1
|
Hemajha L, Singh S, Biji CA, Balde A, Benjakul S, Nazeer RA. A review on inflammation modulating venom proteins/peptide therapeutics and their delivery strategies: A review. Int Immunopharmacol 2024; 142:113130. [PMID: 39278056 DOI: 10.1016/j.intimp.2024.113130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Inflammation is an initial biological reaction that occurs in response to infection caused by foreign pathogens or injury. This process involves a tightly controlled series of signaling events at the molecular and cellular levels, with the ultimate goal of restoring tissue balance and protecting against invading pathogens. Malfunction in the process of inflammation can result in a diverse array of diseases, such as cardiovascular, neurological, and autoimmune disorders. Therefore, the management of inflammation is of utmost importance in modern medicine. Nonsteroidal anti-inflammatory drugs (NSAIDs) and corticosteroids have long been the mainstays of pharmacological treatment for inflammation, effectively alleviating symptoms in many patients. Recently, toxins and venom, formerly seen as mostly harmful to the human body, have been recognized as possible medicinal substances for treating inflammation. Organisms that are venomous, such as spiders, scorpions, snakes, and certain marine species, have developed a wide range of powerful toxins that can effectively disable or discourage predators. Remarkably, the majority of these poisons and venoms consist of proteins and peptides, which are acknowledged as significant bioactive compounds with medicinal potential. The goal of this review is to investigate the medicinal potential of peptides derived from venoms and their complex mechanism of action in suppressing inflammation. This review also discusses various challenges and future prospects for effective venom delivery.
Collapse
Affiliation(s)
- Lakshmikanthan Hemajha
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India
| | - Simran Singh
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India
| | - Catherin Ann Biji
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India
| | - Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India.
| |
Collapse
|
2
|
Biji CA, Balde A, Nazeer RA. Anti-inflammatory peptide therapeutics and the role of sulphur containing amino acids (cysteine and methionine) in inflammation suppression: A review. Inflamm Res 2024; 73:1203-1221. [PMID: 38769154 DOI: 10.1007/s00011-024-01893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Inflammation serves as our body's immune response to combat infections, pathogens, viruses, and external stimuli. Inflammation can be classified into two types: acute inflammation and chronic inflammation. Non-steroidal anti-inflammatory medications (NSAIDs) are used to treat both acute and chronic inflammatory disorders. However, these treatments have various side effects such as reduced healing efficiency, peptic ulcers, gastrointestinal toxicities, etc. METHOD: This review assesses the potential of anti-inflammatory peptides (AIPs) derived from various natural sources, such as algae, fungi, plants, animals, and marine organisms. Focusing on peptides rich in cysteines and methionine, sulphur-containing amino acids known for their role in suppression of inflammation. RESULT Due to their varied biological activity, ability to penetrate cells, and low cytotoxicity, bioactive peptides have garnered interest as possible therapeutic agents. The utilisation of AIPs has shown great potential in the treatment of disorders associated with inflammation. AIPs can be obtained from diverse natural sources such as algae, fungi, plants, and animals. Cysteine and methionine are sulphur-containing amino acids that aid in the elimination of free radicals, hence assisting in the treatment of inflammatory diseases. CONCLUSION This review specifically examines several sources of AIPs including peptides that contain numerous cysteines and methionine. In addition, the biological characteristics of these amino acids and advancements in peptide delivery are also discussed.
Collapse
Affiliation(s)
- Catherin Ann Biji
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamilnadu, India
| | - Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamilnadu, India
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamilnadu, India.
| |
Collapse
|
3
|
Zhou K, Luo W, Liu T, Ni Y, Qin Z. Neurotoxins Acting at Synaptic Sites: A Brief Review on Mechanisms and Clinical Applications. Toxins (Basel) 2022; 15:18. [PMID: 36668838 PMCID: PMC9865788 DOI: 10.3390/toxins15010018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Neurotoxins generally inhibit or promote the release of neurotransmitters or bind to receptors that are located in the pre- or post-synaptic membranes, thereby affecting physiological functions of synapses and affecting biological processes. With more and more research on the toxins of various origins, many neurotoxins are now widely used in clinical treatment and have demonstrated good therapeutic outcomes. This review summarizes the structural properties and potential pharmacological effects of neurotoxins acting on different components of the synapse, as well as their important clinical applications, thus could be a useful reference for researchers and clinicians in the study of neurotoxins.
Collapse
Affiliation(s)
- Kunming Zhou
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Weifeng Luo
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Yong Ni
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Zhenghong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Tu J, Huang W, Zhang W, Mei J, Zhu C. Two Main Cellular Components in Rheumatoid Arthritis: Communication Between T Cells and Fibroblast-Like Synoviocytes in the Joint Synovium. Front Immunol 2022; 13:922111. [PMID: 35844494 PMCID: PMC9284267 DOI: 10.3389/fimmu.2022.922111] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that endangers the health of approximately 1% of the global population. Current RA medications on the market mainly include non-steroidal anti-inflammatory drugs, biological agents, and disease-modifying drugs. These drugs aim to inhibit the overactivated immune response or inflammation of RA, but they cannot cure RA. A better understanding of the pathogenesis of RA will provide a new understanding to search for RA targets and for drug development. The infiltration of T cells and hyper-proliferation of fibroblast-like synoviocytes (FLS) in the synovium of patients with RA are significantly upregulated. Furthermore, the abnormal activation of these two types of cells has been confirmed to promote development of the course of A by many studies. This article systematically summarizes the interactions between T cells and FLS in RA synovial tissues, including one-way/mutual regulation and direct/indirect regulation between the two. It further aims to investigate the pathogenesis of RA from the perspective of mutual regulation between T cells and FLS and to provide new insights into RA research.
Collapse
Affiliation(s)
- Jiajie Tu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
- Department of Gynecology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Wei Huang
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiwei Zhang
- Departments of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiawei Mei
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chen Zhu
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Chen Zhu,
| |
Collapse
|
5
|
Wainwright CL, Teixeira MM, Adelson DL, Buenz EJ, David B, Glaser KB, Harata-Lee Y, Howes MJR, Izzo AA, Maffia P, Mayer AM, Mazars C, Newman DJ, Nic Lughadha E, Pimenta AM, Parra JA, Qu Z, Shen H, Spedding M, Wolfender JL. Future Directions for the Discovery of Natural Product-Derived Immunomodulating Drugs. Pharmacol Res 2022; 177:106076. [PMID: 35074524 DOI: 10.1016/j.phrs.2022.106076] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023]
Abstract
Drug discovery from natural sources is going through a renaissance, having spent many decades in the shadow of synthetic molecule drug discovery, despite the fact that natural product-derived compounds occupy a much greater chemical space than those created through synthetic chemistry methods. With this new era comes new possibilities, not least the novel targets that have emerged in recent times and the development of state-of-the-art technologies that can be applied to drug discovery from natural sources. Although progress has been made with some immunomodulating drugs, there remains a pressing need for new agents that can be used to treat the wide variety of conditions that arise from disruption, or over-activation, of the immune system; natural products may therefore be key in filling this gap. Recognising that, at present, there is no authoritative article that details the current state-of-the-art of the immunomodulatory activity of natural products, this in-depth review has arisen from a joint effort between the International Union of Basic and Clinical Pharmacology (IUPHAR) Natural Products and Immunopharmacology, with contributions from a Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation number of world-leading researchers in the field of natural product drug discovery, to provide a "position statement" on what natural products has to offer in the search for new immunomodulatory argents. To this end, we provide a historical look at previous discoveries of naturally occurring immunomodulators, present a picture of the current status of the field and provide insight into the future opportunities and challenges for the discovery of new drugs to treat immune-related diseases.
Collapse
Affiliation(s)
- Cherry L Wainwright
- Centre for Natural Products in Health, Robert Gordon University, Aberdeen, UK.
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Brazil.
| | - David L Adelson
- Molecular & Biomedical Science, University of Adelaide, Australia.
| | - Eric J Buenz
- Nelson Marlborough Institute of Technology, New Zealand.
| | - Bruno David
- Green Mission Pierre Fabre, Pierre Fabre Laboratories, Toulouse, France.
| | - Keith B Glaser
- AbbVie Inc., Integrated Discovery Operations, North Chicago, USA.
| | - Yuka Harata-Lee
- Molecular & Biomedical Science, University of Adelaide, Australia
| | - Melanie-Jayne R Howes
- Royal Botanic Gardens Kew, Richmond, Surrey, UK; Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, UK.
| | - Angelo A Izzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Italy.
| | - Pasquale Maffia
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Italy; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | - Alejandro Ms Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, IL, USA.
| | - Claire Mazars
- Green Mission Pierre Fabre, Pierre Fabre Laboratories, Toulouse, France.
| | | | | | - Adriano Mc Pimenta
- Laboratory of Animal Venoms and Toxins, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - John Aa Parra
- Laboratory of Animal Venoms and Toxins, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Zhipeng Qu
- Molecular & Biomedical Science, University of Adelaide, Australia
| | - Hanyuan Shen
- Molecular & Biomedical Science, University of Adelaide, Australia
| | | | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland.
| |
Collapse
|
6
|
Liu B, Wang W, Gao T, Huang L, Fan H, Chen HX. Separation, identification and quantification of associated impurities in cobratide using sheathless CE-MS and CE-UV. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3845-3851. [PMID: 34378552 DOI: 10.1039/d1ay00717c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cobratide is a peptide drug extracted from the venom of Chinese cobra, and has been widely used in the clinical treatment of chronic, intractable and persistent pain. In a recent study, it was reported that it has the potential to treat COVID-19. In order to control the quality of commercial cobratide drugs, a protocol was established for the separation, identification and quantification of cobratide and its associated impurities, in which sheathless capillary electrophoresis-mass spectrometry (CE-MS) was used for identification and a rapid capillary electrophoresis-ultraviolet-visible detector (CE-UV) method was developed for accurate quantification. Separation conditions that affect the resolution and MS intensities of cobratide and its associated impurities were investigated, including pH value, concentration of background electrolyte (BGE), ratio of organic additive and sample solution. The optimized CE conditions (BGE: 50 mM NH4Ac, pH 4.0; sample solution: deionized water) were used for both sheathless CE-MS and CE-UV methods. Three associated impurities were separated and identified for the first time by sheathless CE-MS. Then, a rapid CE-UV method was validated and used for accurate quantification of cobratide and its associated impurities. The CE-UV method showed good linearity between concentration and corrected peak area of cobratide in the concentration range of 5.36-536.30 μg mL-1. The limit of quantification of the CE-UV method was 4.16 μg mL-1. The relative standard deviations of migration time were less than 1% for both intra-day and inter-day experiments, and those of corrected peak area were less than 5%. Finally, different cobratide drugs were analyzed to evaluate the batch-to-batch consistency. This established protocol combining sheathless CE-MS and CE-UV methods would provide useful information for both quality control and process analysis of peptide drugs.
Collapse
Affiliation(s)
- Bo Liu
- National Institutes for Food and Drug Control, 31st Huatuo Rd., Daxing Dist., Beijing 102629, P. R. China.
| | - Wentao Wang
- SCIEX China, 5F, Building 1, 24 Yard, Jiuxianqiao Mid Road, Chaoyang District, Beijing 100015, China.
| | - Tie Gao
- SCIEX China, 5F, Building 1, 24 Yard, Jiuxianqiao Mid Road, Chaoyang District, Beijing 100015, China.
| | - Lu Huang
- National Institutes for Food and Drug Control, 31st Huatuo Rd., Daxing Dist., Beijing 102629, P. R. China.
| | - Huihong Fan
- National Institutes for Food and Drug Control, 31st Huatuo Rd., Daxing Dist., Beijing 102629, P. R. China.
| | - Hong-Xu Chen
- SCIEX China, 5F, Building 1, 24 Yard, Jiuxianqiao Mid Road, Chaoyang District, Beijing 100015, China.
| |
Collapse
|
7
|
Coulter-Parkhill A, McClean S, Gault VA, Irwin N. Therapeutic Potential of Peptides Derived from Animal Venoms: Current Views and Emerging Drugs for Diabetes. Clin Med Insights Endocrinol Diabetes 2021; 14:11795514211006071. [PMID: 34621137 PMCID: PMC8491154 DOI: 10.1177/11795514211006071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
The therapeutic potential of venom-derived drugs is evident today. Currently, several significant drugs are FDA approved for human use that descend directly from animal venom products, with others having undergone, or progressing through, clinical trials. In addition, there is growing awareness of the important cosmeceutical application of venom-derived products. The success of venom-derived compounds is linked to their increased bioactivity, specificity and stability when compared to synthetically engineered compounds. This review highlights advancements in venom-derived compounds for the treatment of diabetes and related disorders. Exendin-4, originating from the saliva of Gila monster lizard, represents proof-of-concept for this drug discovery pathway in diabetes. More recent evidence emphasises the potential of venom-derived compounds from bees, cone snails, sea anemones, scorpions, snakes and spiders to effectively manage glycaemic control. Such compounds could represent exciting exploitable scaffolds for future drug discovery in diabetes, as well as providing tools to allow for a better understanding of cell signalling pathways linked to insulin secretion and metabolism.
Collapse
Affiliation(s)
| | | | - Victor A Gault
- Diabetes Research Group, Ulster University, Coleraine, UK
| | - Nigel Irwin
- Diabetes Research Group, Ulster University, Coleraine, UK
| |
Collapse
|
8
|
Wu H, Wang J, Zhao Q, Ding Y, Zhang B, Kong L. Protocatechuic acid inhibits proliferation, migration and inflammatory response in rheumatoid arthritis fibroblast-like synoviocytes. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 48:969-976. [PMID: 32510258 DOI: 10.1080/21691401.2020.1776307] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic joint inflammatory disease that is closely associated with dysregulation of fibroblast-like synoviocytes (FLSs). Protocatechuic acid (PCA), a phenolic compound of anthocyanins, has been proven to possess anti-inflammatory activity. However, the role of PCA in RA has not been investigated. In the present study, we aimed to explore the effects of PCA on the RA-FLSs. The results showed that PCA suppressed the proliferation, invasion, and migration of RA-FLSs in a dose-dependent manner. PCA treatment also inhibited the expressions of matrix metalloproteinase (MMP)-3 and MMP-13, as well as the secretion of inflammatory cytokines including TNF-α, IL-1β, IL-6 in RA-FLSs. Moreover, cell apoptosis of RA-FLSs was significantly induced by PCA treatment. PCA was found to repress the activation of NF-κB signalling, which was evidenced by the decreased expression of p-p65 and increased expression of IκBα. Furthermore, PCA significantly decreased the phosphorylation levels of Akt and mTOR in RA-FLSs. In conclusion, the results indicated that PCA exhibited an inhibitory effect on RA-FLSs via inhibiting the NF-κB and Akt/mTOR signalling pathways. These findings supported the concept that PCA might be a therapeutic agent for RA treatment.
Collapse
Affiliation(s)
- Huiqiang Wu
- Department of Rheumatology and Immunology, Huaihe Hospital, Henan University, Kaifeng, People's Republic of China
| | - Jing Wang
- Department of Rheumatology and Immunology, Huaihe Hospital, Henan University, Kaifeng, People's Republic of China
| | - Qing Zhao
- Department of Rheumatology and Immunology, Huaihe Hospital, Henan University, Kaifeng, People's Republic of China
| | - Yanjie Ding
- Department of Rheumatology and Immunology, Huaihe Hospital, Henan University, Kaifeng, People's Republic of China
| | - Bingyi Zhang
- Department of Rheumatology and Immunology, Huaihe Hospital, Henan University, Kaifeng, People's Republic of China
| | - Lingli Kong
- Department of Rheumatology and Immunology, Huaihe Hospital, Henan University, Kaifeng, People's Republic of China
| |
Collapse
|
9
|
Cobrotoxin could be an effective therapeutic for COVID-19. Acta Pharmacol Sin 2020; 41:1258-1260. [PMID: 32843715 PMCID: PMC7445445 DOI: 10.1038/s41401-020-00501-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/30/2020] [Indexed: 01/01/2023] Open
|
10
|
Li Y, Xu JZ, Gu CX, Liu GL, Tian K. Carvacrol suppresses inflammatory responses in rheumatoid arthritis fibroblast-like synoviocytes. J Cell Biochem 2019; 120:8169-8176. [PMID: 30485517 DOI: 10.1002/jcb.28098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/31/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Fibroblast-like synoviocytes (FLSs) play an essential role in the chronic inflammatory process of rheumatoid arthritis (RA). Carvacrol is a natural monoterpenic phenol that retains significant anti-inflammatory activity. However, the effect of carvacrol on inflammatory response in RA-FLSs has not yet been reported. The present study aimed to investigate the role of carvacrol in lipopolysaccharides (LPS)-induced inflammatory response in human RA-FLSs. METHODS Cell viability and proliferation were measured by MTT and Cell Counting Kit-8 assays, respectively. The migration was detected by transwell assay. The production of inflammatory cytokines and matrix metalloproteinases (MMPs) were analyzed by enzyme-linked immunosorbent assay. The expressions of toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), NF-κB, p38, p-p38, ERK1/2, p-ERK1/2, c-Jun N-terminal kinase (JNK), and p-JNK were detected by Western blot analysis. RESULTS Carvacrol-inhibited LPS-induced cell proliferation and migration of RA-FLSs. The production of inflammatory cytokines, including tumor necrosis factor alpha, interleukin (IL)- 6, and IL-8, was reduced by carvacrol in LPS-induced RA-FLSs. Meanwhile, the induction of MMPs, including MMP-1, MMP-3, and MMP-13, caused by LPS stimulation was inhibited by carvacrol in RA-FLSs. Furthermore, carvacrol prevented LPS-induced activation of the TLR4/MyD88/NF-κB, p38, and ERK1/2 pathways in RA-FLSs. CONCLUSIONS Carvacrol-mitigated LPS-induced cell proliferation, migration, and inflammation in RA-FLSs. The TLR4/MyD88/NF-κB, p38 and ERK1/2 pathways might be involved in the protective effect of carvacrol.
Collapse
Affiliation(s)
- Yu Li
- Department of Orthopaedics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian-Zhong Xu
- Department of Orthopaedics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chen-Xi Gu
- Department of Orthopaedics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guan-Lei Liu
- Department of Orthopaedics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Tian
- Department of Orthopaedics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Antiinflammatory peptides: current knowledge and promising prospects. Inflamm Res 2018; 68:125-145. [PMID: 30560372 DOI: 10.1007/s00011-018-1208-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/19/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Inflammation is part of the regular host reaction to injury or infection caused by toxic factors, pathogens, damaged cells, irritants, and allergens. Antiinflammatory peptides (AIPs) are present in all living organisms, and many peptides from herbal, mammalian, bacterial, and marine origins have been shown to have antimicrobial and/or antiinflammatory properties. METHODS In this study, we investigated the effects of antiinflammatory peptides on inflammation, and highlighted the underlying mechanisms responsible for these effects. RESULTS In multicellular organisms, including humans, AIPs constitute an essential part of their immune system. In addition, numerous natural and synthetic AIPs are effective immunomodulators and can interfere with signal transduction pathways involved in inflammatory cytokine expression. Among them, some peptides such as antiflammin, N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), and those derived from velvet antler proteins, bee venom, horse fly salivary gland, and bovine β-casein have received considerable attention over the past few years. CONCLUSION This article presents an overview on the major properties and mechanisms of action associated with AIPs as immunomodulatory, chemotactic, antioxidant, and antimicrobial agents. In addition, the results of various studies dealing with effects of AIPs on numerous classical models of inflammation are reviewed and discussed.
Collapse
|
12
|
Yao Y, Yu H, Liu Y, Xu Q, Li X, Meng X, Huang C, Li J. PSTPIP2 Inhibits the Inflammatory Response and Proliferation of Fibroblast-Like Synoviocytes in vitro. Front Pharmacol 2018; 9:1432. [PMID: 30564127 PMCID: PMC6289071 DOI: 10.3389/fphar.2018.01432] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/19/2018] [Indexed: 11/23/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease and its pathogenesis remains unclear. Fibroblast-like synoviocytes (FLSs) play an important role in the pathogenesis of RA. Proline-serine-threonine phosphatase interacting protein 2 (PSTPIP2) is an adaptor protein, which is associated with auto-inflammatory disease. In this study, we selected adjuvant-induced arthritis (AIA) as animal model to study the role of PSTPIP2 in FLSs. We found that the expression of PSTPIP2 was significantly down-regulated in synovial tissues and FLSs of AIA rat compared with normal group. And overexpression of PSTPIP2 could inhibit the proliferation and inflammatory response of FLSs. Moreover, the proliferation and inflammatory response of FLSs were promoted with PSTPIP2 silencing treatment. In terms of mechanism, we found that the expression of PSTPIP2 was closely related to NF-κB signaling pathway. Overall, our results suggested that PSTPIP2 inhibits the proliferation and inflammatory response of FLSs, which might be closely related to NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yao Yao
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Haixia Yu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Yaru Liu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Qingqing Xu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xiaofeng Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xiaoming Meng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Cheng Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
13
|
Weng XF, Li ST, Song Q, Zhu Q, Song DD, Qin ZH, Xie Y. Protective Effect of Nicotinamide Adenine Dinucleotide Phosphate on Renal Ischemia-Reperfusion Injury. Kidney Blood Press Res 2018; 43:651-663. [PMID: 29734167 DOI: 10.1159/000489620] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/26/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Renal ischemia-reperfusion injury (IRI) is a common consequence of acute kidney injury. Nicotinamide adenine dinucleotide phosphate (NADPH), which is derived from the pentose phosphate pathway, is essential for the proper functioning of essential redox and antioxidant defense systems. Previous studies have indicated that NADPH is responsible for protecting the brain from ischemic injury. The goal of this study was to analyze the protective function of NADPH in renal IRI. METHODS The IRI animal model was generated through a midline laparotomy surgery that clamped both sides of the renal pedicles for 40 min to induce renal ischemia. The in vitro model was generated by removing oxygen and glucose from human kidney epithelial cells (HK-2 cells), followed by reoxygenation to imitate IRI. Renal function and histopathological changes were observed and evaluated. Additionally, malondialdehyde and glutathione levels were determined in renal tissue homogenate as indicators of oxidative stress. ROS production in cells was determined by DHE staining. Protein biomarker expression was evaluated by western blot, apoptosis was analyzed by TUNEL staining, and p65 nuclear translocation was visualized by immunofluorescence. RESULTS Our data indicated that NADPH safeguarded the kidneys from histological and functional damage, and significantly reduce cell injury along with preventing potential increases in blood urea nitrogen and creatinine levels. Furthermore, we observed that NADPH increased glutathione levels, while reducing levels of malondialdehyde and reactive oxygen species. Additionally, our results suggested that NADPH treatment may alleviate IRI-induced apoptosis and inflammation. CONCLUSION NADPH treatment may protect against renal IRI and should be further developed as a new treatment for acute kidney injury.
Collapse
Affiliation(s)
- Xiao-Fen Weng
- The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Municipal Hospital, Suzhou, China
| | - Song-Tao Li
- People's Hospital of Huangjing, Suzhou, China
| | - Qi Song
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Zhu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Medicine, Suzhou, China
| | - Dan-Dan Song
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Medicine, Suzhou, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Medicine, Suzhou, China
| | - Yan Xie
- The First Affiliated Hospital of Soochow University, Suzhou, China,
| |
Collapse
|
14
|
Mei L, Lin C, Lei S, Xu L, Fan YS. Small Peptides Compound Isolated from Agkistrodon with Antiarthritic Effect in Collagen-Induced Arthritis Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:8265150. [PMID: 29853972 PMCID: PMC5949182 DOI: 10.1155/2018/8265150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/28/2018] [Accepted: 03/22/2018] [Indexed: 11/24/2022]
Abstract
Agkistrodon in Chinese medicine has long been used as an effective treatment against rheumatoid arthritis (RA). The present research further investigated the effects of peptides extracted from the crude Agkistrodon on the RA rat model. Extracted peptides were separated by parameter-optimized ion-exchange chromatography (IEC), peptide fractions were further analysed by MALDI-TOF/TOF MS, and nano-LC-MS/MS acquired mass spectra were further characterized using Mascot software, which ranks the best matches in the NCBI database. RT-PCR results in RAW264.7 cells indicated that Agkistrodon peptide components had inhibitory effects against inflammatory cytokines. The therapeutic efficacy of Agkistrodon peptides was evaluated on the Wistar rats with collagen-induced arthritis. Symptom relief and reduced cartilage destruction and bone erosion were observed, which can be explained by the direct suppression of inflammatory cytokines in the joints. Agkistrodon peptides downregulate the expression of TNF-α, IL-1β, and IL-6, which may alleviate cartilage destruction and bone erosion, thus relieving symptoms of RA.
Collapse
Affiliation(s)
- Lijun Mei
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Chen Lin
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Shanshan Lei
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Li Xu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yong-Sheng Fan
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
15
|
Zhang Y, Xu S, Huang E, Zhou H, Li B, Shao C, Yang Y. MicroRNA-130a regulates chondrocyte proliferation and alleviates osteoarthritis through PTEN/PI3K/Akt signaling pathway. Int J Mol Med 2018. [PMID: 29532889 DOI: 10.3892/ijmm.2018.3551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The function of microRNA‑130a in development and progression of osteoarthritis was determined. In osteoarthritis patients, the serum levels of microRNA‑130a were decreased, compared with normal group. Overexpression of microRNA‑130a increased cell proliferation and decreased apoptosis of chondrocytes, and downregulation of microRNA‑130a also decreased cell proliferation and induced apoptosis in chondrocytes. Downregulation of microRNA‑130a promoted Bax and caspase‑3/9 protein expression, increased inflammation divisors and suppressed the PTEN/PI3K/Akt signaling pathway. PTEN inhibitor, VO‑Ohpic trihydrate increased the destructive effect of microRNA‑130a on cell proliferation of chondrocytes. PI3K inhibitor, wortmannin also increased the destructive effect of microRNA‑130a on osteoarthritis. In conclusion, microRNA‑130a is an important regulator of osteoarthritis in chondrocytes through PTEN/PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Orthopaedics, Shanghai Tongji Hospital, Shanghai 200065, P.R. China
| | - Shaochen Xu
- Department of Orthopaedics, Shanghai Tongji Hospital, Shanghai 200065, P.R. China
| | - Eric Huang
- Department of Orthopaedics, Shanghai Tongji Hospital, Shanghai 200065, P.R. China
| | - Haichao Zhou
- Department of Orthopaedics, Shanghai Tongji Hospital, Shanghai 200065, P.R. China
| | - Bing Li
- Department of Orthopaedics, Shanghai Tongji Hospital, Shanghai 200065, P.R. China
| | - Chenni Shao
- Shanghai Jiading Nanxiang Hospital, Shanghai 200065, P.R. China
| | - Yunfeng Yang
- Department of Orthopaedics, Shanghai Tongji Hospital, Shanghai 200065, P.R. China
| |
Collapse
|
16
|
Wang SZ, Qin ZH. Anti-Inflammatory and Immune Regulatory Actions of Naja naja atra Venom. Toxins (Basel) 2018; 10:E100. [PMID: 29495566 PMCID: PMC5869388 DOI: 10.3390/toxins10030100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 02/06/2023] Open
Abstract
Naja naja atra venom (NNAV) is composed of various proteins, peptides, and enzymes with different biological and pharmacological functions. A number of previous studies have reported that NNAV exerts potent analgesic effects on various animal models of pain. The clinical studies using whole venom or active components have confirmed that NNAV is an effective and safe medicine for treatment of chronic pain. Furthermore, recent studies have demonstrated that NNAV has anti-inflammatory and immune regulatory actions in vitro and in vivo. In this review article, we summarize recent studies of NNAV and its components on inflammation and immunity. The main new findings in NNAV research show that it may enhance innate and humoral immune responses while suppressing T lymphocytes-mediated cellular immunity, thus suggesting that NNAV and its active components may have therapeutic values in the treatment of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China.
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
17
|
NLRC5 promotes cell proliferation via regulating the NF-κB signaling pathway in Rheumatoid arthritis. Mol Immunol 2017; 91:24-34. [PMID: 28865311 DOI: 10.1016/j.molimm.2017.08.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/24/2017] [Accepted: 08/26/2017] [Indexed: 12/23/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease and the pathogenesis remains unclear. Previous studies suggested that fibroblast-like synoviocytes (FLSs) play an important role in RA pathogenesis, including the injury of cartilage, the hyperplasia of the synovium and the release of inflammatory cytokines. We used complete Freund's adjuvant (CFA) induced rats as animal models for studying the RA pathogenesis. NLRC5 as the largest member of the NLR family has been reported to play a critical role in regulating immune responses. Increasing evidence suggests that NLRC5 is an pivotal negative modulator of inflammatory pathways. We investigated the mechanisms and signaling pathways of NLRC5 in RA progression. Significantly increased expression of NLRC5 was found in AA rats synovial tissues and cells. And high expression of inflammatory cytokine and cell proliferation of FLSs accompanied with NLRC5 overexpression, but inhibited in cells with NLRC5 silencing treatment. Interestingly, we found that overexpression of NLRC5 also coordinated the activation of NF-κB signaling pathway. These results suggested that NLRC5 promotes RA progression via the NF-κB signaling pathway potentially.
Collapse
|
18
|
Dutertre S, Nicke A, Tsetlin VI. Nicotinic acetylcholine receptor inhibitors derived from snake and snail venoms. Neuropharmacology 2017. [PMID: 28623170 DOI: 10.1016/j.neuropharm.2017.06.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nicotinic acetylcholine receptor (nAChR) represents the prototype of ligand-gated ion channels. It is vital for neuromuscular transmission and an important regulator of neurotransmission. A variety of toxic compounds derived from diverse species target this receptor and have been of elemental importance in basic and applied research. They enabled milestone discoveries in pharmacology and biochemistry ranging from the original formulation of the receptor concept, the first isolation and structural analysis of a receptor protein (the nAChR) to the identification, localization, and differentiation of its diverse subtypes and their validation as a target for therapeutic intervention. Among the venom-derived compounds, α-neurotoxins and α-conotoxins provide the largest families and still represent indispensable pharmacological tools. Application of modified α-neurotoxins provided substantial structural and functional details of the nAChR long before high resolution structures were available. α-bungarotoxin represents not only a standard pharmacological tool and label in nAChR research but also for unrelated proteins tagged with a minimal α-bungarotoxin binding motif. A major advantage of α-conotoxins is their smaller size, as well as superior selectivity for diverse nAChR subtypes that allows their development into ligands with optimized pharmacological and chemical properties and potentially novel drugs. In the following, these two groups of nAChR antagonists will be described focusing on their respective roles in the structural and functional characterization of nAChRs and their development into research tools. In addition, we provide a comparative overview of the diverse α-conotoxin selectivities that can serve as a practical guide for both structure activity studies and subtype classification. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Sébastien Dutertre
- Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier - CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Annette Nicke
- Walther Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Nußbaumstr. 26, 80336 Munich, Germany.
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str.16/10, Moscow 117999, Russian Federation
| |
Collapse
|