1
|
Wiraswati HL, Ma'ruf IF, Hidayati NA, Ramadhanti J, Calina D, Sharifi-Rad J. Harnessing the anticancer potential of Piper nigrum: a synergistic approach to chemotherapy enhancement and reduced side effects. Discov Oncol 2025; 16:10. [PMID: 39760812 DOI: 10.1007/s12672-024-01716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025] Open
Abstract
Cancer therapy continues to face critical challenges, including drug resistance, recurrence, and severe side effects, which often compromise patient outcomes and quality of life. Exploring novel, cost-effective approaches, this review highlights the potential of Piper nigrum (black pepper) extract (PNE) as a complementary anticancer agent. Piper nigrum, a widely available spice with a rich history in traditional medicine, contains bioactive compounds such as piperine, which have demonstrated significant anticancer activities including cell cycle arrest, apoptosis induction, and inhibition of tumor growth and metastasis. The review evaluates the recent findings from in vitro, in vivo, and clinical studies, emphasizing PNE's capacity to enhance the efficacy of conventional chemotherapeutic agents while mitigating their side effects. Key mechanisms underlying these effects include oxidative stress modulation, suppression of pro-metastatic factors, and synergistic interactions with established drugs like doxorubicin and paclitaxel. These interactions suggest that PNE could play a pivotal role in overcoming chemoresistance and improving therapeutic outcomes. Furthermore, this review highlights the potential benefits of PNE in resource-limited settings, where the cost of cancer treatments often restricts access. However, challenges such as compositional variability, limited bioavailability, and the need for standardization and clinical validation need to be addressed to advance the integration of PNE into basic oncology. By providing a comprehensive analysis of the anticancer mechanisms of PNE and its potential as a cost-effective adjuvant therapy, this review provides new insight into the exploitation of Piper nigrum to improve cancer treatment efficacy while reducing side effects. Future research directions are discussed to address current limitations and facilitate clinical translation.
Collapse
Affiliation(s)
- Hesti Lina Wiraswati
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia.
- Oncology and Stem Cell Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia.
| | - Ilma Fauziah Ma'ruf
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency, Bogor, West Java, Indonesia
| | | | - Julia Ramadhanti
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, 092301, Ecuador.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
Sandech N, Yang MC, Juntranggoor P, Rukthong P, Gorelkin P, Savin N, Timoshenko R, Vaneev A, Erofeev A, Wichaiyo S, Pradidarcheep W, Maiuthed A. Benja-ummarit induces ferroptosis with cell ballooning feature through ROS and iron-dependent pathway in hepatocellular carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118672. [PMID: 39127118 DOI: 10.1016/j.jep.2024.118672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/22/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Benja-ummarit (BU), a traditional Thai herbal formula, has been prescribed by traditional Thai practitioners for the treatment of liver cancer. Clinical trials of BU have shown an increase in overall survival in hepatocellular carcinoma (HCC) patients, including stage 1-3 (with or without prior standard chemotherapy) and terminal stage. The clinical outcomes differ from those of other apoptosis-based conventional chemotherapies. The molecular mechanisms underlying the anti-cancer properties of BU remain unclear. AIM OF STUDY To investigate BU-induced ferroptosis through morphological and molecular analyses of HCC cell lines and HCC rat tissues. METHODOLOGY Cytotoxicity of BU extract in HepG2 and HuH-7 cells, with or without LX-2 in 2D and 3D cultures, was determined through MTT assay and by observing spheroid formation, respectively, as compared to sorafenib. Morphological changes and the cellular ultrastructure of the treated cells were evaluated by light microscopy and transmission electron microscopy (TEM), respectively. In addition, alterations in ferroptosis protein markers in both cell lines and rat liver tissue were determined using western blot analysis and immunohistochemical staining, respectively. To investigate the pathways mediating ferroptosis, cells were pretreated with an iron chelator to confirm the iron-dependent ferroptosis induced by the BU extract. Intracellular ROS, a mediator of ferroptosis, was measured using a scanning ion conductance microscope (SICM). SICM was also used to determine cellular stiffness. The lipid profiles of BU-treated cells were studied using LC-MS/MS. RESULTS The BU extract induced cell death under all HCC cell culture conditions. The BU-IC50 in HepG2 and HuH-7 were 31.24 ± 4.46 μg/mL and 23.35 ± 0.27 μg/mL, respectively as determined by MTT assay. In co-culture with LX-2, BU exhibited a similar trend of cytotoxicity in both HepG2 and HuH-7 cells. Light microscopy showed cell ballooning features with intact plasma membranes, and TEM microscopy showed mitochondrial swelling and reduced mitochondrial cristae in BU-treated cells. BU promotes intracellular iron levels by increasing DMT1 and NCOA4 expression and decreasing FTH1 expression. BU also suppressed the cellular antioxidant system by lowering CD98, NRF2, and GPX4 expression, and promoting KEAP1 expression. IHC results of HCC rat liver tissues showed the absence of DMT1 and high expression of GPX4 in the tumor area. Pre-treatment with an iron chelator partially restored cell viability and shifted the mode of cell death to a more apoptosis-like morphology in the BU-treated group. The SICM showed increased intracellular ROS levels and cellular stiffness 24 h after BU treatment. In more detail of BU-mediated ferroptosis, cellular lipid profiling revealed increased expression of 3 polyunsaturated lipids, which are highly susceptible to lipid peroxidation, in BU-treated cells. DISCUSSION Alterations in intracellular iron levels, ROS levels, and cellular lipid composition have been previously reported in cancer cells. Therefore, targeting the iron-dependent ROS pathway and polyunsaturated lipids via BU-induced ferroptosis may be more cancer-specific than apoptosis-based cancer drugs. These observations are in accordance with the clinical outcomes of BU. The ferroptosis-inducing mechanism of BU makes it an extremely promising novel drug candidate for the treatment of HCC.
Collapse
Affiliation(s)
- Nichawadee Sandech
- Doctor of Philosophy Program in Innovative Anatomy, Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10110, Thailand; Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10110, Thailand; Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Meng Chieh Yang
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Pichakorn Juntranggoor
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Pattarawit Rukthong
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Srinakharinwirot University, Nakornnayok, 26120, Thailand; Center for Excellence in Plant and Herbal Innovation Research, Strategic Wisdom and Research Institute, Srinakharinwirot University, Nakornnayok, 26120, Thailand
| | - Petr Gorelkin
- ICAPPIC Limited, London, E8 3PN, United Kingdom; Research laboratory of biophysics, National University of Science and Technology (MISIS), Moscow, 119049, Russia
| | - Nikita Savin
- Research laboratory of biophysics, National University of Science and Technology (MISIS), Moscow, 119049, Russia
| | - Roman Timoshenko
- Research laboratory of biophysics, National University of Science and Technology (MISIS), Moscow, 119049, Russia
| | - Alexander Vaneev
- Research laboratory of biophysics, National University of Science and Technology (MISIS), Moscow, 119049, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexander Erofeev
- Research laboratory of biophysics, National University of Science and Technology (MISIS), Moscow, 119049, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Surasak Wichaiyo
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand; Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Wisuit Pradidarcheep
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10110, Thailand.
| | - Arnatchai Maiuthed
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand; Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
3
|
Chen Y, Wu M. Piperine attenuates cancer-associated pain induced by microglial activation via increasing miR-150-50p. Aging (Albany NY) 2024; 16:13288-13303. [PMID: 39641645 DOI: 10.18632/aging.205908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/22/2023] [Indexed: 12/07/2024]
Abstract
AIM Severe painful neuropathy often occurs in cancer patients receiving chemotherapy. Emerging evidence has demonstrated that microglia contribute to the occurrence and development of cancer-associated pain. This study aimed to investigate the mechanisms by which piperine influences cancer-associated pain induced by microglia activation. METHODS The tumor cell implantation (TCI) model was adopted as the cancer-associated pain model in mice. Behavioral tests were done to confirm that model mice were sensitive to acute mechanical and thermal pain. Western blot (WB) and immunofluorescence (IF) were conducted to quantify expression level of microglia marker protein Iba1 in mice spinal cord tissues. The expression of miR-150-5p and CXCL12 in the mice spinal cord was evaluated by Quantitative real-time Polymerase Chain Reaction (qRT-PCR) and fluorescence in situ hybridization (FISH). Primary microglia from mice were treated with lipopolysaccharide (LPS) to investigate neuroinflammation. RESULTS The modeled mice showed high susceptibility to acute mechanical hyperalgesia and thermal hyperalgesia. The expression of microglia marker protein Iba1 in the model group was increased in vitro and in vivo. Treatment with piperine effectively relieved the cancer-associated pain in mice. The results of FISH and qRT-PCR showed that piperine significantly increased the expression of miR-150-5p and reduced the expression of CXCL12 in the spinal cord of mice. Furthermore, it inhibited the microglia-induced cancer-associated pain. CONCLUSIONS Piperine upregulates miR-150-50p levels, inhibits CXCL12 expression, and reduces microglia levels at the lesion site. Therefore, piperine may be a potential drug candidate for the treatment of cancer-associated pain.
Collapse
Affiliation(s)
- Yunlong Chen
- Department of Oncology, Rudong County Hospital of Traditional Chinese Medicine, Rudong County 226400, Jiangsu, China
| | - Mianhua Wu
- Institute of Oncology, The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| |
Collapse
|
4
|
Khamis AA, Ali EMM, Salim EI, El-Moneim MAA. Synergistic effects of bee venom, hesperidin, and piperine with tamoxifen on apoptotic and angiogenesis biomarker molecules against xerographic MCF-7 injected rats. Sci Rep 2024; 14:1510. [PMID: 38233443 PMCID: PMC10794414 DOI: 10.1038/s41598-023-50729-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/23/2023] [Indexed: 01/19/2024] Open
Abstract
Breast cancer ranks as the second leading most significant of mortality for women. Studies have demonstrated the potential benefits of natural compounds in cancer treatment and prevention, either in isolation or in conjunction with chemotherapy. In order to improve Tamoxifen's therapeutic efficacy in in-vivo studies, our research sought to determine the effects of hesperidin, piperine, and bee venom as natural compounds, as well as their combination effect with or without Tamoxifen. First, 132 female albino rats were equally divided into six groups and five subgroups, and breast cancer was induced in the selected groups by xenografting of MCF7 cells. Second, the effect of single and best ratio combinations treatment from previous in vitro studies were selected. Next, tumorous mammary glands were collected for apoptotic and antiapoptotic biomarkers and cell cycle analysis. Single or combined natural products with or without Tamoxifen revealed a significant up-regulation in apoptotic genes Bax and Casp3 and a downregulation of antiapoptotic and angiogenesis genes Bcl-2 and VEGF genes. We found that cell cycle arrest in the G0/G1 phase was exclusively caused by Tamoxifen and/ or hesperidin. However, the cell cycle arrest in the G2/M phase is a result of the combination of piperine and bee venom, with or without Tamoxifen by using the flow cytometric technique. Our research concludes that bee venom, hesperidin, and piperine can synergistically enhance to increase Tamoxifen's efficiency in the management of breast cancer.
Collapse
Affiliation(s)
- Abeer A Khamis
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Ehab M M Ali
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Elsayed I Salim
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed A Abd El-Moneim
- Biochemistry Department, Faculty of Dentistry, Sinai University, Al-Arish, North Sinai, Egypt
| |
Collapse
|
5
|
Al-Wahaibi LH, Mahmoud MA, Mostafa YA, Raslan AE, Youssif BGM. Novel piperine-carboximidamide hybrids: design, synthesis, and antiproliferative activity via a multi-targeted inhibitory pathway. J Enzyme Inhib Med Chem 2023; 38:376-386. [DOI: 10.1080/14756366.2022.2151593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed A. Mahmoud
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Yaser A. Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Ali E. Raslan
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
6
|
Lasso P, Rojas L, Arévalo C, Urueña C, Murillo N, Nossa P, Sandoval T, Chitiva LC, Barreto A, Costa GM, Fiorentino S. Piper nigrum extract suppresses tumor growth and enhances the antitumor immune response in murine models of breast cancer and melanoma. Cancer Immunol Immunother 2023; 72:3279-3292. [PMID: 37464192 PMCID: PMC10491708 DOI: 10.1007/s00262-023-03487-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/26/2023] [Indexed: 07/20/2023]
Abstract
Although the antitumor effect of P. nigrum has been widely studied, research related to its possible immunomodulatory effects is relatively scarce. Here, the antitumor and immunomodulatory activity of an ethanolic extract of P. nigrum were evaluated in the murine models of 4T1 breast cancer and B16-F10 melanoma. In vitro evaluations showed that the P. nigrum extract has cytotoxic activity, induces apoptotic cell death, and has a pro-oxidant effect in both cell lines, but it regulates glucose uptake differently in both lines, decreasing it in 4T1 but not in B16-F10. P. nigrum extract significantly reduced tumor size in both models and decreased the occurrence of macrometastases in 4T1 model. Evaluation of immune subpopulations by flow cytometry revealed that the P. nigrum extract significantly increases the frequency of dendritic cells and activated CD8+ T cells and decreases the frequency of myeloid-derived suppressor like cells and Tregs in the tumor microenvironment of both models but with different dynamics. Our findings strongly suggest that the P. nigrum extract exerts immunomodulatory functions, slightly related to the modulation of cellular energy metabolism, which could ultimately contribute to the promising antitumor effect of P. nigrum.
Collapse
Affiliation(s)
- Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, Bogotá, C.P. 110211, Colombia
| | - Laura Rojas
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, Bogotá, C.P. 110211, Colombia
| | - Cindy Arévalo
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, Bogotá, C.P. 110211, Colombia
| | - Claudia Urueña
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, Bogotá, C.P. 110211, Colombia
| | - Natalia Murillo
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, Bogotá, C.P. 110211, Colombia
| | - Paula Nossa
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, Bogotá, C.P. 110211, Colombia
| | - Tito Sandoval
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, Bogotá, C.P. 110211, Colombia
| | - Luis Carlos Chitiva
- Grupo de Investigación en Fitoquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Alfonso Barreto
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, Bogotá, C.P. 110211, Colombia
| | - Geison M Costa
- Grupo de Investigación en Fitoquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, Bogotá, C.P. 110211, Colombia.
| |
Collapse
|
7
|
Ngamkhae N, Monthakantirat O, Chulikhit Y, Maneenet J, Khamphukdee C, Chotritthirong Y, Limsakul S, Boonyarat C, Pitiporn S, Kwankhao P, Kijjoa A, Daodee S. Approach of Supercritical Carbon Dioxide for the Extraction of Kleeb Bua Daeng Formula. Molecules 2023; 28:6873. [PMID: 37836716 PMCID: PMC10574500 DOI: 10.3390/molecules28196873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Supercritical fluid extraction (SFE) is an innovative green technology for the extraction of phytochemicals from plants. Therefore, this study aimed to evaluate the application of SFE and to optimize the extraction conditions of the Thai herbal formula, Kleeb Bua Daeng (KBD). A Box-Behnken design (BBD) with response surface methodology (RMS) was used to determine the effect of the extraction time (30-90 min), temperature (30-60 °C), and pressure (200-300 bar) on response variables including the extraction yield, total phenolic content (TPC), total flavonoid content (TFC), total carotenoid content (TCC), and total anthocyanin content (TAC) of the KBD formula. The highest percentage extraction yield (3.81%) was achieved at 60 °C, 300 bar, and 60 min of the extraction time. The highest TPC (464.56 mg gallic acid equivalents/g extract), TFC (217.19 mg quercetin equivalents/g extract), and TCC (22.26 mg β-carotene equivalents/g extract) were all achieved at 60 °C, 250 bar, and 90 min of the extraction time. On the contrary, it was not possible to quantify the total anthocyanin content as anthocyanins were not extracted by this method. The results indicated that SFE-CO2 is a suitable method of extraction for a green recovery of phytochemicals with low and moderate polarity from the KBD formula.
Collapse
Affiliation(s)
- Nittaya Ngamkhae
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (N.N.); (O.M.); (Y.C.); (J.M.); (Y.C.); (S.L.); (C.B.); (A.K.)
| | - Orawan Monthakantirat
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (N.N.); (O.M.); (Y.C.); (J.M.); (Y.C.); (S.L.); (C.B.); (A.K.)
| | - Yaowared Chulikhit
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (N.N.); (O.M.); (Y.C.); (J.M.); (Y.C.); (S.L.); (C.B.); (A.K.)
| | - Juthamart Maneenet
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (N.N.); (O.M.); (Y.C.); (J.M.); (Y.C.); (S.L.); (C.B.); (A.K.)
| | - Charinya Khamphukdee
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Yutthana Chotritthirong
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (N.N.); (O.M.); (Y.C.); (J.M.); (Y.C.); (S.L.); (C.B.); (A.K.)
| | - Suphatson Limsakul
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (N.N.); (O.M.); (Y.C.); (J.M.); (Y.C.); (S.L.); (C.B.); (A.K.)
| | - Chantana Boonyarat
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (N.N.); (O.M.); (Y.C.); (J.M.); (Y.C.); (S.L.); (C.B.); (A.K.)
| | - Supaporn Pitiporn
- Department of Pharmacy, Chao Phraya Abhaibhubejhr Hospital, Ministry of Public Health, Prachinburi 25000, Thailand; (S.P.); (P.K.)
| | - Pakakrong Kwankhao
- Department of Pharmacy, Chao Phraya Abhaibhubejhr Hospital, Ministry of Public Health, Prachinburi 25000, Thailand; (S.P.); (P.K.)
| | - Anake Kijjoa
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (N.N.); (O.M.); (Y.C.); (J.M.); (Y.C.); (S.L.); (C.B.); (A.K.)
- Instituto de Ciências Biomédicas Abel Salazar and CIIMAR, Universidade do Porto, Rua Jorge de Viterbo Ferreira 282, 4050-313 Porto, Portugal
| | - Supawadee Daodee
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (N.N.); (O.M.); (Y.C.); (J.M.); (Y.C.); (S.L.); (C.B.); (A.K.)
| |
Collapse
|
8
|
Wu R, Zhao J, Wei P, Tang M, Ma Z, Zhao Y, Du L, Wan L. Piper nigrum Extract Inhibits the Growth of Human Colorectal Cancer HT-29 Cells by Inducing p53-Mediated Apoptosis. Pharmaceuticals (Basel) 2023; 16:1325. [PMID: 37765133 PMCID: PMC10537627 DOI: 10.3390/ph16091325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is a prevalent malignancy of the digestive tract with the second highest mortality rate globally. Piper nigrum is a widely used traditional medicinal plant, exhibiting antitumor activity against various tumor cells. At present, research on the effect of Piper nigrum on CRC is limited to in vitro cytotoxicity, lacking comprehensive mechanism investigations. This study aimed to explore the inhibitory effect and mechanism of Piper nigrum extract (PNE) on HT-29 cells. Firstly, we identified the chemical components of PNE. Then, MTT assay, colony formation assay, JC-1 staining, and flow cytometry were used to analyze the effect of PNE on HT-29 cells in vitro. A xenograft model, histopathological examination, immunohistochemistry, and western blot were used to evaluate the tumor growth inhibitory activity and mechanism of PNE in vivo. The results indicated that PNE could inhibit cell proliferation and colony formation, reduce mitochondrial membrane potential, induce cell apoptosis in vitro, and inhibit tumor growth in vivo. Furthermore, PNE could regulate p53 and its downstream proteins, and subsequently activate the caspase-3 pathway. In summary, PNE probably induced apoptosis of HT-29 cells through the mitochondrial pathway mediated by p53. All these results suggested that PNE might be a potential natural-origin anti-CRC drug candidate.
Collapse
Affiliation(s)
- Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (R.W.); (J.Z.); (P.W.); (Y.Z.); (L.D.)
| | - Jiajia Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (R.W.); (J.Z.); (P.W.); (Y.Z.); (L.D.)
| | - Panhong Wei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (R.W.); (J.Z.); (P.W.); (Y.Z.); (L.D.)
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China; (M.T.); (Z.M.)
| | - Ziyan Ma
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China; (M.T.); (Z.M.)
| | - Yunyan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (R.W.); (J.Z.); (P.W.); (Y.Z.); (L.D.)
| | - Leilei Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (R.W.); (J.Z.); (P.W.); (Y.Z.); (L.D.)
| | - Li Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (R.W.); (J.Z.); (P.W.); (Y.Z.); (L.D.)
| |
Collapse
|
9
|
Mad-adam N, Madla S, Lailerd N, Hiransai P, Graidist P. Piper nigrum Extract: Dietary Supplement for Reducing Mammary Tumor Incidence and Chemotherapy-Induced Toxicity. Foods 2023; 12:2053. [PMID: 37238871 PMCID: PMC10216990 DOI: 10.3390/foods12102053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
A low piperine fractional Piper nigrum extract (PFPE) was prepared by mixing cold-pressed coconut oil and honey in distilled water, namely, PFPE-CH. In this study, PFPE-CH was orally administered as a dietary supplement to decrease the risk of tumor formation and reduce the side effects of chemotherapeutic drugs during breast cancer treatment. The toxicity study demonstrated no mortality or adverse effects after administrating PFPE-CH at 5000 mg/kg during a 14-day observation period. Additionally, PFPE-CH at 86 mg/kg BW/day did not cause any harm to the kidney or liver function of the rats for six months. In a cancer prevention study, treatment with PFPE-CH at 100 mg/kg BW for 101 days induced oxidative stress and increased the immune response by altering the levels of cancer-associated cytokines (IL-4, IL-6, and IFN-g), leading to a reduction in the tumor incidence of up to 71.4% without any adverse effects. In combination with doxorubicin, PFPE-CH did not disrupt the anticancer effects of the drug in rats with mammary tumors. Surprisingly, PFPE-CH reduced chemotherapy-induced toxicity by improving some hematological and biochemical parameters. Therefore, our results suggest that PFPE-CH is safe and effective in reducing breast tumor incidence and toxicity of chemotherapeutic drugs during cancer treatment in mammary tumor rats.
Collapse
Affiliation(s)
- Nadeeya Mad-adam
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Siribhon Madla
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Narissara Lailerd
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Poonsit Hiransai
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Center of Excellence in Marijuana, Hemp, and Kratom, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Potchanapond Graidist
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
10
|
Evaluation of Antimicrobial Activity and Cytotoxicity Effects of Extracts of Piper nigrum L. and Piperine. SEPARATIONS 2022. [DOI: 10.3390/separations10010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
P. nigrum L. extracts and the piperine alkaloid have important antimicrobial, anti-inflammatory, and antioxidant properties. Therefore, in this study, we evaluated the antimicrobial activity and cytotoxicity of P. nigrum L. extracts and piperine, a compound isolated from the extracts of P. nigrum L. Extracts obtained via maceration, soxhlet, and purification steps, in addition to isolated piperine, were used in this study. Spectroscopic methods, such as nuclear magnetic resonance, scanning electron microscopy, X-ray diffraction, thermogravimetry, and differential scanning calorimetry, were used to characterize piperine. In the microbiological analyses, the extract obtained via maceration-derived sample showed high efficiency in inhibiting Salmonella spp. (MIC < 100 μg/mL). The extract obtained via a soxhlet-derived sample showed promising inhibitory activity against almost all microorganisms, with negligible inhibition of Pseudomonas aeruginosa. Favorable inhibition coefficients were also observed against Staphylococcus aureus and Salmonella spp. (MIC < 100 μg/mL) for the extract obtained via purification of the steps-derived sample. Piperine showed an excellent inhibition coefficient against most microorganisms, with inactivity only observed against P. aeruginosa. Cytotoxicity evaluation assays in cancer cell lines revealed that piperine exhibited inhibitory potential on all tested tumor cell lines, causing a decrease in cell viability and achieving an IC50 of less than 30 μg/mL. The analyzed extracts from P. nigrum L. seeds showed cytotoxic activity against tumor and non-tumor cell lines.
Collapse
|
11
|
Saetang J, Tedasen A, Sangkhathat S, Sangkaew N, Dokduang S, Prompat N, Taraporn S, Graidist P. The attenuation effect of low piperine Piper nigrum extract on doxorubicin-induced toxicity of blood chemical and immunological properties in mammary tumour rats. PHARMACEUTICAL BIOLOGY 2022; 60:96-107. [PMID: 34962450 PMCID: PMC8735876 DOI: 10.1080/13880209.2021.2018470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/26/2021] [Accepted: 12/10/2021] [Indexed: 06/01/2023]
Abstract
CONTEXT Many natural extracts have been shown to minimize the toxicity of doxorubicin (Dox). Low piperine Piper nigrum L. (Piperaceae) extract (PFPE) is a natural extract containing many types of antioxidants that may reduce Dox toxicities. OBJECTIVE To evaluate the effect of PFPE in attenuating the side effects of Dox. MATERIALS AND METHODS Tumour-bearing Sprague Dawley rats were divided into five groups including normal, vehicle, 100 mg/kg BW of PFPE plus 2 mg/kg BW of Dox (P100 + Dox), 100 mg/kg BW of PFPE plus 2 mg/kg BW of Dox (P200 + Dox) and Dox. Rats were treated with Dox and/or PFPE three times/week for 4 weeks. Tumour burden, blood parameters, weight of internal organs and immunological data were investigated. RESULTS The addition of 200 mg/kg PFPE significantly restored the levels of AST from 174.60 ± 45.67 U/L in the Dox group near to normal levels at 109.80 ± 4.99 U/L. The combination of PFPE and Dox also decreased the levels of CXCL7, TIMP-1, sICAM-1 and l-selectin about 1.4-1.6-fold compared to Dox group. Feeding rats with 200 mg/kg BW of PFPE combination with Dox slightly increased Th1 from 161.67 ± 14.28 cells in Dox group to 200.75 ± 5.8 cells meanwhile suppressed Treg from 3088 ± 78 cells in Dox to 2561 ± 71 cells. DISCUSSION AND CONCLUSIONS This study showed that PFPE ameliorated Dox toxicity in many aspects indicating the role of antioxidant and other substances in the extract on toxicity attenuation. This suggested the using of PFPE may be valuable for Dox treated patients.
Collapse
Affiliation(s)
- Jirakrit Saetang
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
- EZ-Mol-Design Laboratory, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Aman Tedasen
- Department of Medical Technology, School of Allied Health Sciences and Public Health, Walailak University, Thai Buri, Thailand
| | - Surasak Sangkhathat
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Natnaree Sangkaew
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Sirinapa Dokduang
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Napat Prompat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Siriporn Taraporn
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Potchanapond Graidist
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
12
|
Yen C, Zhao F, Yu Z, Zhu X, Li CG. Interactions Between Natural Products and Tamoxifen in Breast Cancer: A Comprehensive Literature Review. Front Pharmacol 2022; 13:847113. [PMID: 35721162 PMCID: PMC9201062 DOI: 10.3389/fphar.2022.847113] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction: Tamoxifen (TAM) is the most commonly used hormone therapeutic drug for the treatment of estrogen receptor-positive (ER+) breast cancer. 30%–70% of clinical breast cancer patients use natural products, which may increase the likelihood of drug interactions. Objective: To evaluate the evidence for the interactions between natural products and TAM in breast cancer. Methods: Electronic databases, including PubMed, CINAHL Plus (via EbscoHost), European PMC, Medline, and Google Scholar, were searched for relevant publications. The search terms include complementary and alternative medicine, natural products, plant products, herbs, interactions, tamoxifen, breast cancer, and their combinations. Results: Various in vitro and in vivo studies demonstrated that the combined use of natural products with TAM produced synergistic anti-cancer effects, including improved inhibition of tumor cell growth and TAM sensitivity and reduced side effects or toxicity of TAM. In contrast, some natural products, including Angelica sinensis (Oliv.) Diels [Apiaceae], Paeonia lactiflora Pall., Rehmannia glutinosa (Gaertn.) DC., Astragalus mongholicus Bunge, and Glycyrrhiza glabra L. [Fabaceae], showed estrogen-like activity, which may reduce the anti-cancer effect of TAM. Some natural products, including morin, silybin, epigallocatechin gallate (EGCG), myricetin, baicalein, curcumin, kaempferol, or quercetin, were found to increase the bioavailability of TAM and its metabolites in vivo. However, three are limited clinical studies on the combination of natural products and TAM. Conclusion: There is evidence for potential interactions of various natural products with TAM in pre-clinical studies, although the relevant clinical evidence is still lacking. Further studies are warranted to evaluate the potential interactions of natural products with TAM in clinical settings.
Collapse
Affiliation(s)
- Christine Yen
- Chinese Medicine Centre, Western Sydney University, Sydney, NSW, Australia.,School of Health Sciences, Western Sydney University, Sydney, NSW, Australia
| | - Fan Zhao
- Chinese Medicine Centre, Western Sydney University, Sydney, NSW, Australia.,College of Chinese Medicine, College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhichao Yu
- Chinese Medicine Centre, Western Sydney University, Sydney, NSW, Australia.,College of the First Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoshu Zhu
- Chinese Medicine Centre, Western Sydney University, Sydney, NSW, Australia.,School of Health Sciences, Western Sydney University, Sydney, NSW, Australia.,NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| |
Collapse
|
13
|
Saetang J, Tedasen A, Sangkhathat S, Sangkaew N, Dokduang S, Prompat N, Taraporn S, Graidist P. Low Piperine Fractional Piper nigrum Extract Enhanced the Antitumor Immunity via Regulating the Th1/Th2/Treg Cell Subsets on NMU-Induced Tumorigenesis Rats. PLANTA MEDICA 2022; 88:527-537. [PMID: 33902130 DOI: 10.1055/a-1458-5646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cancer is one of the major causes of death worldwide. In addition to standard regimens, tumor suppression ability has been demonstrated in many types of natural products, including Piper nigrum, or black pepper. In previous reports, we demonstrated the antitumor effect of low piperine fractional Piper nigrum extract in vitro and in vivo. However, the effects of low piperine fractional P. nigrum extract in the aspect of antitumor immunity has not yet been investigated. In this study, tumor-bearing rats were fed with 100 mg/kg BW or 200 mg/kg BW of low piperine fractional P. nigrum extract 3 times per week for 4 weeks. Tumor burden and hematological data were then evaluated. Immunological data was investigated using a cytokine array and flow cytometry. The results showed that both doses of low piperine fractional P. nigrum extract significantly suppressed tumor progression in N-nitrosomethylurea-induced mammary tumor rats. There were no significant changes observed in the total white blood cells, red blood cells, and hemoglobin. Low piperine fractional P. nigrum extract suppressed some cytokine and chemokine levels including CXCL7, sICAM-1, and L-selectin 0.2- to 0.6-fold. Interestingly, 200 mg/kg BW of low piperine fractional P. nigrum extract significantly promoted type 1 T helper cell, and suppressed neutrophil, basophil, type 2 T helper cell, and regulatory T cell compared to the control group. In summary, these results indicate that low piperine fractional P. nigrum extract had a high efficacy in supporting antitumor activity at immunological levels via regulating Th1/Th2/Treg cells.
Collapse
Affiliation(s)
- Jirakrit Saetang
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- EZ-Mol-Design Laboratory, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Aman Tedasen
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- The Excellent Research Laboratory of Cancer Molecular Biology, Prince of Songkla University, Songkhla, Thailand
| | - Surasak Sangkhathat
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Natnaree Sangkaew
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Sirinapa Dokduang
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- The Excellent Research Laboratory of Cancer Molecular Biology, Prince of Songkla University, Songkhla, Thailand
| | - Napat Prompat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Siriporn Taraporn
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- The Excellent Research Laboratory of Cancer Molecular Biology, Prince of Songkla University, Songkhla, Thailand
| | - Potchanapond Graidist
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- The Excellent Research Laboratory of Cancer Molecular Biology, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
14
|
Challenges and Opportunities in the Application of Chemometrics in the Pharmaceutical and Food Science Industries. J CHEM-NY 2022. [DOI: 10.1155/2022/9823497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Jana SN, Sing D, Banerjee S, Haldar PK, Dasgupta B, Kar A, Sharma N, Bandyopadhayay R, Mukherjee PK. Quantification of piperine in different varieties of Piper nigrum by a validated high-performance thin-layer chromatography‒densitometry method. JPC-J PLANAR CHROMAT 2022. [DOI: 10.1007/s00764-021-00149-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Buranrat B, Senggunprai L, Prawan A, Kukongviriyapan V. Anticancer effects of Piper nigrum extract against cholangiocarcinoma cells. Pharmacogn Mag 2022. [DOI: 10.4103/pm.pm_521_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
17
|
Moreira KG, do Prado TP, Mendes NF, de Medeiros Bezerra R, Jara CP, Melo Lima MH, de Araujo EP. Accelerative action of topical piperonylic acid on mice full thickness wound by modulating inflammation and collagen deposition. PLoS One 2021; 16:e0259134. [PMID: 34699564 PMCID: PMC8547657 DOI: 10.1371/journal.pone.0259134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/14/2021] [Indexed: 01/09/2023] Open
Abstract
Epidermal growth factor (EGF) promotes cell growth, proliferation, and survival in numerous tissues. Piperonylic acid, a metabolite present in peppers (Piper nigrum L. and Piper longum L.), can bind to the epidermal growth factor receptor (EGFR) and induce an intracellular signaling cascade leading to the transcription of genes responsible for these actions, especially in keratinocytes. These cells are fundamental in maintaining cutaneous homeostasis and are the first to be damaged in the case of a wound. Thus, we hypothesized that piperonylic acid improves wound healing. C57BL6/J male mice were submitted to dorsal skin wounds caused by a 6 mm punch and treated topically with piperonylic acid or vehicle. The wounds were evaluated macro- and microscopically, and tissue samples were collected for immunofluorescence and real-time PCR analyses on days 6, 9 and 19 post-injury. Topical piperonylic acid improved wound healing from day 6 post-injury until closure. This phenomenon apparently occurred through EGFR activation. In addition, piperonylic acid modulated the gene expression of interleukin (Il)-6, il-1β, tumor necrosis factor (Tnf)-α, il-10, monocyte chemoattractant protein (Mcp)-1 and insulin-like growth factor (Igf)-1, which are important for the healing process. By day 19 post-injury, the new tissue showed greater deposition of type I collagen and a morphology closer to intact skin, with more dermal papillae and hair follicles. We conclude that piperonylic acid may be a viable option for the treatment of skin wounds.
Collapse
Affiliation(s)
- Karina Gomes Moreira
- School of Nursing, University of Campinas, Sao Paulo, Brazil
- Laboratory of Cell Signaling, Yokohama, Japan
- Obesity and Comorbidities Research Center, University of Campinas, Sao Paulo, Brazil
| | - Thais Paulino do Prado
- School of Nursing, University of Campinas, Sao Paulo, Brazil
- Laboratory of Cell Signaling, Yokohama, Japan
- Obesity and Comorbidities Research Center, University of Campinas, Sao Paulo, Brazil
| | - Natália Ferreira Mendes
- School of Nursing, University of Campinas, Sao Paulo, Brazil
- Laboratory of Cell Signaling, Yokohama, Japan
- Obesity and Comorbidities Research Center, University of Campinas, Sao Paulo, Brazil
| | - Renan de Medeiros Bezerra
- School of Nursing, University of Campinas, Sao Paulo, Brazil
- Laboratory of Cell Signaling, Yokohama, Japan
- Obesity and Comorbidities Research Center, University of Campinas, Sao Paulo, Brazil
| | - Carlos Poblete Jara
- School of Nursing, University of Campinas, Sao Paulo, Brazil
- Laboratory of Cell Signaling, Yokohama, Japan
- Obesity and Comorbidities Research Center, University of Campinas, Sao Paulo, Brazil
| | - Maria Helena Melo Lima
- School of Nursing, University of Campinas, Sao Paulo, Brazil
- Laboratory of Cell Signaling, Yokohama, Japan
- Obesity and Comorbidities Research Center, University of Campinas, Sao Paulo, Brazil
| | - Eliana Pereira de Araujo
- School of Nursing, University of Campinas, Sao Paulo, Brazil
- Laboratory of Cell Signaling, Yokohama, Japan
- Obesity and Comorbidities Research Center, University of Campinas, Sao Paulo, Brazil
- * E-mail: ,
| |
Collapse
|
18
|
Optimized Extraction Method for Kleeb Bua Daeng Formula with the Aid of the Experimental Design. J CHEM-NY 2021. [DOI: 10.1155/2021/1457729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Kleeb Bua Daeng formula is one of the popular remedies sold in Chao Phya Abhaibhubejhr Hospital, Thailand. This formula contains Piper nigrum L., Nelumbo nucifera Gaertn., and Centella asiatica L. as active components. Owing to getting the highest content of its phytochemical compounds, the conditions of solvent extraction for this formula were optimized. The type of solvent, number of extraction times, and ratio between the material and solvent were varied in this study using the Box–Behnken design. The important phytochemical constituents (total phenolics, flavonoids, carotenoids, and anthocyanins) were also determined. From the result of this study, it was found that the highest content of each total active compound was obtained from different conditions such as the optimal extraction condition of phenolic content was obtained using methanol as solvent, one time of extraction, and the ratio of powder and solvent was 1 : 6. Thus, the variation of solvent extraction condition could affect the phytochemical content. Further studies about the herbal formula involving the extraction process should concern the variation of extraction conditions to get the highest content of the active compound.
Collapse
|
19
|
Kanniah P, Chelliah P, Thangapandi JR, Gnanadhas G, Mahendran V, Robert M. Green synthesis of antibacterial and cytotoxic silver nanoparticles by Piper nigrum seed extract and development of antibacterial silver based chitosan nanocomposite. Int J Biol Macromol 2021; 189:18-33. [PMID: 34389391 DOI: 10.1016/j.ijbiomac.2021.08.056] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 12/20/2022]
Abstract
In the present study, we have used seed extract of P. nigrum as an effective reducing agent for the synthesis of silver nanoparticles (Ag NPs) and silver based chitosan nanocomposite (Ag/CS NC). The silver nanoparticles were characterized by UV-Vis spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and Fourier transform infrared spectroscopy (FTIR). The appearance of a surface plasmon resonance (SPR) peak located at 430 nm reveals the formation of silver nanoparticles. The TEM analysis indicates that the attained silver nanoparticles were mostly in spherical shapes with sizes ranging between 15 and 38 nm. The high resolution liquid chromatography with mass spectroscopy (HR-LCMS) analysis was performed to screen the phytochemical constituents of P. nigrum seed extract. The silver nanoparticles synthesized by P. nigrum seed extract exhibited effective antibacterial activity against Bacillus subtilis (B. subtilis) and Escherichia coli (E. coli). In addition, the silver nanoparticles showed potent cytotoxicity against hazardous human cancer cell lines MDA-MB-231, PANC-1, SKOV-3, PC-3 and Hela. The observation of bright spots in the TEM dark field images represents the presence of Ag in CS suspension. Besides, the Ag/CS NC coated cotton fabric substantially showed remarkable antibacterial activity against B. subtilis and E. coli.
Collapse
Affiliation(s)
- Paulkumar Kanniah
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India.
| | - Parvathiraja Chelliah
- Department of Physics, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Jesi Reeta Thangapandi
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Gnanajobitha Gnanadhas
- Environmental Nanotechnology Division, Sri Paramakalyani Centre for Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tamil Nadu, India
| | - Vanaja Mahendran
- Environmental Nanotechnology Division, Sri Paramakalyani Centre for Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tamil Nadu, India
| | - Marshan Robert
- Department of Physics and Research Centre, Womens Christian College, Nagercoil, Tamil Nadu, India
| |
Collapse
|
20
|
Tantawy AH, Meng XG, Marzouk AA, Fouad A, Abdelazeem AH, Youssif BGM, Jiang H, Wang MQ. Structure-based design, synthesis, and biological evaluation of novel piperine-resveratrol hybrids as antiproliferative agents targeting SIRT-2. RSC Adv 2021; 11:25738-25751. [PMID: 35478872 PMCID: PMC9037111 DOI: 10.1039/d1ra04061h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
A series of novel piperine–resveratrol hybrids 5a–h was designed, synthesized, and structurally elucidated by IR, and 1H, 13C, and 19F NMR. Antiproliferative activities of 5a–h were evaluated by NCI against sixty cancer cell lines. Compound 5b, possessing resveratrol pharmacophoric phenolic moieties, showed a complete cell death against leukemia HL-60 (TB) and Breast cancer MDA-MB-468 with growth inhibition percentage of −0.49 and −2.83, respectively. In addition, 5b recorded significant activity against the other cancer cell lines with growth inhibition percentage between 80 to 95. New 5a–h hybrids were evaluated for their inhibitory activities against Sirt-1 and Sirt-2 as molecular targets for their antiproliferative action. Results showed that compounds 5a–h were more potent inhibitors of Sirt-2 than Sirt-1 at 5 μm and 50 μm. Compound 5b showed the strongest inhibition of Sirt-2 (78 ± 3% and 26 ± 3% inhibition at 50 μM and 5 μM, respectively). Investigation of intermolecular interaction via Hirschfeld surface analysis indicates that these close contacts are mainly ascribed to the O–H⋯O hydrogen bonding. To get insights into the Sirt-2 inhibitory mechanism, a docking study was performed where 5b was found to fit nicely inside both extended C-pocket and selectivity pocket and could compete with the substrate acyl-Lys. Another possible binding pattern showed that 5b could act by partial occlusion of the NAD+ C-pocket. Collectively, these findings would contribute significantly to better understanding the Sirt-2 inhibitory mechanism in order to develop a new generation of refined and selective Sirt-2 inhibitors. A series of novel piperine–resveratrol hybrids 5a–h was designed, synthesized, and structurally elucidated by IR, and 1H, 13C, and 19F NMR.![]()
Collapse
Affiliation(s)
- Ahmed H Tantawy
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University Wuhan 430070 People's Republic of China .,Department of Chemistry, College of Science, Huazhong Agricultural University Wuhan 430070 China .,Department of Chemistry, College of Science, Benha University Benha 13518 Egypt
| | - Xiang-Gao Meng
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, School of Chemistry, Central China Normal University Wuhan 430079 China
| | - Adel A Marzouk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University Assiut Branch Assiut 71524 Egypt
| | - Ali Fouad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University Assiut Branch Assiut 71524 Egypt
| | - Ahmed H Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62514 Egypt.,Department of Pharmaceutical Sciences, College of Pharmacy, Riyadh Elm University Riyadh 11681 Saudi Arabia
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| | - Hong Jiang
- Department of Chemistry, College of Science, Huazhong Agricultural University Wuhan 430070 China
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University Wuhan 430070 People's Republic of China
| |
Collapse
|
21
|
Dabbagh Moghaddam F, Akbarzadeh I, Marzbankia E, Farid M, khaledi L, Reihani AH, Javidfar M, Mortazavi P. Delivery of melittin-loaded niosomes for breast cancer treatment: an in vitro and in vivo evaluation of anti-cancer effect. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-021-00085-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
Melittin, a peptide component of honey bee venom, is an appealing candidate for cancer therapy. In the current study, melittin, melittin-loaded niosome, and empty niosome had been optimized and the anticancer effect assessed in vitro on 4T1 and SKBR3 breast cell lines and in vivo on BALB/C inbred mice. "Thin-layer hydration method" was used for preparing the niosomes; different niosomal formulations of melittin were prepared and characterized in terms of morphology, size, polydispersity index, encapsulation efficiency, release kinetics, and stability. A niosome was formulated and loaded with melittin as a promising drug carrier system for chemotherapy of the breast cancer cells. Hemolysis, apoptosis, cell cytotoxicity, invasion and migration of selected concentrations of melittin, and melittin-loaded niosome were evaluated on 4T1 and SKBR3 cells using hemolytic activity assay, flow cytometry, MTT assay, soft agar colony assay, and wound healing assay. Real-time PCR was used to determine the gene expression. 40 BALB/c inbred mice were used; then, the histopathology, P53 immunohistochemical assay and estimate of renal and liver enzyme activity for all groups had been done.
Results
This study showed melittin-loaded niosome is an excellent substitute in breast cancer treatment due to enhanced targeting, encapsulation efficiency, PDI, and release rate and shows a high anticancer effect on cell lines. The melittin-loaded niosome affects the genes expression by studied cells were higher than other samples; down-regulates the expression of Bcl2, MMP2, and MMP9 genes while they up-regulate the expression of Bax, Caspase3 and Caspase9 genes. They have also enhanced the apoptosis rate and inhibited cell migration, invasion in both cell lines compared to the melittin samples. Results of histopathology showed reduce mitosis index, invasion and pleomorphism in melittin-loaded niosome. Renal and hepatic biomarker activity did not significantly differ in melittin-loaded niosome and melittin compared to healthy control. In immunohistochemistry, P53 expression did not show a significant change in all groups.
Conclusions
Our study successfully declares that melittin-loaded niosome had more anti-cancer effects than free melittin. This project has demonstrated that niosomes are suitable vesicle carriers for melittin, compare to the free form.
Collapse
|
22
|
Piperine: Chemical, biological and nanotechnological applications. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:185-213. [PMID: 33151173 DOI: 10.2478/acph-2021-0015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/31/2020] [Indexed: 01/19/2023]
Abstract
Piperine (PIP) is an alkaloid present in several species of piper, mainly Piper nigrum Linn. and P. longum, among other species. The present article provides a comprehensive review of PIP research in the last years concerning its chemical properties, synthesis, absorption, metabolism, bioavailability and toxicity. The reviewed PIP literature has shown many pharmacological properties, such as antidiabetic, antidiarrheal, antioxidant, antibacterial, and anti-parasitic activity of PIP. However, its low solubility and absorption make its application challenging. This review also includes advances in the development of nanosystems containing PIP, including liposomes, micelles, metal nanoparticles, nanofibers, polymeric nanoparticles, and solid-lipid nanoparticles. Finally, we discuss different in vitro and in vivo studies to evaluate the biological activity of this drug, as well as some methods for the synthesis of nanosystems and their physical characteristics.
Collapse
|
23
|
Zedan AMG, Sakran MI, Bahattab O, Hawsawi YM, Al-Amer O, Oyouni AAA, Nasr Eldeen SK, El-Magd MA. Oriental Hornet ( Vespa orientalis) Larval Extracts Induce Antiproliferative, Antioxidant, Anti-Inflammatory, and Anti-Migratory Effects on MCF7 Cells. Molecules 2021; 26:3303. [PMID: 34072744 PMCID: PMC8198668 DOI: 10.3390/molecules26113303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/31/2023] Open
Abstract
The use of insects as a feasible and useful natural product resource is a novel and promising option in alternative medicine. Several components from insects and their larvae have been found to inhibit molecular pathways in different stages of cancer. This study aimed to analyze the effect of aqueous and alcoholic extracts of Vespa orientalis larvae on breast cancer MCF7 cells and investigate the underlying mechanisms. Our results showed that individual treatment with 5% aqueous or alcoholic larval extract inhibited MCF7 proliferation but had no cytotoxic effect on normal Vero cells. The anticancer effect was mediated through (1) induction of apoptosis, as indicated by increased expression of apoptotic genes (Bax, caspase3, and p53) and decreased expression of the anti-apoptotic gene Bcl2; (2) suppression of intracellular reactive oxygen species; (3) elevation of antioxidant enzymes (CAT, SOD, and GPx) and upregulation of the antioxidant regulator Nrf2 and its downstream target HO-1; (4) inhibition of migration as revealed by in vitro wound healing assay and downregulation of the migration-related gene MMP9 and upregulation of the anti-migratory gene TIMP1; and (5) downregulation of inflammation-related genes (NFκB and IL8). The aqueous extract exhibited the best anticancer effect with higher antioxidant activities but lower anti-inflammatory properties than the alcoholic extract. HPLC analysis revealed the presence of several flavonoids and phenolic compounds with highest concentrations for resveratrol and naringenin in aqueous extract and rosmarinic acid in alcoholic extract. This is the first report to explain the intracellular pathway by which flavonoids and phenolic compounds-rich extracts of Vespa orientalis larvae could induce MCF7 cell viability loss through the initiation of apoptosis, activation of antioxidants, and inhibition of migration and inflammation. Therefore, these extracts could be used as adjuvants for anticancer drugs and as antioxidant and anti-inflammatory agents.
Collapse
Affiliation(s)
- Amina M. G. Zedan
- Biological and Environmental Sciences Department, Home Economic Faculty, Al Azhar University, Tanta 31732, Egypt;
| | - Mohamed I. Sakran
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia;
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta 31512, Egypt
| | - Omar Bahattab
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia;
| | - Yousef M. Hawsawi
- Research Center, King Faisal Specialist Hospital and Research Center, MBC J04, Jeddah 21499, Saudi Arabia;
- College of Medicine, Al-Faisal University, Riyadh 11533, Saudi Arabia
| | - Osama Al-Amer
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47512, Saudi Arabia;
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk 47512, Saudi Arabia;
| | - Atif A. A. Oyouni
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk 47512, Saudi Arabia;
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk 47512, Saudi Arabia
| | | | - Mohammed A. El-Magd
- Department of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
24
|
Moghaddam FD, Mortazavi P, Hamedi S, Nabiuni M, Roodbari NH. Apoptotic Effects of Melittin on 4T1 Breast Cancer Cell Line is associated with Up Regulation of Mfn1 and Drp1 mRNA Expression. Anticancer Agents Med Chem 2021; 20:790-799. [PMID: 32072917 DOI: 10.2174/1871520620666200211091451] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND PURPOSE Melittin, as the main ingredient of honeybee venom, that has shown anticancer properties. The present study aimed at investigating the cytotoxic impacts of melittin on 4T1 breast cancer cells. METHODS Hemolytic activity of different concentrations (0.125, 0.25, 0.5, 1, 2, 4, 8μg/ml) of melittin was assayed and then cytotoxicity of selected concentrations of melittin (2, 4, 8, 16, 32, and 64μg/ml), 2 and 4μg/ml of cisplatin and 0.513, 0.295 and 0.123μg/ml of doxorubicin was evaluated on 4T1 cells using MTT assay. We used Morphological evaluation and flow cytometric analysis was used. Real time PCR was also used to determine mRNA expression of Mfn1 and Drp1 genes. RESULTS All compounds showed anti-proliferative effects on the tumor cell line with different potencies. Melittin had higher cytotoxicity against 4T1 breast cancer cells (IC50= 32μg/ml-72h) and higher hemolytic activity (HD50= 1μg/ml), as compared to cisplatin and doxorubicin. Mellitin at 16 and 32μg/ml showed apoptotic effects on 4T1 cells according to the flow cytometric analysis. The Real time PCR analysis of Drp1 and Mfn1 expression in cells treated with 16μg/ml of melittin revealed an up-regulation in Drp1 and Mfn1 genes mRNA expression in comparison with control group. Treatment with 32μg/ml of melittin was also associated with a rise in mRNA expression of Drp1 and Mfn1 as compared to the control group. CONCLUSION The results of this study showed that melittin has anticancer effects on 4T1 cell lines in a dose and time dependent manner and can be a good candidate for further research on breast cancer treatment.
Collapse
Affiliation(s)
- Farnaz D Moghaddam
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pejman Mortazavi
- Department of Pathology, Faculty of Specialized Veterinary Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Somayeh Hamedi
- Department of Basic Science, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mohammad Nabiuni
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Nasim H Roodbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
25
|
Fattah A, Morovati A, Niknam Z, Mashouri L, Asadi A, Rizi ST, Abbasi M, Shakeri F, Abazari O. The Synergistic Combination of Cisplatin and Piperine Induces Apoptosis in MCF-7 Cell Line. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:1037-1047. [PMID: 34183962 PMCID: PMC8223570 DOI: 10.18502/ijph.v50i5.6121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Background Piperine is a natural compound obtained from the Piper nigrum that exhibits anti-proliferative and anti-cancer activity in cancer cell lines. We analyzed the cytotoxic effect of piperine combined with cisplatin compound in the human MCF-7 breast cancer cell line and the underlying mechanism. Methods The present in vitro study was performed on MCF-7 cell line in Jahrom University of Medical Sciences between, Jahrom, Iran from 2016 to 2017. Cultured MCF-7 cells were seeded into four groups: a control group (untreated group), a group treated with cisplatin, a group treated with piperine and a group treated with cisplatin and piperine. Cell viability was analyzed using the MTT assay method. Flow c-ytometric analysis was investigated for apoptosis. The mRNA and protein expression of the apoptotic regulators p53, Bcl-2, Bax, caspase 3 and caspase 9 were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting analysis. Results Piperine (20 and 30 μM) in combination with cisplatin (5, 10 and 15 μM) for 24 h synergistically inhibited cell viability of MCF-7 breast cancer cells more than piperine and cisplatin used alone. Synergistic anti-breast cancer activities cisplatin (5 μM) and piperine (20 μM) were via inducing apoptosis. Piperine (20 μM) and cisplatin (5 μM) for 24 h induce apoptosis strongly through reduction of Bcl-2 and increase of caspase 3, p53, caspase 9, and Bax. Conclusion Piperine in combination with cisplatin could trigger p53-mediated apoptosis more effective than cisplatin alone in MCF-7 breast cancer cells, reducing the toxic dose of cisplatin used in cancer chemotherapy.
Collapse
Affiliation(s)
- Abolfazl Fattah
- Research Center for Health Sciences and Technologies, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Morovati
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Niknam
- Student Research Committee, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapor University of Medical Sciences, Ahvaz, Iran
| | - Ladan Mashouri
- Department of Genetics, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| | - Amirhooman Asadi
- Veterinary Medicine, Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Shirin Tvangar Rizi
- Department of Biology, Faculty of Basic Sciences, Lorestan University, Khorramabad, Iran
| | - Mojtaba Abbasi
- Veterinary Medicine, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.,Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Fatemeh Shakeri
- Nursing and Midwifery Department, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Omid Abazari
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| |
Collapse
|
26
|
Kammath AJ, Nair B, P S, Nath LR. Curry versus cancer: Potential of some selected culinary spices against cancer with in vitro, in vivo, and human trials evidences. J Food Biochem 2021; 45:e13285. [PMID: 32524639 DOI: 10.1111/jfbc.13285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/03/2020] [Accepted: 04/22/2020] [Indexed: 02/05/2023]
Abstract
Spices are dietary agents with immense potential for cancer chemo-prevention. A wide variety of spices are extensively used as food flavoring agents which possess potent antioxidant, anti-inflammatory, and anticancer properties due to the presence of certain bio-active compounds in them. In vitro, in vivo studies and clinical trials of selected spices against various types of cancer are being specified in this review. Effect of certain putative dietary spices namely turmeric, clove, garlic, ginger, fennel, black cumin, cinnamon, pepper, saffron, rosemary, and chilli along with its role in cancer are being discussed. Literature search was conducted through PubMed, Google scholar, Science direct, and Scopus using the keywords "spice," "cancer," "natural medicine," "herbal compound," "bioactive compounds." About 4,000 published articles and 127 research papers were considered to grab the brief knowledge on spices and their anticancer potential on a predefined inclusion and exclusion criteria. PRACTICAL APPLICATION: Historically, spices and herbs are known for its traditional flavor, odor, and medicinal properties. Intensified risk of chronic and pervasive clinical conditions and increased cost of advanced drug treatments have developed a keen interest among researchers to explore the miscellaneous properties of herbal spices. Cancer is one of the deleterious causes of mortality affecting a huge number of populations worldwide. Arrays of cancer treatments including surgery, chemotherapy, and radiation therapy are used to compromise the disease but effective only when the size of the tumor is small. So, an effective treatment need to be developed that produces less side effects and herbal spices are found to be the promising agents. In this review, we illustrate about different in vitro, in vivo, and clinical studies of wide range of culinary spices having antineoplastic potential.
Collapse
Affiliation(s)
- Adithya J Kammath
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Bhagyalakshmi Nair
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Sreelekshmi P
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Lekshmi R Nath
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
27
|
Banerjee S, Katiyar P, Kumar V, Saini SS, Varshney R, Krishnan V, Sircar D, Roy P. Black pepper and piperine induce anticancer effects on leukemia cell line. Toxicol Res (Camb) 2021; 10:169-182. [PMID: 33884168 PMCID: PMC8045589 DOI: 10.1093/toxres/tfab001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/16/2020] [Accepted: 01/01/2021] [Indexed: 11/12/2022] Open
Abstract
The black pepper, most commonly used in Indian cuisines for ages, is considered as "king of spices." The present study evaluates the anticancer potential of black pepper and its main constituent, i.e. alkaloid piperine, against human leukemia cell line, K-562 cells. Gas chromatography-mass spectrometry (GC-MS) analysis confirmed the presence of piperine in black pepper extract. The methanolic extract of black pepper (BP-M) and pure piperine (PIP) showed a strong cytotoxic effect against this cell line. Both BP-M and PIP generated apoptotic bodies in K-562 cells and caused nuclear condensation as visualized by fluorescent microscopy, which was further confirmed by flow cytometry analysis. BP-M and PIP also generated reactive oxygen species in K-562 cells as established by flow cytometry. The translation of Bax, caspase-3 and caspase-9 genes was found to be upregulated with subsequent downregulation of Bcl-2 gene. The anti-proliferative effect of both BP-M and PIP was also observed by trypan blue staining and was further confirmed by the downregulated expression of proliferating cell nuclear antigen (PCNA). The molecular docking studies showed the binding of PIP with PCNA and Bcl-2 and supported the in vitro findings. The docking studies also proposed the binding of PIP to ADP binding pocket of Apaf-1 protein. Taken together, these findings signify the anticancer potential of both black pepper and PIP, thus proposing black pepper as a potent nutraceutical for preventing the progression of chronic myeloid leukemia.
Collapse
Affiliation(s)
- Somesh Banerjee
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Parul Katiyar
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Vijay Kumar
- Laboratory of Structural Microbiology, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Shashank Sagar Saini
- Plant Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ritu Varshney
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Vengadesan Krishnan
- Laboratory of Structural Microbiology, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Debabrata Sircar
- Plant Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
28
|
Selective Cytotoxicity of Piperine Over Multidrug Resistance Leukemic Cells. Molecules 2021; 26:molecules26040934. [PMID: 33578817 PMCID: PMC7916575 DOI: 10.3390/molecules26040934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 11/17/2022] Open
Abstract
Multidrug resistance (MDR) is the main challenge in the treatment of chronic myeloid leukemia (CML), and P-glycoprotein (P-gp) overexpression is an important mechanism involved in this resistance process. However, some compounds can selectively affect MDR cells, inducing collateral sensitivity (CS), which may be dependent on P-gp. The aim of this study was to investigate the effect of piperine, a phytochemical from black pepper, on CS induction in CML MDR cells, and the mechanisms involved. The results indicate that piperine induced CS, being more cytotoxic to K562-derived MDR cells (Lucena-1 and FEPS) than to K562, the parental CML cell. CS was confirmed by analysis of cell metabolic activity and viability, cell morphology and apoptosis. P-gp was partially required for CS induction. To investigate a P-gp independent mechanism, we analyzed the possibility that poly (ADP-ribose) polymerase-1 (PARP-1) could be involved in piperine cytotoxic effects. It was previously shown that only MDR FEPS cells present a high level of 24 kDa fragment of PARP-1, which could protect these cells against cell death. In the present study, piperine was able to decrease the 24 kDa fragment of PARP-1 in MDR FEPS cells. We conclude that piperine targets selectively MDR cells, inducing CS, through a mechanism that might be dependent or not on P-gp.
Collapse
|
29
|
Li Y, Li M, Wang Z, Wen M, Tang J. Identification of the metabolites of piperine via hepatocyte incubation and liquid chromatography combined with diode-array detection and high-resolution mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8947. [PMID: 32929805 DOI: 10.1002/rcm.8947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Piperine, an alkaloid isolated from Piper nigrum L., has been demonstrated to have many pharmacological effects and several health benefits. The aim of this work was to study the metabolic profiles of piperine in mouse, rat, dog and human hepatocytes. METHODS The biotransformation was carried out by incubating piperine with hepatocytes at 37°C. After incubation for 2 h, the samples were pretreated and analyzed using liquid chromatography combined with diode-array detection and high-resolution mass spectrometry (LC/DAD-HRMS). The structures of the metabolites were assigned through a comparison of their accurate masses and product ions with those of the parent compound. RESULTS A total of 20 metabolites were detected, and the structures were proposed. Piperine was metabolized through the following pathways: (a) oxidation to form a catechol derivative, which further underwent methylation, glucuronidation, glutathione (GSH) conjugation, and hydroxylation followed by opening of the piperidine ring; (b) hydroxylation to form a carbinolamine intermediate followed by opening of the piperidine ring and the formation of alcohol and acid derivatives; and (c) hydroxylation to form stable hydroxylated metabolites. In mouse, the formation of the catechol derivative (M12) and hydroxylation (M11) were the major metabolic pathways; in rat, the formation of the catechol derivative (M12) and glucuronidation (M9) were the main pathways; and in dog and human, the formation of the catechol derivative (M12) was the predominant pathway. No human-specific metabolite was observed. CONCLUSIONS This study provided some new information on the metabolic profiles of piperine, which should be of great importance in the study of the pharmacology and toxicity of this compound.
Collapse
Affiliation(s)
- Yanping Li
- Chemistry Biology and Environment, Yuxi Normal University, Yuxi, 653100, China
| | - Ming Li
- Chemistry Biology and Environment, Yuxi Normal University, Yuxi, 653100, China
| | - Zhandi Wang
- Chemistry Biology and Environment, Yuxi Normal University, Yuxi, 653100, China
| | - Min Wen
- School of Ethnic Medicine, Yunnan Minzu University, Kunming 650504, China
| | - Jie Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| |
Collapse
|
30
|
Turrini E, Sestili P, Fimognari C. Overview of the Anticancer Potential of the "King of Spices" Piper nigrum and Its Main Constituent Piperine. Toxins (Basel) 2020; 12:E747. [PMID: 33256185 PMCID: PMC7761056 DOI: 10.3390/toxins12120747] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
The main limits of current anticancer therapy are relapses, chemoresistance, and toxic effects resulting from its poor selectivity towards cancer cells that severely impair a patient's quality of life. Therefore, the discovery of new anticancer drugs remains an urgent challenge. Natural products represent an excellent opportunity due to their ability to target heterogenous populations of cancer cells and regulate several key pathways involved in cancer development, and their favorable toxicological profile. Piper nigrum is one of the most popular spices in the world, with growing fame as a source of bioactive molecules with pharmacological properties. The present review aims to provide a comprehensive overview of the anticancer potential of Piper nigrum and its major active constituents-not limited to the well-known piperine-whose undeniable anticancer properties have been reported for different cancer cell lines and animal models. Moreover, the chemosensitizing effects of Piper nigrum in association with traditional anticancer drugs are depicted and its toxicological profile is outlined. Despite the promising results, human studies are missing, which are crucial for supporting the efficacy and safety of Piper nigrum and its single components in cancer patients.
Collapse
Affiliation(s)
- Eleonora Turrini
- Department for Life Quality Studies, Alma Mater Studiorum—Università di Bologna, corso d’Augusto 237, 47921 Rimini, Italy;
| | - Piero Sestili
- Department of Biomolecular Sciences (DISB), Università degli Studi di Urbino Carlo Bo, Via I Maggetti 26, 61029 Urbino, Italy;
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum—Università di Bologna, corso d’Augusto 237, 47921 Rimini, Italy;
| |
Collapse
|
31
|
A Review of Malaysian Herbal Plants and Their Active Constituents with Potential Therapeutic Applications in Sepsis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8257817. [PMID: 33193799 PMCID: PMC7641701 DOI: 10.1155/2020/8257817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
Sepsis refers to organ failure due to uncontrolled body immune responses towards infection. The systemic inflammatory response triggered by pathogen-associated molecular patterns (PAMPs), such as lipopolysaccharide (LPS) from Gram-negative bacteria, is accompanied by the release of various proinflammatory mediators that can lead to organ damage. The progression to septic shock is even more life-threatening due to hypotension. Thus, sepsis is a leading cause of death and morbidity globally. However, current therapies are mainly symptomatic treatment and rely on the use of antibiotics. The lack of a specific treatment demands exploration of new drugs. Malaysian herbal plants have a long history of usage for medicinal purposes. A total of 64 Malaysian plants commonly used in the herbal industry have been published in Malaysian Herbal Monograph 2015 and Globinmed website (http://www.globinmed.com/). An extensive bibliographic search in databases such as PubMed, ScienceDirect, and Scopus revealed that seven of these plants have antisepsis properties, as evidenced by the therapeutic effect of their extracts or isolated compounds against sepsis-associated inflammatory responses or conditions in in vitro or/and in vivo studies. These include Andrographis paniculata, Zingiber officinale, Curcuma longa, Piper nigrum, Syzygium aromaticum, Momordica charantia, and Centella asiatica. Among these, Z. officinale is the most widely studied plant and seems to have the highest potential for future therapeutic applications in sepsis. Although both extracts as well as active constituents from these herbal plants have demonstrated potential antisepsis activity, the activity might be primarily contributed by the active constituent(s) from each of these plants, which are andrographolide (A. paniculata), 6-gingerol and zingerone (Z. officinale), curcumin (C. longa), piperine and pellitorine (P. nigrum), biflorin (S. aromaticum), and asiaticoside, asiatic acid, and madecassoside (C. asiatica). These active constituents have shown great antisepsis effects, and further investigations into their clinical therapeutic potential may be worthwhile.
Collapse
|
32
|
Haq IU, Imran M, Nadeem M, Tufail T, Gondal TA, Mubarak MS. Piperine: A review of its biological effects. Phytother Res 2020; 35:680-700. [PMID: 32929825 DOI: 10.1002/ptr.6855] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/18/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023]
Abstract
Medicinal plants have been used for years as a source of food, spices, and, in traditional medicine, as a remedy to numerous diseases. Piper nigrum, belonging to the family Piperaceae is one of the most widely used spices all over the world. It has a distinct sharp flavor attributed to the presence of the phytochemical, piperine. Apart from its use as a spice, P. nigrum is frequently used for medicinal, preservation, and perfumery purposes. Black pepper contains 2-7.4% of piperine, varying in content is associated with the pepper plant. Piperine displays numerous pharmacological effects such as antiproliferative, antitumor, antiangiogenesis, antioxidant, antidiabetic, anti-obesity, cardioprotective, antimicrobial, antiaging, and immunomodulatory effects in various in vitro and in vivo experimental trials. Furthermore, piperine has also been documented for its hepatoprotective, anti-allergic, anti-inflammatory, and neuroprotective properties. This review highlights and discusses the medicinal and health-promoting effects of piperine, along with possible mechanisms of its action in health promotion and disease prevention. In addition, the present review summarizes the recent literature related to piperine as a therapeutic agent against several diseases.
Collapse
Affiliation(s)
- Iahtisham-Ul Haq
- Department of Diet and Nutritional Sciences, Faculty of Health and Allied Sciences, Imperial College of Business Studies, Lahore, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, Comsats University Islamabad, Vehari, Pakistan
| | - Tabussam Tufail
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Tanweer A Gondal
- School of Exercise and Nutrition, Faculty of Health, Deakin University, Geelong, Victoria, Australia
| | | |
Collapse
|
33
|
(-)-Kusunokinin inhibits breast cancer in N-nitrosomethylurea-induced mammary tumor rats. Eur J Pharmacol 2020; 882:173311. [PMID: 32619673 DOI: 10.1016/j.ejphar.2020.173311] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 01/10/2023]
Abstract
Natural and synthetic (-)-kusunokinin inhibited breast cancer, colon cancer and cholangiocarcinoma cells at the G2/M phase and induced apoptosis. However, there is no report on the action and adverse effects of (-)-kusunokinin in animal models. In this study, we investigated the cytotoxic effect of (-)-kusunokinin from Piper nigrum on cancer cells. NMU-induced rat mammary tumors, an ER positive breast cancer model, were treated with (-)-kusunokinin. Proteins of interest related to cell cycle, angiogenesis, migration and signaling proteins were detected in tumor tissues. Results showed that (-)-kusunokinin exhibited strong cytotoxicity against breast, colon and lung cancer cells and caused low toxicity against normal fibroblast cells. For in vivo study, 7.0 mg/kg and 14.0 mg/kg of (-)-kusunokinin reduced tumor growth without side effects on body weight, internal organs and bone marrow. Combination of (-)-kusunokinin with a low effective dose of doxorubicin significantly inhibited tumor growth and provoked cell death in cancer tissues. Mechanistically, 14.0 mg/kg of (-)-kusunokinin decreased cell proliferation (c-Src, PI3K, Akt, p-Erk1/2 and c-Myc), cell cycle (E2f-1, cyclin B1 and CDK1), and metastasis (E-cadherin, MMP-2 and MMP-9) proteins in tumor tissues, which supports its anticancer effect. We further confirmed the antimigration effect of (-)-kusunokinin; the results show that this compound inhibited breast cancer cell (MCF-7) migration in a dose-dependent manner. In conclusion, the results suggest that 14 mg/kg of (-)-kusunokinin inhibited tumors through the reduction of signaling proteins and their downstream molecules. Therefore, (-)-kusunokinin becomes an intriguing candidate for cancer treatment as it provides a strong potency in cancer inhibition.
Collapse
|
34
|
Graidist P, Tedasen A, Khoka A, Madla S, Sriwiriyajan S. Anticancer effects of piperine-free Piper nigrum extract on cholangiocarcinoma cell lines. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_288_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
35
|
XIAP as a Target of New Small Organic Natural Molecules Inducing Human Cancer Cell Death. Cancers (Basel) 2019; 11:cancers11091336. [PMID: 31505859 PMCID: PMC6770071 DOI: 10.3390/cancers11091336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022] Open
Abstract
X-linked inhibitor of apoptosis protein (XIAP) is an emerging crucial therapeutic target in cancer. We report on the discovery and characterisation of small organic molecules from Piper genus plants exhibiting XIAP antagonism, namely erioquinol, a quinol substituted in the 4-position with an alkenyl group and the alkenylphenols eriopodols A–C. Another isolated compound was originally identified as gibbilimbol B. Erioquinol was the most potent inhibitor of human cancer cell viability when compared with gibbilimbol B and eriopodol A was listed as intermediate. Gibbilimbol B and eriopodol A induced apoptosis through mitochondrial permeabilisation and caspase activation while erioquinol acted on cell fate via caspase-independent/non-apoptotic mechanisms, likely involving mitochondrial dysfunctions and aberrant generation of reactive oxygen species. In silico modelling and molecular approaches suggested that all molecules inhibit XIAP by binding to XIAP-baculoviral IAP repeat domain. This demonstrates a novel aspect of XIAP as a key determinant of tumour control, at the molecular crossroad of caspase-dependent/independent cell death pathway and indicates molecular aspects to develop tumour-effective XIAP antagonists.
Collapse
|
36
|
Chelora J, Zhang J, Wan Y, Cui X, Zhao J, Meng XM, Wang P, Lee CS. Plant-Derived Single-Molecule-Based Nanotheranostics for Photoenhanced Chemotherapy and Ferroptotic-Like Cancer Cell Death. ACS APPLIED BIO MATERIALS 2019; 2:2643-2649. [DOI: 10.1021/acsabm.9b00311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jipsa Chelora
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- Nano-organic Photoelectronic Laboratory (NOPEL), TIPC, CAS-CityU Joint Laboratory, Dongguan, Guangdong 523000, P. R. China
| | - Jinfeng Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yingpeng Wan
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- Nano-organic Photoelectronic Laboratory (NOPEL), TIPC, CAS-CityU Joint Laboratory, Dongguan, Guangdong 523000, P. R. China
| | - Xiao Cui
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- Nano-organic Photoelectronic Laboratory (NOPEL), TIPC, CAS-CityU Joint Laboratory, Dongguan, Guangdong 523000, P. R. China
| | - Junfang Zhao
- Nano-organic Photoelectronic Laboratory (NOPEL), TIPC, CAS-CityU Joint Laboratory, Dongguan, Guangdong 523000, P. R. China
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiang-Min Meng
- Nano-organic Photoelectronic Laboratory (NOPEL), TIPC, CAS-CityU Joint Laboratory, Dongguan, Guangdong 523000, P. R. China
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Pengfei Wang
- Nano-organic Photoelectronic Laboratory (NOPEL), TIPC, CAS-CityU Joint Laboratory, Dongguan, Guangdong 523000, P. R. China
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- Nano-organic Photoelectronic Laboratory (NOPEL), TIPC, CAS-CityU Joint Laboratory, Dongguan, Guangdong 523000, P. R. China
| |
Collapse
|
37
|
Salehi B, Zakaria ZA, Gyawali R, Ibrahim SA, Rajkovic J, Shinwari ZK, Khan T, Sharifi-Rad J, Ozleyen A, Turkdonmez E, Valussi M, Tumer TB, Monzote Fidalgo L, Martorell M, Setzer WN. Piper Species: A Comprehensive Review on Their Phytochemistry, Biological Activities and Applications. Molecules 2019; 24:E1364. [PMID: 30959974 PMCID: PMC6479398 DOI: 10.3390/molecules24071364] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/25/2019] [Accepted: 04/03/2019] [Indexed: 12/23/2022] Open
Abstract
Piper species are aromatic plants used as spices in the kitchen, but their secondary metabolites have also shown biological effects on human health. These plants are rich in essential oils, which can be found in their fruits, seeds, leaves, branches, roots and stems. Some Piper species have simple chemical profiles, while others, such as Piper nigrum, Piper betle, and Piper auritum, contain very diverse suites of secondary metabolites. In traditional medicine, Piper species have been used worldwide to treat several diseases such as urological problems, skin, liver and stomach ailments, for wound healing, and as antipyretic and anti-inflammatory agents. In addition, Piper species could be used as natural antioxidants and antimicrobial agents in food preservation. The phytochemicals and essential oils of Piper species have shown strong antioxidant activity, in comparison with synthetic antioxidants, and demonstrated antibacterial and antifungal activities against human pathogens. Moreover, Piper species possess therapeutic and preventive potential against several chronic disorders. Among the functional properties of Piper plants/extracts/active components the antiproliferative, anti-inflammatory, and neuropharmacological activities of the extracts and extract-derived bioactive constituents are thought to be key effects for the protection against chronic conditions, based on preclinical in vitro and in vivo studies, besides clinical studies. Habitats and cultivation of Piper species are also covered in this review. In this current work, available literature of chemical constituents of the essential oils Piper plants, their use in traditional medicine, their applications as a food preservative, their antiparasitic activities and other important biological activities are reviewed.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran.
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Rabin Gyawali
- Department of Food and Nutritional Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA.
| | - Salam A Ibrahim
- Department of Food and Nutritional Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA.
| | - Jovana Rajkovic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Medical Faculty, University of Belgrade, 11129 Belgrade, Serbia.
| | - Zabta Khan Shinwari
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Tariq Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Javad Sharifi-Rad
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan 35198-99951, Iran.
| | - Adem Ozleyen
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, 17020 Canakkale, Turkey.
| | - Elif Turkdonmez
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, 17020 Canakkale, Turkey.
| | - Marco Valussi
- European Herbal and Traditional Medicine Practitioners Association (EHTPA), 25 Lincoln Close, GL20 5TY Tewkesbury, UK.
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, 17020 Canakkale, Turkey.
| | - Lianet Monzote Fidalgo
- Parasitology Department, Institute of Tropical Medicine "Pedro Kouri", 10400 Havana, Cuba.
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, 4070386 Concepcion, VIII-Bio Bio Region, Chile.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA.
| |
Collapse
|
38
|
Quijia CR, Chorilli M. Characteristics, Biological Properties and Analytical Methods of Piperine: A Review. Crit Rev Anal Chem 2019; 50:62-77. [DOI: 10.1080/10408347.2019.1573656] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Christian Rafael Quijia
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
39
|
Yang JY, Zhang J, Zhou G. Black pepper and its bioactive constituent piperine: promising therapeutic strategies for oral lichen planus. Inflammopharmacology 2018; 27:5-13. [PMID: 30343451 DOI: 10.1007/s10787-018-0540-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022]
Abstract
Oral lichen planus (OLP) is a common T cell-mediated chronic inflammatory disease with malignant potential and unclear etiology. The present study suggests that antigen-specific mechanisms in which dentritic cells, T lymphocytes and NF-κB signaling pathway play critical roles, are involved in the pathogenesis of OLP. Additionally, it has been indicated that altered expression of cyclooxygenase 2 (COX-2) and imbalanced oxidant-antioxidant status as well as psychological issue may act as promoters to the development of OLP. Therapies for OLP are primarily aimed to control symptoms and a specific cure is not yet available. Black pepper and its principle bioactive compound piperine have been reported to possess remarkable pharmacological activities. Not only has piperine been evidenced to exhibit repressive effects on the maturation of dentritic cells, the proliferation, activation and function of T lymphocytes as well as the NF-κB signaling pathway, but also to suppress the overproduction of COX-2 and weaken the oxidative stress. Furthermore, piperine might be a possible agent for alleviating psychological disorders and preventing carcinogenesis. Given all these into consideration, piperine may be a novel and effective therapeutic strategy for OLP.
Collapse
Affiliation(s)
- Jing-Ya Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (HubeiMOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Jing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (HubeiMOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Luoyu Road 237, Wuhan, 430079, People's Republic of China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (HubeiMOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China. .,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Luoyu Road 237, Wuhan, 430079, People's Republic of China.
| |
Collapse
|
40
|
Badawy AA, El-Magd MA, AlSadrah SA. Therapeutic Effect of Camel Milk and Its Exosomes on MCF7 Cells In Vitro and In Vivo. Integr Cancer Ther 2018; 17:1235-1246. [PMID: 29986606 PMCID: PMC6247558 DOI: 10.1177/1534735418786000] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background/Objectives: In the Middle East, people consume camel milk regularly as it is believed to improve immunity against diseases and decrease the risk for cancer. Recently, it was noted that most of the beneficial effects of milk come from their nanoparticles, especially exosomes. Herein, we evaluated the anticancer potential of camel milk and its exosomes on MCF7 breast cancer cells (in vitro and in vivo) and investigated the possible underlying molecular mechanism of action. Methods/Results: Administration of camel milk (orally) and its exosomes (orally and by local injection) decreased breast tumor progression as evident by (a) higher apoptosis (indicated by higher DNA fragmentation, caspase-3 activity, Bax gene expression, and lower Bcl2 gene expression), (b) remarkable inhibition of oxidative stress (decrease in MDA levels and iNOS gene expression); (c) induction of antioxidant status (increased activities of SOD, CAT, and GPX), (d) notable reduction in expression of inflammation-(IL1b, NFκB), angiogenesis-(VEGF) and metastasis-(MMP9, ICAM1) related genes; and (e) higher immune response (high number of CD+4, CD+8, NK1.1 T cells in spleen). Conclusions: Overall, administration of camel milk–derived exosomes showed better anticancer effect, but less immune response, than treatment by camel milk. Moreover, local injection of exosomes led to better improvement than oral administration. These findings suggest that camel milk and its exosomes have anticancer effect possibly through induction of apoptosis and inhibition of oxidative stress, inflammation, angiogenesis and metastasis in the tumor microenvironment. Thus, camel milk and its exosomes could be used as an anticancer agent for cancer treatment.
Collapse
Affiliation(s)
- Abdelnaser A Badawy
- 1 Department of Biochemistry, Faculty of Medicin, Northern Border University, Arar, Saudi Arabia.,2 Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohammed A El-Magd
- 3 Department of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Sana A AlSadrah
- 4 Department of Preventive Medicine, Governmental Hospital Khobar, Health Centers in Khobar, Ministry of Health, Saudi Arabia
| |
Collapse
|
41
|
Khamis AAA, Ali EMM, El-Moneim MAA, Abd-Alhaseeb MM, El-Magd MA, Salim EI. Hesperidin, piperine and bee venom synergistically potentiate the anticancer effect of tamoxifen against breast cancer cells. Biomed Pharmacother 2018; 105:1335-1343. [PMID: 30021371 DOI: 10.1016/j.biopha.2018.06.105] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 02/07/2023] Open
Abstract
Despite advances in cancer treatment, breast cancer remains one of the main life threatening diseases in women. Most anti-breast cancer drugs cause severe health complications and multidrug resistance. Although, some natural products, such as hesperidin (Hes), piperine (Pip) and bee venom (BV), showed anti-breast cancer effect when used separately, their combined effect together or with the anti-cancer drug tamoxifen (Tam) has not yet been studied. Herein, we hypothesized that these three natural products could potentiate the therapeutic effect of Tam when used together. First, we studied the cytotoxic effect of Hes, Pip, and BV on MCF7 and T47D cells using MTT assay and found reasonable IC50 comparable to that of Tam. Second, we checked the effect of all combinations (n = 67 for each cell line, prepared as non-constant ratio from fractions of IC50 of the four compounds) and found enhanced anti-proliferative effects on MCF7 and T47D and synergistic effect, revealed by combination index (CI) values below one. Next, the best 5 combinations with lowest Tam doses and CI but with highest cell death were selected for further molecular analysis in comparison to single-drug treatment. All single- and combined-treated groups showed a significant increase in apoptosis (indicated by upregulated mRNA level of the pro-apoptotic marker Bax and downregulated mRNA level of the anti-apoptotic marker Bcl2) and a significant decrease in mRNA level of the two breast cancer related receptors EGFR and ERα, with the best effect in combined groups especially that contained the 4 compounds, as compared to vehicle-treated group. Moreover, Pip, BV and all combinations, except Tam + Hes group, arrested MCF7 and T47D in G2/M phase of cell cycle, while Tam and/or Hes caused G0/G1 phase arrest. These results indicate that Hes, Pip and BV synergistically enhance the anti-cancer effect of Tam and could be used as safe adjuvant/vehicle to Tam in treatment of breast cancer after further confirmatory in vivo investigations.
Collapse
Affiliation(s)
- Abeer A A Khamis
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Ehab M M Ali
- Biochemistry Division, Chemistry Department, Faculty of Science, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Mohamed A Abd El-Moneim
- Biochemistry Department, Faculty of Dentistry, Sinai University, Al-Arish, North Sinai, Egypt.
| | - Mohammad M Abd-Alhaseeb
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Mohammed Abu El-Magd
- Anatomy Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt.
| | - Elsayed I Salim
- Zoology Department, Faculty of Science, Tanta University, Tanta
| |
Collapse
|
42
|
Kunnumakkara AB, Sailo BL, Banik K, Harsha C, Prasad S, Gupta SC, Bharti AC, Aggarwal BB. Chronic diseases, inflammation, and spices: how are they linked? J Transl Med 2018; 16:14. [PMID: 29370858 PMCID: PMC5785894 DOI: 10.1186/s12967-018-1381-2] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/10/2018] [Indexed: 01/17/2023] Open
Abstract
Extensive research within the last several decades has revealed that the major risk factors for most chronic diseases are infections, obesity, alcohol, tobacco, radiation, environmental pollutants, and diet. It is now well established that these factors induce chronic diseases through induction of inflammation. However, inflammation could be either acute or chronic. Acute inflammation persists for a short duration and is the host defense against infections and allergens, whereas the chronic inflammation persists for a long time and leads to many chronic diseases including cancer, cardiovascular diseases, neurodegenerative diseases, respiratory diseases, etc. Numerous lines of evidence suggest that the aforementioned risk factors induced cancer through chronic inflammation. First, transcription factors NF-κB and STAT3 that regulate expression of inflammatory gene products, have been found to be constitutively active in most cancers; second, chronic inflammation such as pancreatitis, prostatitis, hepatitis etc. leads to cancers; third, activation of NF-κB and STAT3 leads to cancer cell proliferation, survival, invasion, angiogenesis and metastasis; fourth, activation of NF-κB and STAT3 leads to resistance to chemotherapy and radiation, and hypoxia and acidic conditions activate these transcription factors. Therefore, targeting these pathways may provide opportunities for both prevention and treatment of cancer and other chronic diseases. We will discuss in this review the potential of various dietary agents such as spices and its components in the suppression of inflammatory pathways and their roles in the prevention and therapy of cancer and other chronic diseases. In fact, epidemiological studies do indicate that cancer incidence in countries such as India where spices are consumed daily is much lower (94/100,000) than those where spices are not consumed such as United States (318/100,000), suggesting the potential role of spices in cancer prevention.
Collapse
Affiliation(s)
- Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| | - Bethsebie L Sailo
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sahdeo Prasad
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Subash Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | | |
Collapse
|
43
|
Piperonylic acid stimulates keratinocyte growth and survival by activating epidermal growth factor receptor (EGFR). Sci Rep 2018; 8:162. [PMID: 29317682 PMCID: PMC5760518 DOI: 10.1038/s41598-017-18361-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/11/2017] [Indexed: 01/22/2023] Open
Abstract
Epidermal growth factor (EGF) stimulates cell growth, proliferation, and survival. The biological benefits of EGF have been utilized in medical uses for improving wound healing as well as in today’s skin cosmetics. EGF has been found in urine, saliva, milk, and plasma, but its efficient isolation remains a difficult task. With technical advances, recombinant protein purification technique has been used for EGF production. However, the recombinant EGF is still expensive and keeping it with stable activity is difficult to be used widely. Thus, a molecule that can mimic the EGF activity would be a useful alternative of EGF. Herein, we have discovered that a natural small molecule piperonylic acid shows EGF-like activity in HaCaT keratinocytes. Piperonylic acid induced EGF receptor (EGFR) activation and resulted in serial activation of the downstream modulators. The activated signaling pathway eventually up-regulated gene expression of egr-1, c-fos, c-jun, and c-myc, which are involved in cell growth and survival. Moreover, piperonylic acid showed promoting role in keratinocyte growth and survival from UVB-induced cellular damages. This study has revealed the EGF-like activity of piperonylic acid and proposed that the piperonylic acid could be a promising component for skin wound healing agents or cosmetic ingredient.
Collapse
|
44
|
Grinevicius VM, Andrade KS, Ourique F, Micke GA, Ferreira SR, Pedrosa RC. Antitumor activity of conventional and supercritical extracts from Piper nigrum L. cultivar Bragantina through cell cycle arrest and apoptosis induction. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2017.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Buranrat B, Mairuae N, Konsue A. Cratoxy formosum leaf extract inhibits proliferation and migration of human breast cancer MCF-7 cells. Biomed Pharmacother 2017; 90:77-84. [PMID: 28343074 DOI: 10.1016/j.biopha.2017.03.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 12/12/2022] Open
Abstract
In this study we investigated how Cratoxy formosum (CF) leaf extract affects the viability and migration of human breast cancer cells including the mechanism(s) responsible. Our results showed that CF leaf extract strongly induced MCF-7 cell death in a concentration- and time-dependent manner, with IC50 values of 85.70±4.52μg/mL and 53.74±3.02μg/mL at 24h and 48h, respectively. Additionally, CF leaf extract potentiated the activity of 4 anticancer drugs with the greatest synergy occurring between CF and 5-FU. CF leaf extract also caused a dose-dependent decrease in colony forming ability with IC50 values of 36.37+1.80 μg/mL and cell migration, with IC50 values of 43.68±0.86μg/mL. Moreover, CF significantly induced ROS formation, increased caspase 3 activities, and reduced the mitochondrial membrane potential, leading to cancer cell apoptosis and cell death. In addition, the extract inhibited cancer cell migration at 25μg/mL by reducing MMP 2 and MMP 9 protein expression. Moreover, CF leaf extracts strongly decreased expression of the cell cycle regulatory protein Rac1 and downstream protein, cdk6. CF leaf extract significantly stimulated p21 and this correlated with a reduction in cyclin D1 protein levels. In summary, CF leaf extract can inhibit cell proliferation, induce cell apoptosis, and reduce cell migration in the MCF-7 cell line. It could also be beneficial for enhancing the activity of anticancer drugs used to treat breast cancer.
Collapse
Affiliation(s)
- Benjaporn Buranrat
- Faculty of Medicine, Mahasarakham University, Muang District, Maha Sarakham 44000, Thailand.
| | - Nootchanat Mairuae
- Faculty of Medicine, Mahasarakham University, Muang District, Maha Sarakham 44000, Thailand
| | - Ampa Konsue
- Applied Thai Traditional Medicine, Faculty of Medicine, Mahasarakham University, Muang District, Maha Sarakham 44000, Thailand
| |
Collapse
|
46
|
Guidetti G, Di Cerbo A, Giovazzino A, Rubino V, Palatucci AT, Centenaro S, Fraccaroli E, Cortese L, Bonomo MG, Ruggiero G, Canello S, Terrazzano G. In Vitro Effects of Some Botanicals with Anti-Inflammatory and Antitoxic Activity. J Immunol Res 2016; 2016:5457010. [PMID: 27597982 PMCID: PMC5002466 DOI: 10.1155/2016/5457010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 12/15/2022] Open
Abstract
Several extrinsic factors, like drugs and chemicals, can foster autoimmunity. Tetracyclines, in particular oxytetracycline (OTC), appear to correlate with the emergence of immune-mediated diseases. Accumulation of OTC, the elective drug for gastrointestinal and respiratory infectious disease treatment in broiler chickens, was reported in chicken edible tissues and could represent a potential risk for pets and humans that could assume this antibiotic as residue in meat or in meat-derived byproducts. We investigated the in vitro anti-inflammatory properties of a pool of thirteen botanicals as a part of a nutraceutical diet, with proven immunomodulatory activity. In addition, we evaluated the effect of such botanicals in contrasting the in vitro proinflammatory toxicity of OTC. Our results showed a significant reduction in interferon- (INF-) γ production by human and canine lymphocytes in presence of botanicals ((⁎) p < 0.05). Increased INF-γ production, dependent on 24-hour OTC-incubation of T lymphocytes, was significantly reduced by the coincubation with Haematococcus pluvialis, with Glycine max, and with the mix of all botanicals ((⁎) p < 0.05). In conclusion, the use of these botanicals was shown to be able to contrast OTC-toxicity and could represent a new approach for the development of functional foods useful to enhance the standard pharmacological treatment in infections as well as in preventing or reducing the emergence of inflammatory diseases.
Collapse
Affiliation(s)
- Gianandrea Guidetti
- Division of Research and Development, SANYpet SpA, 35023 Bagnoli di Sopra, Italy
| | - Alessandro Di Cerbo
- School of Specialization in Clinical Biochemistry, “G. d'Annunzio” University, 66100 Chieti, Italy
| | - Angela Giovazzino
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Valentina Rubino
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | | | - Sara Centenaro
- Division of Research and Development, SANYpet SpA, 35023 Bagnoli di Sopra, Italy
| | - Elena Fraccaroli
- Division of Research and Development, SANYpet SpA, 35023 Bagnoli di Sopra, Italy
| | - Laura Cortese
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80100 Naples, Italy
| | | | - Giuseppina Ruggiero
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Sergio Canello
- Division of Research and Development, SANYpet SpA, 35023 Bagnoli di Sopra, Italy
| | - Giuseppe Terrazzano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|