zhang
- Sino-America Chinmedomics Technology Collaboration Center, National Traditional Chinese Medicine Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of Traditional Chinese Medicine, Laboratory of Metabolomics, Department of Pharmaceutical Analysis; Heilongjiang University of Chinese Medicine; Harbin China
| | - Zhidong Liu
- Sino-America Chinmedomics Technology Collaboration Center, National Traditional Chinese Medicine Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of Traditional Chinese Medicine, Laboratory of Metabolomics, Department of Pharmaceutical Analysis; Heilongjiang University of Chinese Medicine; Harbin China
| | - Di Zou
- Sino-America Chinmedomics Technology Collaboration Center, National Traditional Chinese Medicine Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of Traditional Chinese Medicine, Laboratory of Metabolomics, Department of Pharmaceutical Analysis; Heilongjiang University of Chinese Medicine; Harbin China
| | - Yanhua Song
- Sino-America Chinmedomics Technology Collaboration Center, National Traditional Chinese Medicine Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of Traditional Chinese Medicine, Laboratory of Metabolomics, Department of Pharmaceutical Analysis; Heilongjiang University of Chinese Medicine; Harbin China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine; Macau University of Science and Technology; Taipa Macau
| | - Xijun Wang
- Sino-America Chinmedomics Technology Collaboration Center, National Traditional Chinese Medicine Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of Traditional Chinese Medicine, Laboratory of Metabolomics, Department of Pharmaceutical Analysis; Heilongjiang University of Chinese Medicine; Harbin China
- State Key Laboratory of Quality Research in Chinese Medicine; Macau University of Science and Technology; Taipa Macau
| |
Collapse
|
9
|
Oh SE, Mouradian MM. Regulation of Signal Transduction by DJ-1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1037:97-131. [PMID: 29147906 DOI: 10.1007/978-981-10-6583-5_8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ability of DJ-1 to modulate signal transduction has significant effects on how the cell regulates normal processes such as growth, senescence, apoptosis, and autophagy to adapt to changing environmental stimuli and stresses. Perturbations of DJ-1 levels or function can disrupt the equilibrium of homeostatic signaling networks and set off cascades that play a role in the pathogenesis of conditions such as cancer and Parkinson's disease.DJ-1 plays a major role in various pathways. It mediates cell survival and proliferation by activating the extracellular signal-regulated kinase (ERK1/2) pathway and the phosphatidylinositol-3-kinase (PI3K)/Akt pathway. It attenuates cell death signaling by inhibiting apoptosis signal-regulating kinase 1 (ASK1) activation as well as by inhibiting mitogen-activated protein kinase kinase kinase 1 (MEKK1/MAP3K1) activation of downstream apoptotic cascades. It also modulates autophagy through the ERK, Akt, or the JNK/Beclin1 pathways. In addition, DJ-1 regulates the transcription of genes essential for male reproductive function, such as spermatogenesis, by relaying nuclear receptor androgen receptor (AR) signaling. In this chapter, we summarize the ways that DJ-1 regulates these pathways, focusing on how its role in signal transduction contributes to cellular homeostasis and the pathologic states that result from dysregulation.
Collapse
Affiliation(s)
- Stephanie E Oh
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - M Maral Mouradian
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA.
| |
Collapse
|