1
|
Saxena M, Jadhav EB, Sankhla MS, Singhal M, Parihar K, Awasthi KK, Awasthi G. Bintaro (Cerbera odollam and Cerbera manghas): an overview of its eco-friendly use, pharmacology, and toxicology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:71970-71983. [PMID: 36044149 PMCID: PMC9428885 DOI: 10.1007/s11356-022-22585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/12/2022] [Indexed: 06/12/2023]
Abstract
Bintaro is a tropical mangrove plant often used as a shade tree found in Asia, Australia, Madagascar, and the Islands of the Western Pacific Ocean. The word Bintaro is also often pinned to its closest relative species, the Cerbera odollam. Flower color is one of the distinguishing features between these two species. Human poisoning with the cardiotoxic plant Bintaro is common in Southeast Asia because it bears a fruit that yields a powerful poison that has been used for suicide and homicide, hence it is also called the "Indian suicide tree". The seeds of Bintaro contain Cerberin, a cardiac glycoside toxin of the heart that blocks the calcium ion channels in heart muscles, resulting in disruption of the heartbeat most often fatally. The bio-active compound in the kernels of Bintaro varies due to which plant possesses other properties as well. The plant may also be used for medicinal purposes as it shows many pharmaceutical properties. The seeds of the plant have auspicious anticancer properties through apoptotic activity and the leaf extract of the plant was screened for its antioxidant activities. In addition, it is also used as an insecticide, pesticide, or antifungal agent. This review highlights the Pharmaceutical, toxicological, and environmentally friendly approaches of Bintaro.
Collapse
Affiliation(s)
- Mansi Saxena
- Department of Forensic Science, Vivekananda Global University, Jaipur, India
| | - Ekta B. Jadhav
- Department of Forensic Chemistry and Toxicology, Government Institute of Forensic Science Aurangabad, Maharashtra, India
| | | | - Muskan Singhal
- Department of Forensic Science, Vivekananda Global University, Jaipur, India
| | - Kapil Parihar
- State Forensic Science Laboratory, Jaipur, Rajasthan India
| | - Kumud Kant Awasthi
- Department of Life Sciences, Vivekananda Global University, Jaipur, India
| | - Garima Awasthi
- Department of Life Sciences, Vivekananda Global University, Jaipur, India
| |
Collapse
|
2
|
Nuciferine attenuates lipopolysaccharide-stimulated inflammatory responses by inhibiting p38 MAPK/ATF2 signaling pathways. Inflammopharmacology 2022; 30:2373-2383. [PMID: 36219321 DOI: 10.1007/s10787-022-01075-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/13/2022] [Indexed: 11/05/2022]
Abstract
Nuciferine, isolated from Nelumbo nucifera (commonly known as lotus) leaves, has been shown to have beneficial effects, including antioxidant, anti-obesity, anti-diabetic, and anti-inflammatory properties. However, little is known about the mechanism of nuciferine action on the inflammatory response. This study aimed to investigate the anti-inflammatory effects of nuciferine and its underlying molecular mechanisms in lipopolysaccharide (LPS)-stimulated murine macrophages. In this study, nuciferine reduced LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production and mRNA expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2. Nuciferine also decreased the production of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. Furthermore, nuciferine inhibited the LPS-mediated transcriptional activity of nuclear factor (NF)-κB and activator protein (AP)-1, and the nuclear translocation of NF-κB p65 and activating transcription factor 2 (ATF2), an AP-1 subunit. Nuciferine also decreased the phosphorylation of IκB kinase (IKK), inhibitor of NF-κB (IκB), NF-κB, mitogen-activated protein kinase 3 (MKK3), MKK6, p38 mitogen-activated protein kinase (MAPK), and ATF2. Overall, our findings suggest that nuciferine may exert anti-inflammatory effects in LPS-induced macrophages by inhibiting the NF-κB and p38 MAPK/ATF2 signaling pathways.
Collapse
|
3
|
Anti-Inflammatory Functions of Methanol Extract from Malus baccata (L.) Borkh. Leaves and Shoots by Targeting the NF-κB Pathway. PLANTS 2022; 11:plants11050646. [PMID: 35270116 PMCID: PMC8912290 DOI: 10.3390/plants11050646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023]
Abstract
Malus baccata (L.) Borkh. is a widely used medical plant in Asia. Since the anti-inflammatory mechanism of this plant is not fully understood, the aim of this study was to explore the anti-inflammatory function and mechanism of Malus baccata (L.) Borkh. methanol extract (Mb-ME). For in vitro experiments, nitric oxide production assay, PCR, overexpression strategy, immunoblotting, luciferase reporter assay, and immunoprecipitation were employed to explore the molecular mechanism and the target proteins of Mb-ME. For in vivo experiments, an HCl/EtOH-induced gastritis mouse model was used to confirm the anti-inflammatory function. Mb-ME showed a strong ability to inhibit the production of nitric oxide and the expression of inflammatory genes. Mb-ME decreased NF-κB luciferase activity mediated by MyD88 and TRIF. Moreover, Mb-ME blocked the activation of Src, Syk, p85, Akt, p50, p60, IKKα/β, and IκBα in LPS-induced RAW264.7 cells. Overexpression and immunoprecipitation analyses suggested Syk and Src as the target enzymes of Mb-ME. In vitro results showed that Mb-ME could alleviate gastritis and relieve the protein expression of p-Src, p-Syk, and COX-2, as well as the gene expression of COX-2 and TNF-α. In summary, this study implied that Mb-ME performs an anti-inflammatory role by suppressing Syk and Src in the NF-κB signaling pathway, both in vivo and in vitro.
Collapse
|
4
|
Rahmawati L, Park SH, Kim DS, Lee HP, Aziz N, Lee CY, Kim SA, Jang SG, Kim DS, Cho JY. Anti-Inflammatory Activities of the Ethanol Extract of Prasiola japonica, an Edible Freshwater Green Algae, and Its Various Solvent Fractions in LPS-Induced Macrophages and Carrageenan-Induced Paw Edema via the AP-1 Pathway. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010194. [PMID: 35011425 PMCID: PMC8746635 DOI: 10.3390/molecules27010194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/26/2021] [Indexed: 11/16/2022]
Abstract
Prasiola japonica possesses several biological activities. However, reports on the anti-inflammatory activities and molecular mechanisms of its different solvent fractions remain limited. In this study, we investigated the potential anti-inflammatory activities of P. japonica ethanol extract (Pj-EE) and four solvent fractions of Pj-EE made with hexane (Pj-EE-HF), chloroform (Pj-EE-CF), butanol (Pj-EE-BF), or water (Pj-EE-WF) in both in vitro (LPS-induced macrophage-like RAW264.7 cells) and in vivo (carrageenan-induced acute paw edema mouse models) experiments. The most active solvent fraction was selected for further analysis. Various in vitro and in vivo assessments, including nitric oxide (NO), cytokines, luciferase assays, real-time polymerase chain reactions, and immunoblotting analyses were performed to evaluate the underlying mechanisms. In addition, the phytochemical constituents were characterized by Liquid chromatography-tandem mass spectrometry. In in vitro studies, the highest inhibition of NO production was observed in Pj-EE-CF. Further examination revealed that Pj-EE-CF decreased the expression of inflammation-related cytokines in LPS-induced RAW264.7 cells and suppressed subsequent AP-1-luciferase activity by inhibition of phosphorylation events in the AP-1 signaling pathway. Pj-EE-CF treatment also demonstrated the strongest reduction in thickness and volume of carrageenan-induced paw edema, while Pj-EE-BF showed the lowest activity. Furthermore, Pj-EE-CF also reduced gene expression and cytokines production in tissue lysates of carrageenan-induced paw edema. These findings support and validate the evidence that Pj-EE, and especially Pj-EE-CF, could be a good natural source for an anti-inflammatory agent that targets the AP1 pathway.
Collapse
Affiliation(s)
- Laily Rahmawati
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (L.R.); (D.S.K.); (H.P.L.); (N.A.); (C.Y.L.); (S.A.K.)
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea;
| | - Dong Seon Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (L.R.); (D.S.K.); (H.P.L.); (N.A.); (C.Y.L.); (S.A.K.)
| | - Hwa Pyoung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (L.R.); (D.S.K.); (H.P.L.); (N.A.); (C.Y.L.); (S.A.K.)
| | - Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (L.R.); (D.S.K.); (H.P.L.); (N.A.); (C.Y.L.); (S.A.K.)
| | - Chae Young Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (L.R.); (D.S.K.); (H.P.L.); (N.A.); (C.Y.L.); (S.A.K.)
| | - Seung A Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (L.R.); (D.S.K.); (H.P.L.); (N.A.); (C.Y.L.); (S.A.K.)
| | - Seok Gu Jang
- Research and Business Foundation, Sungkyunkwan University, Suwon 16419, Korea;
| | - Dong Sam Kim
- Research and Business Foundation, Sungkyunkwan University, Suwon 16419, Korea;
- Correspondence: (D.S.K.); (J.Y.C.); Tel.: +82-33-570-4427 (D.S.K.); +82-31-290-7876 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (L.R.); (D.S.K.); (H.P.L.); (N.A.); (C.Y.L.); (S.A.K.)
- Correspondence: (D.S.K.); (J.Y.C.); Tel.: +82-33-570-4427 (D.S.K.); +82-31-290-7876 (J.Y.C.)
| |
Collapse
|
5
|
Kim JH, Park JG, Hong YH, Shin KK, Kim JK, Kim YD, Yoon KD, Kim KH, Yoo BC, Sung GH, Cho JY. Sauropus brevipes ethanol extract negatively regulates inflammatory responses in vivo and in vitro by targeting Src, Syk and IRAK1. PHARMACEUTICAL BIOLOGY 2021; 59:74-86. [PMID: 33439064 PMCID: PMC7808742 DOI: 10.1080/13880209.2020.1866024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
CONTEXT Sauropus brevipes Müll. Arg. (Phyllanthaceae) has been used as an effective ingredient in a decoction for the treatment of diarrhoea. However, there was no report on its modulatory role in inflammation. OBJECTIVE This study investigates anti-inflammatory effect of S. brevipes in various inflammation models. MATERIALS AND METHODS The aerial part of S. brevipes was extracted with 95% ethanol to produce Sb-EE. RAW264.7 cells pre-treated with Sb-EE were stimulated by lipopolysaccharide (LPS), and Griess assay and PCR were performed. High-performance liquid chromatography (HPLC) analysis, luciferase assay, Western blotting and kinase assay were employed. C57BL/6 mice (10 mice/group) were orally administered with Sb-EE (200 mg/kg) once a day for five days, and peritonitis was induced by an intraperitoneal injection of LPS (10 mg/kg). ICR mice (four mice/group) were orally administered with Sb-EE (20 or 200 mg/kg) or ranitidine (positive control) twice a day for two days, and EtOH/HCl was orally injected to induce gastritis. RESULTS Sb-EE suppressed nitric oxide (NO) release (IC50=34 µg/mL) without cytotoxicity and contained flavonoids (quercetin, luteolin and kaempferol). Sb-EE (200 µg/mL) reduced the mRNA expression of inducible NO synthase (iNOS). Sb-EE blocked the activities of Syk and Src, while inhibiting interleukin-1 receptor associated kinases (IRAK1) by 68%. Similarly, orally administered Sb-EE (200 mg/kg) suppressed NO production by 78% and phosphorylation of Src and Syk in peritonitis mice. Sb-EE also decreased inflammatory lesions in gastritis mice. DISCUSSION AND CONCLUSIONS This study demonstrates the inhibitory effect of Sb-EE on the inflammatory response, suggesting that Sb-EE can be developed as a potential anti-inflammatory agent.
Collapse
Affiliation(s)
- Ji Hye Kim
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Gwang Park
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Kon Kuk Shin
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Jin Kyeong Kim
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Young-Dong Kim
- Department of Life Science, Hallym University, Chuncheon, Republic of Korea
| | - Ki Dong Yoon
- College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Kyung-Hee Kim
- Proteomic Analysis Team, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Byong Chul Yoo
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Republic of Korea
- Byong Chul Yoo Division of Translational Science, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Gi-Ho Sung
- Institute for Bio-Medical Convergence, International St. Mary’s Hospital and College of Medicine, Catholic Kwandong University, Incheon, Republic of Korea
- CONTACT Gi-Ho Sung Institute for Bio-Medical Convergence, International St. Mary’s Hospital and College of Medicine, Catholic Kwandong University, Incheon, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
- Jae Youl Cho Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
6
|
Anti-Gastritis and Anti-Lung Injury Effects of Pine Tree Ethanol Extract Targeting Both NF-κB and AP-1 Pathways. Molecules 2021; 26:molecules26206275. [PMID: 34684856 PMCID: PMC8538959 DOI: 10.3390/molecules26206275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/03/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023] Open
Abstract
An ethanol extract (Pd-EE) of Pinus densiflora Siebold and Zucc was derived from the branches of pine trees. According to the Donguibogam, pine resin has the effects of lowering the fever, reducing pain, and killing worms. The purpose of this study is to investigate whether Pd-EE has anti-inflammatory effects. During in vitro trials, NO production, as well as changes in the mRNA levels of inflammation-related genes and the phosphorylation levels of related proteins, were confirmed in RAW264.7 cells activated with lipopolysaccharide depending on the presence or absence of Pd-EE treatment. The activities of transcription factors were checked in HEK293T cells transfected with adapter molecules in the inflammatory pathway. The anti-inflammatory efficacy of Pd-EE was also estimated in vivo with acute gastritis and acute lung injury models. LC-MS analysis was conducted to identify the components of Pd-EE. This extract reduced the production of NO and the mRNA expression levels of iNOS, COX-2, and IL-6 in RAW264.7 cells. In addition, protein expression levels of p50 and p65 and phosphorylation levels of FRA1 were decreased. In the luciferase assay, the activities of NF-κB and AP-1 were lowered. In acute gastritis and acute lung injury models, Pd-EE suppressed inflammation, resulting in alleviated damage.
Collapse
|
7
|
Rahmawati L, Aziz N, Oh J, Hong YH, Woo BY, Hong YD, Manilack P, Souladeth P, Jung JH, Lee WS, Jeon MJ, Kim T, Hossain MA, Yum J, Kim JH, Cho JY. Cissus subtetragona Planch. Ameliorates Inflammatory Responses in LPS-induced Macrophages, HCl/EtOH-induced Gastritis, and LPS-induced Lung Injury via Attenuation of Src and TAK1. Molecules 2021; 26:molecules26196073. [PMID: 34641616 PMCID: PMC8512965 DOI: 10.3390/molecules26196073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022] Open
Abstract
Several Cissus species have been used and reported to possess medicinal benefits. However, the anti-inflammatory mechanisms of Cissus subtetragona have not been described. In this study, we examined the potential anti-inflammatory effects of C. subtetragona ethanol extract (Cs-EE) in vitro and in vivo, and investigated its molecular mechanism as well as its flavonoid content. Lipopolysaccharide (LPS)-induced macrophage-like RAW264.7 cells and primary macrophages as well as LPS-induced acute lung injury (ALI) and HCl/EtOH-induced acute gastritis mouse models were utilized. Luciferase assays, immunoblotting analyses, overexpression strategies, and cellular thermal shift assay (CETSA) were performed to identify the molecular mechanisms and targets of Cs-EE. Cs-EE concentration-dependently reduced the secretion of NO and PGE2, inhibited the expression of inflammation-related cytokines in LPS-induced RAW264.7 cells, and decreased NF-κB- and AP-1-luciferase activity. Subsequently, we determined that Cs-EE decreased the phosphorylation events of NF-κB and AP-1 pathways. Cs-EE treatment also significantly ameliorated the inflammatory symptoms of HCl/EtOH-induced acute gastritis and LPS-induced ALI mouse models. Overexpression of HA-Src and HA-TAK1 along with CETSA experiments validated that inhibited inflammatory responses are the outcome of attenuation of Src and TAK1 activation. Taken together, these findings suggest that Cs-EE could be utilized as an anti-inflammatory remedy especially targeting against gastritis and acute lung injury by attenuating the activities of Src and TAK1.
Collapse
Affiliation(s)
- Laily Rahmawati
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (L.R.); (N.A.); (J.O.); (Y.H.H.)
| | - Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (L.R.); (N.A.); (J.O.); (Y.H.H.)
| | - Jieun Oh
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (L.R.); (N.A.); (J.O.); (Y.H.H.)
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (L.R.); (N.A.); (J.O.); (Y.H.H.)
| | - Byoung Young Woo
- AmorePacific R&D Center, Yongin 17074, Korea; (B.Y.W.); (Y.D.H.)
| | - Yong Deog Hong
- AmorePacific R&D Center, Yongin 17074, Korea; (B.Y.W.); (Y.D.H.)
| | - Philaxay Manilack
- Department of Forestry, Ministry of Agriculture and Forestry, Vientiane P.O. Box 811, Laos;
| | - Phetlasy Souladeth
- Department of Forest Management, Faculty of Forest Science, National University of Laos, Vientiane P.O. Box 7322, Laos;
| | - Ji Hwa Jung
- Division of Zoology, Honam National Institute of Biological Resources, Mokpo 58762, Korea;
| | - Woo Shin Lee
- Department of Forest Sciences, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea;
| | - Mi Jeong Jeon
- Animal Resources Division, National Institute of Biological Resources, Incheon 22689, Korea; (M.J.J.); (T.K.); (J.Y.)
| | - Taewoo Kim
- Animal Resources Division, National Institute of Biological Resources, Incheon 22689, Korea; (M.J.J.); (T.K.); (J.Y.)
| | - Mohammad Amjad Hossain
- Department of Veterinary Physiology, College of Medicine, Chonbuk National University, Iksan 54596, Korea;
| | - Jinwhoa Yum
- Animal Resources Division, National Institute of Biological Resources, Incheon 22689, Korea; (M.J.J.); (T.K.); (J.Y.)
| | - Jong-Hoon Kim
- Department of Veterinary Physiology, College of Medicine, Chonbuk National University, Iksan 54596, Korea;
- Correspondence: (J.-H.K.); (J.Y.C.); Tel.: +82-63-270-2563 (J.-H.K.); +82-31-290-7876 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (L.R.); (N.A.); (J.O.); (Y.H.H.)
- Correspondence: (J.-H.K.); (J.Y.C.); Tel.: +82-63-270-2563 (J.-H.K.); +82-31-290-7876 (J.Y.C.)
| |
Collapse
|
8
|
Forsythia Fruit Prevents Fulminant Hepatitis in Mice and Ameliorates Inflammation in Murine Macrophages. Nutrients 2021; 13:nu13082901. [PMID: 34445058 PMCID: PMC8399229 DOI: 10.3390/nu13082901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 11/17/2022] Open
Abstract
Forsythia Fruit (FF), the fruit of Forsythia suspensa, has been used since ancient times as an herbal medication in East Asia to treat inflammation, gonorrhea, and pharyngitis. However, the efficacy of FF against liver damage due to inflammation has not been studied. Here, we explored the protective effects of FF in a mouse hepatitis model induced by lipopolysaccharide (LPS)/D-galactosamine (GalN) treatment. We measured inflammatory cytokine and aminotransferase levels in mouse blood and analyzed the effects of FF on inflammatory gene and protein expression levels in liver tissue. Our results show that FF treatment effectively lowers inflammatory cytokine and serum aminotransferase levels in mice and inhibits the expression of hepatic cytokine mRNA and inflammatory proteins. Furthermore, treatment with FF activated the antioxidant pathway HO-1/Nrf-2 and suppressed severe histological alteration in the livers of LPS/D-GalN-treated mice. Further investigation of the effects of FF on inflammatory reactions in LPS-stimulated macrophages showed that pretreatment with FF inhibits inflammatory mediator secretion and activation of inflammatory mechanisms both in a mouse macrophage RAW 264.7 cells and in primary peritoneal macrophages. These results show that FF has potential worth as a candidate for the treatment of fulminant inflammatory reactions and subsequent liver injury.
Collapse
|
9
|
Ha AT, Kim MY, Cho JY. TAK1/AP-1-Targeted Anti-Inflammatory Effects of Barringtonia augusta Methanol Extract. Molecules 2021; 26:molecules26103053. [PMID: 34065429 PMCID: PMC8160894 DOI: 10.3390/molecules26103053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Barringtonia augusta methanol extract (Ba-ME) is a folk medicine found in the wetlands of Thailand that acts through an anti-inflammatory mechanism that is not understood fully. Here, we examine how the methanol extract of Barringtonia augusta (B. augusta) can suppress the activator protein 1 (AP-1) signaling pathway and study the activities of Ba-ME in the lipopolysaccharide (LPS)-treated RAW264.7 macrophage cell line and an LPS-induced peritonitis mouse model. Non-toxic concentrations of Ba-ME downregulated the mRNA expression of cytokines, such as cyclooxygenase and chemokine ligand 12, in LPS-stimulated RAW264.7 cells. Transfection experiments with the AP-1-Luc construct, HEK293T cells, and luciferase assays were used to assess whether Ba-ME suppressed the AP-1 functional activation. A Western blot assay confirmed that C-Jun N-terminal kinase is a direct pharmacological target of Ba-ME action. The anti-inflammatory effect of Ba-ME, which functions by β-activated kinase 1 (TAK1) inhibition, was confirmed by using an overexpression strategy and a cellular thermal shift assay. In vivo experiments in a mouse model of LPS-induced peritonitis showed the anti-inflammatory effect of Ba-ME on LPS-stimulated macrophages and acute inflammatory mouse models. We conclude that Ba-ME is a promising anti-inflammatory drug targeting TAK1 in the AP-1 pathway.
Collapse
Affiliation(s)
- Anh Thu Ha
- Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea;
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.: +82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea;
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.: +82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|
10
|
Song C, Kim MY, Cho JY. Olea europaea Suppresses Inflammation by Targeting TAK1-Mediated MAP Kinase Activation. Molecules 2021; 26:molecules26061540. [PMID: 33799767 PMCID: PMC8000943 DOI: 10.3390/molecules26061540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
Possessing a variety of medicinal functions, Olea europaea L. is widely cultivated across the world. However, the anti-inflammatory mechanism of Olea europaea is not yet fully elucidated. In this study, how the methanol extract of the leaves of Olea europaea (Oe-ME) can suppress in vitro inflammatory responses was examined in terms of the identification of the target protein. RAW264.7 and HEK293T cells were used to study macrophage-mediated inflammatory responses and to validate the target protein using PCR, immunoblotting, nuclear fraction, overexpression, and cellular thermal shift assay (CETSA) under fixed conditions. Oe-ME treatment inhibited the mRNA expression levels of cyclooxygenase (COX)-2, matrix metallopeptidase (MMP)-9, and intercellular adhesion molecule-1 (ICAM-1) in activated RAW264.7 cells. Oe-ME diminished the activation of activator protein (AP)-1 and the phosphorylation of its upstream signaling cascades, including extracellular signal regulated kinase (ERK), mitogen-activated protein kinase kinase 1/2 (MEK1/2), c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase kinase 3/6 (MKK3/6), p38, MKK7, and transforming growth factor-β-activated kinase 1 (TAK1), in stimulated-RAW264.7 cells. Overexpression and CETSA were carried out to verify that TAK1 is the target of Oe-ME. Our results suggest that the anti-inflammatory effect of Oe-ME could be attributed to its control of posttranslational modification and transcription of TAK1.
Collapse
Affiliation(s)
- Chaoran Song
- Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea;
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.: +82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea;
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.: +82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|
11
|
Maharana PK. Ethnobotanical, phytochemical, and pharmacological properties of Cerbera manghas L. J Biosci 2021. [DOI: 10.1007/s12038-021-00146-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Euodia pasteuriana Methanol Extract Exerts Anti-Inflammatory Effects by Targeting TAK1 in the AP-1 Signaling Pathway. Molecules 2020; 25:molecules25235760. [PMID: 33297427 PMCID: PMC7730574 DOI: 10.3390/molecules25235760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/29/2020] [Accepted: 12/05/2020] [Indexed: 12/14/2022] Open
Abstract
Euodia pasteuriana A. Chev. ex Guillaumin, also known as Melicope accedens (Blume) T.G. Hartley, is a herbal medicinal plant native to Vietnam. Although Euodia pasteuriana is used as a traditional medicine to treat a variety of inflammatory diseases, the pharmacological mechanisms related to this plant are unclear. This study aimed to investigate the anti-inflammatory effects of a methanol extract of Euodia pasteuriana leaves (Ep-ME) on the production of inflammatory mediators, the mRNA expression of proinflammatory genes, and inflammatory signaling activities in macrophage cell lines. The results showed that Ep-ME strongly suppressed the release of nitric oxide (NO) in RAW264.7 cells induced with lipopolysaccharide (LPS), pam3CysSerLys4 (Pam3CSK), and polyinosinic-polycytidylic acid (poly I:C) without cytotoxicity. A reverse transcription-polymerase chain reaction further confirmed that Ep-ME suppressed the expression of interleukin 6 (IL-6), matrix metalloproteinase-1 (MMP1), matrix metalloproteinase-2 (MMP2), matrix metalloproteinase-3 (MMP3), tumor necrosis factor-α (TNF-α), and matrix metalloproteinase-9 (MMP9) at the transcriptional level and reduced the luciferase activities of activator protein 1 (AP-1) reporter promoters. In addition, immunoblotting analyses of the whole lysate and nuclear fraction, as well as overexpression assays demonstrated that Ep-ME decreased the translocation of c-Jun and suppressed the activation of transforming growth factor beta-activated kinase 1 (TAK1) in the AP-1 signaling pathways. These results imply that Ep-ME could be developed as an anti-inflammatory agent that targets TAK1 in the AP-1 signaling pathway.
Collapse
|
13
|
LOMIX, a Mixture of Flaxseed Linusorbs, Exerts Anti-Inflammatory Effects through Src and Syk in the NF-κB Pathway. Biomolecules 2020; 10:biom10060859. [PMID: 32512905 PMCID: PMC7356372 DOI: 10.3390/biom10060859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Although flax (Linum usitatissimum L.) has long been used as Ayurvedic medicine, its anti-inflammatory role is still unclear. Therefore, we aimed to investigate the anti-inflammatory role of a linusorb mixture (LOMIX) recovered from flaxseed oil. Effects of LOMIX on inflammation and its mechanism of action were examined using several in vitro assays (i.e., NO production, real-time PCR analysis, luciferase-reporter assay, Western blot analysis, and kinase assay) and in vivo analysis with animal inflammation models as well as acute toxicity test. Results: LOMIX inhibited NO production, cell shape change, and inflammatory gene expression in stimulated RAW264.7 cells through direct targeting of Src and Syk in the NF-κB pathway. In vivo study further showed that LOMIX alleviated symptoms of gastritis, colitis, and hepatitis in murine model systems. In accordance with in vitro results, the in vivo anti-inflammatory effects were mediated by inhibition of Src and Syk. LOMIX was neither cytotoxic nor did it cause acute toxicity in mice. In addition, it was found that LOB3, LOB2, and LOA2 are active components included in LOMIX, as assessed by NO assay. These in vitro and in vivo results suggest that LOMIX exerts an anti-inflammatory effect by inhibiting the inflammatory responses of macrophages and ameliorating symptoms of inflammatory diseases without acute toxicity and is a promising anti-inflammatory medication for inflammatory diseases.
Collapse
|
14
|
Loratadine, an antihistamine drug, exhibits anti-inflammatory activity through suppression of the NF- kB pathway. Biochem Pharmacol 2020; 177:113949. [PMID: 32251678 DOI: 10.1016/j.bcp.2020.113949] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022]
Abstract
Loratadine is an antihistamine drug that shows promise as an anti-inflammatory drug, but supportive studies are lacking. We elucidated the effects and mechanisms by which loratadine inhibits inflammatory responses. Molecular components were evaluated in macrophages by nitric oxide assay, polymerase chain reaction, luciferase assay, immunoblotting, overexpression strategies and cellular thermal shift assay. At the molecular level, loratadine reduced the levels of nitric oxide, iNOS, IL-1β, TNF-α, IL-6, and COX-2 in RAW264.7 cells treated with lipopolysaccharide. Loratadine also specifically inhibited the NF-kB pathway, targeting the Syk and Src proteins. Furthermore, loratadine bound Src in the bridge between SH2 and SH3, and bound Syk in the protein tyrosine kinase domain. The NF-kB signaling pathway was assessed along with putative binding sites through a docking approach. The anti-inflammatory effect of loratadine was tested using mouse models of gastritis, hepatitis, colitis, and peritonitis. Stomach tissue histopathology, liver morphology, and colon length in the loratadine group were improved over the group without loratadine treatment. Taken together, loratadine inhibited the inflammatory response through the NF-kB pathway by binding with the Syk and Src proteins.
Collapse
|
15
|
Hong YH, Kim JH, Cho JY. Ranunculus bulumei Methanol Extract Exerts Anti-Inflammatory Activity by Targeting Src/Syk in NF-κB Signaling. Biomolecules 2020; 10:biom10040546. [PMID: 32260181 PMCID: PMC7226355 DOI: 10.3390/biom10040546] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Ranunculus bulumei is a flowering plant that belongs to the Ranunculus species. Several Ranunculus species, such as R. aquatilis and R. muricatus, have traditionally been used to treat fever and rheumatism throughout Asia, suggesting that plants belonging to the Ranunculus species may have anti-inflammatory effects. To our knowledge, the pharmacological activity of R. bulumei has not been reported. Therefore, in this study, we aim to assess the anti-inflammatory activity of a methanol extract that was derived from R. bulumei (Rb-ME) in macrophage-mediated inflammatory responses and to identify the molecular mechanism that underlies any anti-inflammatory action. (2) Methods: The anti-inflammatory efficacy of Rb-ME was evaluated while using in vitro and in vivo experiments. The RAW264.7 cells and peritoneal macrophages were stimulated by lipopolysaccharide (LPS). In addition, LPS-induced peritonitis and HCl/EtOH-triggered gastritis models were produced. A nitric oxide (NO) assay, real-time PCR, luciferase reporter gene assay, western blot analysis, plasmid overexpression strategy, and in vitro kinase assay were used to determine the molecular mechanisms and target molecules of Rb-ME. The phytochemical active ingredients of Rb-ME were also identified by high performance liquid chromatograph (HPLC). (3) Results: Rb-ME reduced the production of NO and mRNA expression of iNOS, COX-2, IL-1β, and IL-6 without cytotoxicity. The protein secretion of TNF-α and IL-6 was also decreased by Rb-ME. HPLC analysis indicates that quercetin, luteolin, and kaempferol are the main active ingredients in the anti-inflammatory efficacy of Rb-ME. Rb-ME also blocked MyD88-induced NF-κB promoter activity and nuclear translocation of NF-κB subunits (p65 and p50). Moreover, Rb-ME reduced the phosphorylation of IκBα, Akt, p85, Src, and Syk, which are NF-κB upstream signaling molecules in LPS-activated RAW264.7 cells. According to the in vitro kinase assay, Rb-ME directly inhibits Syk kinase activity. The oral administration of Rb-ME alleviated inflammatory responses and the levels of p-IκBα in mice with LPS-induced peritonitis and HCl/EtOH-induced gastritis. (4) Conclusions Rb-ME has anti-inflammatory capacity by suppressing NF-κB signaling and it has been found to target Src and Syk in the NF-κB pathway. Based on this efficacy, Rb-ME could be developed as an anti-inflammatory herbal medicine.
Collapse
|
16
|
Huang X, Mu Z, Xu F, Liang Y, Yang X, Kong J, Zhang L, Wang X, Wu H. Mechanism of anti-inflammatory effects of volatile compounds of Ai pian based on network pharmacology, in vivo animal experiments, and GC-MS. J Pharm Biomed Anal 2020; 186:113287. [PMID: 32325402 DOI: 10.1016/j.jpba.2020.113287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 10/24/2022]
Abstract
Ai pian (AP) is a well-known Miao national herb with resuscitative effects. However, pharmacological and clinical applications of AP are limited because its precise molecular mechanism remains unclear. This study was conducted to evaluate the anti-inflammatory activities of the volatile compounds of AP in in vivo animal models and determine the molecular mechanism underlying the anti-inflammatory effects based on network pharmacology and molecular docking. We performed gas chromatography-mass spectrometric analysis of volatile compounds with chemometric methods, including hierarchical clustering analysis and principal component analysis, to identify AP from different origins. Mouse models of xylene-induced ear edema were used to examine the in vivo anti-inflammatory activities of AP with cotton ball-granulation test. The mechanism of AP was determined by network pharmacology analysis and molecular docking. Significant differences in chemical constituents and percentage contents were observed among different habitats. We found that AP exerted potent anti-inflammatory effect, and that multiple targets and pathways were involved in this effect. These results provided a foundation for further comprehensive development and application of AP from Miao national herb.
Collapse
Affiliation(s)
- Xulong Huang
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, Guiyang, 550002, PR China
| | - Zhen Mu
- Department of Agricultural, Anshun University, Anshun City, Guizhou Province, Anshun, 561000, PR China
| | - Feng Xu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, Guiyang, 550002, PR China
| | - Yuqing Liang
- Department of Pharmacy, Zunyi Medical and Pharmaceutical College, Zunyi City, Guizhou Province, Zunyi, 563000, PR China
| | - Xiaosong Yang
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, Guiyang, 550002, PR China
| | - Juan Kong
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, Guiyang, 550002, PR China
| | - Linlin Zhang
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, Guiyang, 550002, PR China
| | - Xiangpei Wang
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, Guiyang, 550002, PR China.
| | - Hongmei Wu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, Guiyang, 550002, PR China.
| |
Collapse
|
17
|
Trichosanthes tricuspidata Lour. Methanol Extract Exhibits Anti-Inflammatory Activity by Targeting Syk, Src, and IRAK1 Kinase Activity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2019:6879346. [PMID: 31929819 PMCID: PMC6942823 DOI: 10.1155/2019/6879346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/27/2019] [Indexed: 12/19/2022]
Abstract
Trichosanthes tricuspidata Lour., also known as T. palmata Roxb, T. bracteata Lam., T. puber Blume, and Modecca bracteata, is a vine belonging to the Cucurbitaceae family (English name: redball snake gourd). Distributed in China, South and East Asia, and tropical Australia, it has been traditionally used as a medicinal plant for its antifever, laxative, anthelmintic properties and for migraine treatment. In this paper, we examined the effects of Trichosanthes tricuspidata Lour. ethanol extract (Tt-ME) in vitro and in vivo. To confirm the effects of Tt-ME on inflammatory responses, we conducted experimental analyses including level of nitric oxide (NO) production, RT-PCR, and immunoblotting and using a HCl/EtOH-induced gastritis animal model. Tt-ME attenuated the release of NO and decreased mRNA levels of inducible NO synthase (iNOS), TNF-α, and IL-6 in lipopolysaccharide- (LPS-) induced macrophages in a concentration-dependent manner. Tt-ME time-dependently suppressed nuclear translocation of nuclear factor kappa B (NF-κB) subunits p50 and p65, activator protein (AP-1) subunits c-Fos and c-Jun, and STAT3 transcriptional activity by inhibiting nuclear translocation of p50, p65, c-Fos, c-Jun, and STAT3. Tt-ME significantly downregulated NF-κB, MAPK, and JAK2 signaling by targeting Syk, Src, and IRAK1 protein kinases. Furthermore, matrix metalloproteinase-9 (MMP-9) expression and cell migration were observed to be downregulated by Tt-ME in LPS-activated macrophages. In vivo studies on Tt-ME also produced similar trends in Hcl/EtOH-induced gastritis mouse models by inhibiting proinflammatory cytokines and the inflammatory signaling pathway. Our results strongly suggest that Tt-ME exerted anti-inflammatory activity in LPS-stimulated macrophages and mouse models of acute inflammatory disease.
Collapse
|
18
|
Targeting Inflammation by Flavonoids: Novel Therapeutic Strategy for Metabolic Disorders. Int J Mol Sci 2019; 20:ijms20194957. [PMID: 31597283 PMCID: PMC6801776 DOI: 10.3390/ijms20194957] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
A balanced metabolic profile is essential for normal human physiological activities. Disproportions in nutrition give rise to imbalances in metabolism that are associated with aberrant immune function and an elevated risk for inflammatory-associated disorders. Inflammation is a complex process, and numerous mediators affect inflammation-mediated disorders. The available clinical modalities do not effectively address the underlying diseases but rather relieve the symptoms. Therefore, novel targeted agents have the potential to normalize the metabolic system and, thus, provide meaningful therapy to the underlying disorder. In this connection, polyphenols, the well-known and extensively studied phytochemical moieties, were evaluated for their effective role in the restoration of metabolism via various mechanistic signaling pathways. The various flavonoids that we observed in this comprehensive review interfere with the metabolic events that induce inflammation. The mechanisms via which the polyphenols, in particular flavonoids, act provide a promising treatment option for inflammatory disorders. However, detailed clinical studies of such molecules are required to decide their clinical fate.
Collapse
|
19
|
Slomiany BL, Slomiany A. Syk: a new target for attenuation of Helicobacter pylori-induced gastric mucosal inflammatory responses. Inflammopharmacology 2019; 27:203-211. [PMID: 30820719 DOI: 10.1007/s10787-019-00577-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
Abstract
The magnitude of gastric mucosal inflammatory response to H. pylori relies primarily on the extent of its key endotoxin, LPS, engagement of Toll-like receptor-4 (TLR4) and the initiation of signal transduction events converging on mitogen-activated protein kinase (MAPK) and IκB complex (IKK) cascades. These cascades, in turn, exert their control over the assembly of transcription factors, NFκB and AP1, implicated in the induction of the expression of iNOS and COX-2 proinflammatory genes. The LPS-induced TLR4 activation and the ensuing phosphorylation of its intracellular tyrosine domain by Src-family kinases not only leads to recruitment to the cytoplasmic domain of TLR4 of adaptor molecules directly involved in propagation of the signaling cascades converging on MAPK and IKK, but also provides a propitious docking site for a non-receptor tyrosine kinase, spleen tyrosine kinase (Syk), the activation of which apparently leads to upregulation in the expression of proinflammatory genes. Here, we review the pathways engaged by H. pylori in the recruitment and interaction of Syk with TLR4 in gastric mucosa, and discuss the cascades involved in Syk-mediated amplification in proinflammatory signaling. We focus, moreover, on the potential role of drugs targeting Syk and TLR4 in the treatment of H. pylori-related gastric disease.
Collapse
Affiliation(s)
- Bronislaw L Slomiany
- Research Center, C855, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, 110 Bergen Street, PO Box 1709, Newark, NJ, 07103-2400, USA.
| | - Amalia Slomiany
- Research Center, C855, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, 110 Bergen Street, PO Box 1709, Newark, NJ, 07103-2400, USA
| |
Collapse
|
20
|
Jeong D, Lee J, Jeong SG, Hong YH, Yoo S, Han SY, Kim JH, Kim S, Kim JS, Chung YS, Kim JH, Yi YS, Cho JY. Artemisia asiatica ethanol extract exhibits anti-photoaging activity. JOURNAL OF ETHNOPHARMACOLOGY 2018; 220:57-66. [PMID: 29609010 DOI: 10.1016/j.jep.2018.03.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia asiatica Nakai is a traditional herbal plant that has long been used in anti-inflammatory, anti-infective and skin protective remedies. AIM OF THE STUDY In this study, traditionally known skin-protective activity of Artemisia asiatica Nakai was examined with its ethanol extract (Aa-EE) under various photoaging conditions using skin-originated cells, and the underlying mechanism was also examined using various types of cells. MATERIALS AND METHODS Effects of Aa-EE on cell viability, photocytotoxicity, and expression of matrix metalloproteinases (MMPs), cyclooxygenase (COX)-2, and moisturizing factors were measured in B16F10, HEK293, NIH3T3, and HaCaT cells under untreated and ultraviolet B (UVB)-irradiation conditions. Anti-melanogenic effect of Aa-EE was also examined by measuring both melanin content in B16F10 cells and tyrosinase activity. Anti-photoaging mechanism of Aa-EE was explored by determining the activation levels of signaling molecules by immunoblotting analysis. RESULTS Aa-EE protected HaCaT cells from UVB irradiation-induced death. Aa-EE increased the expression of a type 1 pro-collagen gene and decreased the expression of matrix metalloproteinases, and COX-2 in NIH3T3 cells induced by UVB. Aa-EE increased the expression of transglutamase-1, hyaluronic acid synthase (HAS)-2, and HAS-3 in HaCaT cells and decreased the production of melanin in α-melanocyte-stimulating hormone-stimulated B16F10 cells by suppressing tyrosinase activity and the expression of tyrosinase, microphthalmia-associated transcription factor, tyrosinase-related protein (TRP)-1 and TRP-2. CONCLUSION The results suggest that Aa-EE could be skin-protective remedy with anti-photoaging, anti-apoptotic, skin remodeling, moisturizing, and anti-melanogenesis properties.
Collapse
Affiliation(s)
- Deok Jeong
- Department of Genetic Engineering and Biomedical Institute for convergence (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jongsung Lee
- Department of Genetic Engineering and Biomedical Institute for convergence (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seong-Gu Jeong
- Department of Genetic Engineering and Biomedical Institute for convergence (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yo Han Hong
- Department of Genetic Engineering and Biomedical Institute for convergence (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sulgi Yoo
- Department of Genetic Engineering and Biomedical Institute for convergence (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang Yun Han
- Department of Genetic Engineering and Biomedical Institute for convergence (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Hye Kim
- Department of Genetic Engineering and Biomedical Institute for convergence (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sunggyu Kim
- Research and Business Foundation, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jin Sic Kim
- Central Institue, BeautyCosmetic Co., Ltd., Eumseong 27414, Republic of Korea
| | - Young Soo Chung
- Central Institue, BeautyCosmetic Co., Ltd., Eumseong 27414, Republic of Korea
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea.
| | - Young-Su Yi
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju 28503, Republic of Korea.
| | - Jae Youl Cho
- Department of Genetic Engineering and Biomedical Institute for convergence (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
21
|
Src Is a Prime Target Inhibited by Celtis choseniana Methanol Extract in Its Anti-Inflammatory Action. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3909038. [PMID: 29725354 PMCID: PMC5872597 DOI: 10.1155/2018/3909038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/10/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022]
Abstract
Celtis choseniana is the traditional plant used at Korea as a herbal medicine to ameliorate inflammatory responses. Although Celtis choseniana has been traditionally used as a herbal medicine at Korea, no systemic research has been conducted on its anti-inflammatory activity. Therefore, the present study explored an anti-inflammatory effect and its underlying molecular mechanism using Celtis choseniana methanol extract (Cc-ME) in macrophage-mediated inflammatory responses. In vitro anti-inflammatory activity of Cc-ME was evaluated using RAW264.7 cells and peritoneal macrophages stimulated by lipopolysaccharide (LPS), pam3CSK4 (Pam3), or poly(I:C). In vivo anti-inflammatory activity of Cc-ME was investigated using acute inflammatory disease mouse models, such as LPS-induced peritonitis and HCl/EtOH-induced gastritis. The molecular mechanism of Cc-ME-mediated anti-inflammatory activity was examined by Western blot analysis and immunoprecipitation using whole cell and nuclear fraction prepared from the LPS-stimulated RAW264.7 cells and HEK293 cells. Cc-ME inhibited NO production and mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), and tumor necrosis factor-alpha (TNF-α) in the RAW264.7 cells and peritoneal macrophages induced by LPS, pam3, or poly(I:C) without cytotoxicity. High-performance liquid chromatography (HPLC) analysis showed that Cc-ME contained anti-inflammatory flavonoids quercetin, luteolin, and kaempferol. Among those, the content of luteolin, which showed an inhibitory effect on NO production, was highest. Cc-ME suppressed the NF-κB signaling pathway by targeting Src and interrupting molecular interactions between Src and p85, its downstream kinase. Moreover, Cc-ME ameliorated the morphological finding of peritonitis and gastritis in the mouse disease models. Therefore, these results suggest that Cc-ME exerted in vitro and in vivo anti-inflammatory activity in LPS-stimulated macrophages and mouse models of acute inflammatory diseases. This anti-inflammatory activity of Cc-ME was dominantly mediated by targeting Src in NF-κB signaling pathway during macrophage-mediated inflammatory responses.
Collapse
|
22
|
Yang WS, Yang E, Kim MJ, Jeong D, Yoon DH, Sung GH, Lee S, Yoo BC, Yeo SG, Cho JY. Momordica charantia Inhibits Inflammatory Responses in Murine Macrophages via Suppression of TAK1. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:435-452. [PMID: 29463104 DOI: 10.1142/s0192415x18500222] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Momordica charantia known as bitter melon is a representative medicinal plant reported to exhibit numerous pharmacological activities such as antibacterial, antidiabetic, anti-inflammatory, anti-oxidant, antitumor, and hypoglycemic actions. Although this plant has high ethnopharmacological value for treating inflammatory diseases, the molecular mechanisms by which it inhibits the inflammatory response are not fully understood. In this study, we aim to identify the anti-inflammatory mechanism of this plant. To this end, we studied the effects of its methanol extract (Mc-ME) on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Specifically, we evaluated nitric oxide (NO) production, mRNA expression of inflammatory genes, luciferase reporter gene activity, and putative molecular targets. Mc-ME blocked NO production in a dose-dependent manner in RAW264.7 cells; importantly, no cytotoxicity was observed. Moreover, the mRNA expression levels of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 were decreased by Mc-ME treatment in a dose-dependent manner. Luciferase assays and nuclear lysate immunoblotting analyses strongly indicated that Mc-ME decreases the levels of p65 [a nuclear factor (NF)-[Formula: see text]B subunit] and c-Fos [an activator protein (AP)-1 subunit]. Whole lysate immunoblotting assays, luciferase assays, and overexpression experiments suggested that transforming growth factor [Formula: see text]-activated kinase 1 (TAK1) is targeted by Mc-ME, thereby suppressing NF-[Formula: see text]B and AP-1 activity via downregulation of extracellular signal-regulated kinases (ERKs) and AKT. These results strongly suggest that Mc-ME exerts its anti-inflammatory activity by reducing the action of TAK1, which also affects the activation of NF-[Formula: see text]B and AP-1.
Collapse
Affiliation(s)
- Woo Seok Yang
- * Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eunju Yang
- † Gyeonggi Science High School for the Gifted, Suwon 16297, Republic of Korea
| | - Min-Jeong Kim
- ‡ Department of Radiology, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Gyeonggi 14068, Republic of Korea
| | - Deok Jeong
- * Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Deok Hyo Yoon
- § Institute for Bio-Medical Convergence, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea
| | - Gi-Ho Sung
- § Institute for Bio-Medical Convergence, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea
| | - Seungihm Lee
- † Gyeonggi Science High School for the Gifted, Suwon 16297, Republic of Korea
| | - Byong Chul Yoo
- ¶ Colorectal Cancer Branch, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Seung-Gu Yeo
- ∥ Department of Radiation Oncology, Soonchunhyang University College of Medicine, Soonchunhyang University Hospital, Cheonan 31151, Republic of Korea
| | - Jae Youl Cho
- * Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.,† Gyeonggi Science High School for the Gifted, Suwon 16297, Republic of Korea
| |
Collapse
|
23
|
Kim E, Yi YS, Son YJ, Han SY, Kim DH, Nam G, Hossain MA, Kim JH, Park J, Cho JY. BIOGF1K, a compound K-rich fraction of ginseng, plays an antiinflammatory role by targeting an activator protein-1 signaling pathway in RAW264.7 macrophage-like cells. J Ginseng Res 2018; 42:233-237. [PMID: 29719472 PMCID: PMC5926502 DOI: 10.1016/j.jgr.2018.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/30/2018] [Accepted: 02/06/2018] [Indexed: 12/24/2022] Open
Affiliation(s)
- Eunji Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Young-Su Yi
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju, Republic of Korea
| | - Young-Jin Son
- Department of Pharmacy, Sunchon National University, Suncheon, Republic of Korea
| | - Sang Yun Han
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Dong Hyun Kim
- Material Lab, Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Republic of Korea
| | - Gibaeg Nam
- Material Lab, Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Republic of Korea
| | | | - Jong-Hoon Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
- Corresponding author. College of Veterinary Medicine, Chonbuk National University, 79 Gobong-ro, Iksan 54596, Republic of Korea.
| | - Junseong Park
- Department of Engineering Chemistry, Chungbuk National University, Cheongju, Republic of Korea
- Corresponding author. Department of Engineering Chemistry, Chungbuk National University, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea.
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Corresponding author. Department of Genetic Engineering, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea.
| |
Collapse
|
24
|
Kim Y, Kim HG, Han SY, Jeong D, Yang WS, Kim JI, Kim JH, Yi YS, Cho JY. Hydroquinone suppresses IFN-β expression by targeting AKT/IRF3 pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:547-554. [PMID: 28883758 PMCID: PMC5587604 DOI: 10.4196/kjpp.2017.21.5.547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/09/2017] [Indexed: 12/17/2022]
Abstract
Previous studies have demonstrated the role of hydroquinone (HQ), a hydroxylated benzene metabolite, in modulating various immune responses; however, its role in macrophage-mediated inflammatory responses is not fully understood. In this study, the role of HQ in inflammatory responses and the underlying molecular mechanism were explored in macrophages. HQ down-regulated the expression of interferon (IFN)-β mRNA in LPS-stimulated RAW264.7 cells without any cytotoxicity and suppressed interferon regulatory factor (IRF)-3-mediated luciferase activity induced by TIR-domain-containing adapter-inducing interferon-β (TRIF) and TANK-binding kinase 1 (TBK1). A mechanism study revealed that HQ inhibited IRF-3 phosphorylation induced by lipopolysaccharide (LPS), TRIF, and AKT by suppressing phosphorylation of AKT, an upstream kinase of the IRF-3 signaling pathway. IRF-3 phosphorylation is highly induced by wild-type AKT and poorly induced by an AKT mutant, AKT C310A, which is mutated at an inhibitory target site of HQ. We also showed that HQ inhibited IRF-3 phosphorylation by targeting all three AKT isoforms (AKT1, AKT2, and AKT3) in RAW264.7 cells and suppressed IRF-3-mediated luciferase activities induced by AKT in HEK293 cells. Taken together, these results strongly suggest that HQ inhibits the production of a type I IFN, IFN-β, by targeting AKTs in the IRF-3 signaling pathway during macrophage-mediated inflammation.
Collapse
Affiliation(s)
- Yong Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Han Gyung Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Sang Yun Han
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Deok Jeong
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Woo Seok Yang
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Jung-Il Kim
- Department of Information Statistics, Kangwon National University, Chucheon 24341, Korea
| | - Ji Hye Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Young-Su Yi
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju 28503, Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
25
|
Anti-Inflammatory Effect of Piper attenuatum Methanol Extract in LPS-Stimulated Inflammatory Responses. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4606459. [PMID: 28811826 PMCID: PMC5547706 DOI: 10.1155/2017/4606459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/05/2017] [Accepted: 06/21/2017] [Indexed: 11/18/2022]
Abstract
Piper attenuatum is used as a traditional medicinal plant in India. One of the substances in P. attenuatum has been suggested to have anti-inflammatory effects. However, there is insufficient research about the anti-inflammatory mechanisms of action of P. attenuatum. The effects of P. attenuatum methanol extract (Pa-ME) on the production of inflammatory mediators nitric oxide (NO) and prostaglandin E2 (PGE2), the expression of proinflammatory genes, the translocation level of transcription factors, and intracellular signaling activities were investigated using macrophages. Pa-ME suppressed the production of NO and PGE2 in lipopolysaccharide- (LPS-), pam3CSK4-, and poly(I:C)-stimulated RAW264.7 cells without displaying cytotoxicity. The mRNA expression levels of inducible NO synthase (iNOS) and cyclooxygenase 2 (COX-2) were decreased by Pa-ME. P-ME reduced the translocation of p50/NF-κB and AP-1 (c-Jun and c-Fos), as well as the activity of their upstream enzymes Src, Syk, and TAK1. Immunoprecipitation analysis showed failure of binding between their substrates, phospho- (p-) p85 and p-MKK3/6. p-p85 and p-MKK3/6, which were induced by overexpression of Src, Syk, and TAK1, were also reduced by Pa-ME. Therefore, these results suggest that Pa-ME exerts its anti-inflammatory effects by targeting Src and Syk in the NF-κB signaling pathway and TAK1 in the AP-1 signaling pathway.
Collapse
|
26
|
Wan Z, Yao YC, Gao F, Cai SB, Khan A, Zhao TR, Yang XY, Fan J, Qian SY, Cao JX, Cheng GG. A new immunosuppressive pregnane glycoside from aqueous fraction of Epigynum cochinchinensis. Nat Prod Res 2017; 31:2893-2899. [DOI: 10.1080/14786419.2017.1306702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Zong Wan
- Kunming University of Science and Technology, Yunnan Institute of Food Safety, Kunming, People’s Republic of China
| | - Yuan-Cheng Yao
- Kunming University of Science and Technology, Yunnan Institute of Food Safety, Kunming, People’s Republic of China
| | - Fei Gao
- Kunming University of Science and Technology, Yunnan Institute of Food Safety, Kunming, People’s Republic of China
| | - Sheng-Bao Cai
- Kunming University of Science and Technology, Yunnan Institute of Food Safety, Kunming, People’s Republic of China
| | - Afsar Khan
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Tian-Rui Zhao
- Kunming University of Science and Technology, Yunnan Institute of Food Safety, Kunming, People’s Republic of China
| | - Xiao-Yan Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Jian Fan
- Kunming University of Science and Technology, Yunnan Institute of Food Safety, Kunming, People’s Republic of China
| | - Sheng-Yan Qian
- Guizhou Key Laboratory of Characteristic Microbial Research & Drug Development, Zunyi Medical University, Zunyi, People’s Republic of China
| | - Jian-Xin Cao
- Kunming University of Science and Technology, Yunnan Institute of Food Safety, Kunming, People’s Republic of China
| | - Gui-Guang Cheng
- Kunming University of Science and Technology, Yunnan Institute of Food Safety, Kunming, People’s Republic of China
| |
Collapse
|