1
|
Xu Z, Zhang Z, Zhou H, Lin S, Gong B, Li Z, Zhao S, Hou Y, Peng Y, Bian Y. Bazi Bushen attenuates osteoporosis in SAMP6 mice by regulating PI3K-AKT and apoptosis pathways. J Cell Mol Med 2024; 28:e70161. [PMID: 39469911 PMCID: PMC11519748 DOI: 10.1111/jcmm.70161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/14/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024] Open
Abstract
Osteoporosis (OP), a systemic skeletal disease, is characterized by low bone mass, bone tissue degradation and bone microarchitecture disturbance. Bazi Bushen, a Chinese patented medicine, has been demonstrated to be effective in attenuating OP, but the pharmacological mechanism remains predominantly unclear. In this study, the senescence-accelerated mouse prone 6 (SAMP6) model was used to explore bone homeostasis and treated intragastrically for 9 weeks with Bazi Bushen. In vivo experiments showed that Bazi Bushen treatment not only upregulated the levels of bone mineral density and bone mineral content but also increased the content of RUNX2 and OSX. Furthermore, the primary culture of bone mesenchymal stem cells (BMSCs) in SAMP6 mice was used to verify the effects of Bazi Bushen on the balance of differentiation between osteoblasts and adipocytes, as well as ROS and aging levels. Finally, the pharmacological mechanism of Bazi Bushen in attenuating OP was investigated through network pharmacology and experimental verification, and we found that Bazi Bushen could significantly orchestrate bone homeostasis and attenuate the progression of OP by stimulating PI3K-Akt and inhibiting apoptosis. In summary, our work sheds light on the first evidence that Bazi Bushen attenuates OP by regulating PI3K-AKT and apoptosis pathways to orchestrate bone homeostasis.
Collapse
Affiliation(s)
- Zhe Xu
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Zeyu Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Huifang Zhou
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Shan Lin
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Boyang Gong
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Zhaodong Li
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Shuwu Zhao
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Yunlong Hou
- National Key laboratory of Luobing Research and Innovative Chinese MedicineShijiazhuangP.R. China
| | - Yanfei Peng
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Yuhong Bian
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
| |
Collapse
|
2
|
Cui J, Lin L, Hao F, Shi Z, Gao Y, Yang T, Yang C, Wu X, Gao R, Ru Y, Li F, Xiao C, Gao Y, Wang Y. Comprehensive review of the traditional uses and the potential benefits of epimedium folium. Front Pharmacol 2024; 15:1415265. [PMID: 39323630 PMCID: PMC11422139 DOI: 10.3389/fphar.2024.1415265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024] Open
Abstract
Epimedium Folium has been extensively utilized for medicinal purposes in China for a significant period. This review undertakes a comprehensive examination of literature pertaining to Epimedium and its metabolites over the past decade, drawing from databases such as PubMed. Through meticulous organization and synthesis of pertinent research findings, including disease models, pharmacological effects, and related aspects, this narrative review sheds light on the principal pharmacological activities and associated mechanisms of Epimedium in safeguarding the reproductive system, promoting bone health, mitigating inflammation, and combating tumors and viral infections. Consequently, this review contributes to a more profound comprehension of the recent advances in Epimedium research.
Collapse
Affiliation(s)
- Jialu Cui
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Lin
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feiran Hao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhuo Shi
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yehui Gao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tingyu Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chunqi Yang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiangjun Wu
- School of Pharmacy, Henan University, Kaifeng, China
| | - Rong Gao
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Ru
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Fangyang Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chengrong Xiao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yue Gao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuguang Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
3
|
Song L, Wang D, Zhai Y, Zhang X, Zhang Y, Yu Y, Sun L, Zhou K. Aqueous extract of Epimedium sagittatum (Sieb. et Zucc.) Maxim. induces liver injury in mice via pyroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118164. [PMID: 38593963 DOI: 10.1016/j.jep.2024.118164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epimedium sagittatum (Sieb. et Zucc.) Maxim. has been used traditionally in Asia. It can dispel wind and cold, tonify the kidney, and strengthen bones and tendons. However, adverse effects of E. sagittatum have been reported, and the underlying mechanisms remain unclear. AIM OF THE STUDY This study aimed to investigate liver injury caused by an aqueous extract of E. sagittatum in Institute of Cancer Research (ICR) mice and explore its potential mechanisms. MATERIALS AND METHODS Dried E. sagittatum leaves were decocted in water to prepare aqueous extracts for ultra-high performance liquid chromatography analysis. Mice were administered an aqueous extract of E. sagittatum equivalent to either 3 g raw E. sagittatum/kg or 10 g raw E. sagittatum/kg once daily via intragastric injection for three months. The liver weights and levels of the serum biochemical parameters including alanine transaminase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), total bilirubin (TBIL), and alkaline phosphatase were measured. Hematoxylin-eosin staining was performed for histopathology. Apoptosis was detected using the TUNEL apoptosis assay kit. IL-1β was detected using ELISA kits. Proteomics was used to identify the differentially expressed proteins. Western blot analysis was performed to determine the levels of proteins significantly affected by the aqueous extract of E. sagittatum. RESULTS E. sagittatum treatment increased the liver weights and liver coefficients, and ALT and AST levels significantly increased (p < 0.05). A high dose of E. sagittatum significantly increased LDH and TBIL levels (p < 0.05). Ruptured cell membranes and multiple sites of inflammatory cell infiltration were also observed. No evidence of apoptosis was observed. IL-1β levels were significantly increased (p < 0.05). The expressions of PIK3R1, p-MAP2K4, p-Jun N-terminal kinase (JNK)/JNK, p-c-Jun, VDAC2, Bax, and CYC were upregulated, whereas that of Bcl-2 was inhibited by E. sagittatum. The expression of cleaved caspase-1 was significantly increased; however, its effects on GSDMD and GSDMD-N were significantly decreased. The expression levels of cleaved caspase-3 and its effector proteins GSDME and GSDME-N significantly increased. CONCLUSIONS Our results suggest that the aqueous extract of E. sagittatum induces liver injury in ICR mice after three months of intragastric injection via inflammatory pyroptosis.
Collapse
Affiliation(s)
- Lei Song
- Center of Drug Safety Evaluation, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin, 301617, China
| | - Dongyu Wang
- Center of Drug Safety Evaluation, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuxia Zhai
- Center of Drug Safety Evaluation, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaoying Zhang
- Center of Drug Safety Evaluation, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yue Zhang
- Center of Drug Safety Evaluation, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin, 301617, China
| | - Yingli Yu
- Center of Drug Safety Evaluation, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin, 301617, China
| | - Likang Sun
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kun Zhou
- Center of Drug Safety Evaluation, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
4
|
Li Y, Yu P, Gao Y, Ma Z, Wang H, Long Y, Ma Z, Liu R. Effects of the combination of Epimedii Folium and Ligustri Lucidi Fructus on apoptosis and autophagy in SOP rats and osteoblasts via PI3K/AKT/mTOR pathway. Biomed Pharmacother 2024; 173:116346. [PMID: 38428312 DOI: 10.1016/j.biopha.2024.116346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND This study aimed to investigate the effects of the combination of Epimedii Folium (EF) and Ligustri Lucidi Fructus (LLF) on regulating apoptosis and autophagy in senile osteoporosis (SOP) rats. METHODS Firstly, we identified the components in the decoction and drug-containing serum of EL (EF&LLF) by Ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS). Secondly, SOP rats were treated with EF, LLF, EL and caltrate to evaluate the advantages of EL. Finally, H2O2-, chloroquine-, and MHY1485-induced osteoblasts were treated with different doses of EL to reveal the molecular mechanism of EL. We detected bone microstructure, oxidative stress levels, ALP activity and the expressions of Bax, Bcl-2, caspase3, P53, Beclin-1, p-PI3K, PI3K, p-Akt, Akt, p-mTOR, mTOR, and LC3 in vivo and in vitro. RESULTS 36 compounds in EL decoction and 23 in EL-containing serum were identified, including flavonoids, iridoid terpenoids, phenylethanoid glycosides, polyols and triterpenoids. EL could inhibit apoptosis activity and increase ALP activity. In SOP rats and chloroquine-inhibited osteoblasts, EL could improve bone tissue microstructure and osteoblasts functions by upregulating Bcl-2, Beclin1, and LC3-II/LC3-I, while downregulating p53 in all treatment groups. In H2O2-induced osteoblasts, EL could upregulate the protein and mRNA expressions of Bcl-2 while downregulate LC3-II/LC3-I, p53 and Beclin1. Besides, EL was able to down-regulate PI3K/AKT/mTOR pathway which activated in SOP rats and MHY1485-induced osteoblasts. CONCLUSIONS These findings demonstrate that EL with bone protective effects on SOP rats by regulating autophagy and apoptosis via PI3K/Akt/mTOR signaling pathway, which might be an alternative medicine for the treatment of SOP.
Collapse
Affiliation(s)
- Yuman Li
- School of Traditional Chinese Medicine, Capital Medical University, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing 100069, China
| | - Ping Yu
- School of Traditional Chinese Medicine, Capital Medical University, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing 100069, China
| | - Yingying Gao
- School of Traditional Chinese Medicine, Capital Medical University, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing 100069, China
| | - Zitong Ma
- School of Traditional Chinese Medicine, Capital Medical University, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing 100069, China
| | - Han Wang
- School of Traditional Chinese Medicine, Capital Medical University, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing 100069, China
| | - Yuting Long
- School of Traditional Chinese Medicine, Capital Medical University, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing 100069, China
| | - Zaina Ma
- School of Traditional Chinese Medicine, Capital Medical University, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing 100069, China
| | - Renhui Liu
- School of Traditional Chinese Medicine, Capital Medical University, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing 100069, China.
| |
Collapse
|
5
|
Li P, Wang Y, Yan Q, Yang Y, Zhu R, Ma J, Chen Y, Liu H, Zhang Z. Fructus Ligustri Lucidi inhibits ferroptosis in ovariectomy‑induced osteoporosis in rats via the Nrf2/HO‑1 signaling pathway. Biomed Rep 2024; 20:27. [PMID: 38259585 PMCID: PMC10801352 DOI: 10.3892/br.2023.1715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/20/2023] [Indexed: 01/24/2024] Open
Abstract
Postmenopausal osteoporosis (PMOP) has increased in prevalence in recent years, thus researchers have evaluated alternative medicine therapies. Fructus Ligustri Lucidi (FLL) can inhibit bone loss, and ferroptosis serves an important role in osteoporosis. Therefore, the present study assessed the presence of ferroptosis in PMOP and whether FLL could inhibit ferroptosis to improve bone microstructure in ovariectomized rats. Ovariectomized rats were treated with FLL (1.56 g/kg/day) for 12 weeks. Micro-CT was performed to evaluate the bone microstructure and bone mineral density. Western blotting and reverse transcription-quantitative PCR were performed to assess the relative expression levels of proteins and mRNA. Subsequently, malondialdehyde (MDA) and Fe2+ assay kits were used to quantify the MDA and Fe2+ content, respectively. The results demonstrated that ovariectomy (OVX) resulted in iron overload and the accumulation of lipid peroxide. Furthermore, the expression of key factors that inhibited ferroptosis, glutathione peroxidase 4 and solute carrier family 7 member 11 was significantly downregulated in ovariectomized rats, which was significantly reversed by FLL treatment. Furthermore, bone formation was assessed using the expression of osteogenesis-related genes, runt-related transcription factor 2 and osterix, which revealed significantly higher levels in FLL-treated rats compared with ovariectomized rats. The levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were also significantly recovered following FLL treatment. In the present study, OVX of postmenopausal osteoporotic rats was found to induce ferroptosis by enhancing lipid peroxidation and Fe2+ levels. FLL significantly suppressed ferroptosis, protected the osteogenic ability of ovariectomized rats and promoted the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Pei Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Yuhan Wang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Qiqi Yan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Ying Yang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Ruyuan Zhu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Jiayi Ma
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Yanjing Chen
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Haixia Liu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Zhiguo Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| |
Collapse
|
6
|
Wu M, Zheng N, Zhan X, He J, Xiao M, Zuo Z, He C. Icariin induces developmental toxicity via thyroid hormone disruption in zebrafish larvae. Food Chem Toxicol 2023; 182:114155. [PMID: 37898232 DOI: 10.1016/j.fct.2023.114155] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Icariin (ICA) is a natural flavonoid isolated from the traditional Chinese medicinal herb, Epimedium brevicornu Maxim. Although previous studies have reported that ICA exhibits various pharmacological activities, little is known about its toxicology. Herein, zebrafish embryos were exposed to ICA at 0, 2.5, 10, and 40 μM. In developmental analysis, reduced hatching rates, decreased body length, and abnormal swim bladder were found after treatment with 10 and 40 μM ICA. In addition, the ability of locomotor behavior was impaired by ICA. Two important thyroid hormones (THs), triiodothyronine (T3) and thyroxine (T4), were tested. The exposure resulted in a remarkable alteration of T4 level and a significant decrease of the T3/T4 ratio in the 40 μM, indicating thyroid endocrine disruption. Furthermore, gene transcription analysis showed that genes involved in thyroid development (nkx2.1) and THs synthesis (tg) were up-regulated after ICA exposure. Significant down-regulation of iodothyronine deiodinase (dio1) was also observed in the 10 and 40 μM groups compared to the control. Taken together, our study first demonstrated that ICA caused developmental toxicity possibly through disrupting thyroid development and hormone synthesis. These results show that it is necessary to perform risk assessments of ICA in clinical practice.
Collapse
Affiliation(s)
- Meifang Wu
- Fujian Institute of Subtropical Botany / Fujian Key Laboratory of Physiology and Biochemistry for Subtropical Plant, Xiamen, Fujian, 361006, China
| | - Naying Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiaoxiao Zhan
- Fujian Institute of Subtropical Botany / Fujian Key Laboratory of Physiology and Biochemistry for Subtropical Plant, Xiamen, Fujian, 361006, China
| | - Jianzhang He
- Fujian Institute of Subtropical Botany / Fujian Key Laboratory of Physiology and Biochemistry for Subtropical Plant, Xiamen, Fujian, 361006, China
| | - Min Xiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
7
|
Ji C, Lu Y, Li J, Hua MZ, Xie Y, Ma Y, Shi R, Zhao L, Yang M, He X, Zheng W, Lu X. Determination of Dencichine in Panax notoginseng in the Forest and Field Using High Performance Liquid Chromatography. ACS OMEGA 2023; 8:27450-27457. [PMID: 37546611 PMCID: PMC10399182 DOI: 10.1021/acsomega.3c02962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/22/2023] [Indexed: 08/08/2023]
Abstract
Dencichine is a nonprotein amino acid, an effective ingredient in Panax notoginseng with hemostatic and anti-inflammatory effects. There are few studies on the effects of regions and cultivation models on the accumulation of dencichine. In the current study, the content of dencichine in P. notoginseng collected from its global cultivation and trading center Yunnan, China, (>640 samples) was determined using an optimized high-performance liquid chromatography method coupled with a diode array detector but without derivatization. The recovery rate of this method was 80-110%, the relative standard deviation was <10%, and the limits of detection and quantification were 0.003% (w/w) and 0.01% (w/w), respectively. The content of dencichine in each part of P. notoginseng was as follows: rootlets (39.59%) > main roots (29.91%) > leaves (16.21%) > stems (14.29%). For leaves, P. notoginseng in the forest (5.52 ± 2.26 mg/g) was significantly higher than that in the field (3.93 ± 1.72 mg/g) but opposite for main roots. The origins and altitudes made different contributions to the accumulation of dencichine in P. notoginseng. This study provides an effective analytical method to determine dencichines in various parts of P. notoginseng from different origins and altitudes and supports quality control and product development of P. notoginseng.
Collapse
Affiliation(s)
- Chao Ji
- Laboratory
for Quality Control and Traceability of Food and Agricultural Products, Tianjin Normal University, Tianjin 300387, China
| | - Yuxiao Lu
- Department
of Food Science and Agricultural Chemistry, Faculty of Agricultural
and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3 V9, Canada
| | - Juan Li
- Laboratory
for Quality Control and Traceability of Food and Agricultural Products, Tianjin Normal University, Tianjin 300387, China
| | - Marti Z. Hua
- Department
of Food Science and Agricultural Chemistry, Faculty of Agricultural
and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3 V9, Canada
| | - Yuxin Xie
- Laboratory
for Quality Control and Traceability of Food and Agricultural Products, Tianjin Normal University, Tianjin 300387, China
| | - Ying Ma
- Laboratory
for Quality Control and Traceability of Food and Agricultural Products, Tianjin Normal University, Tianjin 300387, China
| | - Rui Shi
- Key
Laboratory for Forest Resources Conservation and Utilization in the
Southwest Mountains of China, Ministry of Education, Southwest Landscape
Architecture Engineering Research Center of National Forestry and
Grassland Administration, Southwest Forestry
University, Kunming, Yunnan 650224, China
| | - Liangjuan Zhao
- The
Animal, Plant & Foodstuff Inspection Center of Tianjin Customs, Tianjin 300387, China
| | - Min Yang
- State
Key Laboratory for Conservation and Utilization of Bio-Resources in
Yunnan, National Engineering Research Center for Applied Technology
of Agricultural Biodiversity, College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Xiahong He
- Key
Laboratory for Forest Resources Conservation and Utilization in the
Southwest Mountains of China, Ministry of Education, Southwest Landscape
Architecture Engineering Research Center of National Forestry and
Grassland Administration, Southwest Forestry
University, Kunming, Yunnan 650224, China
- State
Key Laboratory for Conservation and Utilization of Bio-Resources in
Yunnan, National Engineering Research Center for Applied Technology
of Agricultural Biodiversity, College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Wenjie Zheng
- Laboratory
for Quality Control and Traceability of Food and Agricultural Products, Tianjin Normal University, Tianjin 300387, China
- Key
Laboratory for Forest Resources Conservation and Utilization in the
Southwest Mountains of China, Ministry of Education, Southwest Landscape
Architecture Engineering Research Center of National Forestry and
Grassland Administration, Southwest Forestry
University, Kunming, Yunnan 650224, China
- State
Key Laboratory for Conservation and Utilization of Bio-Resources in
Yunnan, National Engineering Research Center for Applied Technology
of Agricultural Biodiversity, College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Xiaonan Lu
- Department
of Food Science and Agricultural Chemistry, Faculty of Agricultural
and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3 V9, Canada
| |
Collapse
|
8
|
Xie B, Zhou H, Liu H, Liao S, Zhou C, Xu D. Salidroside alleviates dexamethasone-induced inhibition of bone formation via transforming growth factor-beta/Smad2/3 signaling pathway. Phytother Res 2022; 37:1938-1950. [PMID: 36567454 DOI: 10.1002/ptr.7711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/16/2022] [Accepted: 11/26/2022] [Indexed: 12/27/2022]
Abstract
Glucocorticoid-induced osteoporosis is the third epidemic osteoporosis following postmenopausal and senileosteoporosis. According to one study, salidroside made ovariectomized rats' bones strong. Salidroside's potential for treating glucocorticoid-induced osteoporosis remains unproven. This study aimed to investigate the protective effect and mechanism of salidroside on dexamethasone-induced osteogenic differentiation and bone formation in MC3T3-E1 cells and zebrafish. The study proved that salindroside had no harmful impact on MC3T3E1 cells. Salidroside significantly relieved dexamethasone-induced inhibition of ALP (alkaline phosphatase) activity and mineralization in MC3T3-E1 cells, and promoted osteogenic differentiation of cells. Salidroside increased the expression of osteopontin (OPN), runt-related transcription factor 2 (Runx2), osterix (Osx), transforming growth factor-beta (TGF-β) proteins and promoted the phosphorylation of Smad2/3 in MC3T3-E1 cells treated with dexamethasone. In addition, the effect of salidroside in relieving dexamethasone-induced inhibition of osteogenic differentiation in MC3T3-E1 cells can be blocked by TGF-β receptor type I/II inhibitor (LY2109761). At the same time, we found that salidroside significantly alleviated the inhibition of dexamethasone-induced bone formation in zebrafish and promoted the mineralization of zebrafish skulls. LY2109761 reversed the protective impact of salidroside on dexamethasone-mediated bone impairment in zebrafish. These findings suggested that salidroside alleviated dexamethasone-induced inhibition of osteogenic differentiation and bone formation via TGF-β/Smad2/3 signaling pathway.
Collapse
Affiliation(s)
- Baocheng Xie
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, People's Republic of China.,Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, People's Republic of China
| | - Huan Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, People's Republic of China.,Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, Department of Pharmacology, Guangdong Medical University, Dongguan, People's Republic of China
| | - Hongyu Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, People's Republic of China.,Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, Department of Pharmacology, Guangdong Medical University, Dongguan, People's Republic of China
| | - Shiyi Liao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, People's Republic of China.,Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, Department of Pharmacology, Guangdong Medical University, Dongguan, People's Republic of China
| | - Chenhui Zhou
- School of Nursing, Guangdong Medical University, Dongguan, People's Republic of China
| | - Daohua Xu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, People's Republic of China.,Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, Department of Pharmacology, Guangdong Medical University, Dongguan, People's Republic of China
| |
Collapse
|
9
|
Lv B, Cheng Z, Yu Y, Chen Y, Gan W, Li S, Zhao K, Yang C, Zhang Y. Therapeutic perspectives of exosomes in glucocorticoid-induced osteoarthrosis. Front Surg 2022; 9:836367. [PMID: 36034358 PMCID: PMC9405187 DOI: 10.3389/fsurg.2022.836367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
Exosomes are widely involved in a variety of physiological and pathological processes. These important roles are also hidden in the physiological processes related to bone. Chondrocytes, osteoblasts, synovial fibroblasts, and bone marrow mesenchymal stem cells produce and secrete exosomes, thereby affecting the biology process of target cells. Furthermore, in the primary pathogenesis of osteoarthrosis induced by steroid hormones, mainly involve glucocorticoid (GC), the exosomes have also widely participated. Therefore, exosomes may also play an important role in glucocorticoid-induced osteoarthrosis and serve as a promising treatment for early intervention of osteoarthrosis in addition to playing a regulatory role in malignant tumors. This review summarizes the previous results on this direction, systematically combs the role and therapeutic potential of exosomes in GC-induced osteoarthrosis, discusses the potential role of exosomes in the treatment and prevention of GC-induced osteoarthrosis, and reveals the current challenges we confronted.
Collapse
Affiliation(s)
- Bin Lv
- Correspondence: Yukun ZhangCao Yang Kangcheng Zhao Bin Lv
| | | | | | | | | | | | - Kangcheng Zhao
- Correspondence: Yukun ZhangCao Yang Kangcheng Zhao Bin Lv
| | - Cao Yang
- Correspondence: Yukun ZhangCao Yang Kangcheng Zhao Bin Lv
| | - Yukun Zhang
- Correspondence: Yukun ZhangCao Yang Kangcheng Zhao Bin Lv
| |
Collapse
|
10
|
Magnetic solid-phase extraction method with modified magnetic ferroferric oxide nanoparticles in a deep eutectic solvent and high-performance liquid chromatography used for the analysis of pharmacologically active ingredients of Epimedium folium. J Chromatogr A 2022; 1679:463395. [DOI: 10.1016/j.chroma.2022.463395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/17/2022] [Accepted: 07/31/2022] [Indexed: 11/18/2022]
|
11
|
Wang J, Cao Y, Feng X, Li T, Bi Y, Zhang T, Xu H, Yu G, Zhang C, Sun Y. Study on the synergistic and attenuating mechanism of the combination of
Epimedium
and
Ligustri lucidi fructus
based on pharmacokinetics. J Sep Sci 2022; 45:3382-3392. [DOI: 10.1002/jssc.202200336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/05/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Jiaqi Wang
- School of Chinese Materia Medica Beijing University of Chinese Medicine Beijing China
| | - Yijia Cao
- School of Chinese Materia Medica Beijing University of Chinese Medicine Beijing China
- Blood Research Laboratory Chengdu Blood Center Chengdu Sichuan 610020 China
| | - Xin Feng
- School of Chinese Materia Medica Beijing University of Chinese Medicine Beijing China
| | - Tianyi Li
- School of Chinese Materia Medica Beijing University of Chinese Medicine Beijing China
| | - Yuelin Bi
- School of Chinese Materia Medica Beijing University of Chinese Medicine Beijing China
| | - Tonghua Zhang
- School of Chinese Materia Medica Beijing University of Chinese Medicine Beijing China
| | - Haoran Xu
- School of Chinese Materia Medica Beijing University of Chinese Medicine Beijing China
| | - Gengyuan Yu
- School of Chinese Materia Medica Beijing University of Chinese Medicine Beijing China
| | - Chenning Zhang
- School of Chinese Materia Medica Beijing University of Chinese Medicine Beijing China
- Department of Pharmacy Xiangyang No. 1 People's Hospital, Hubei University of Medicine Xiangyang China
| | - Yikun Sun
- School of Chinese Materia Medica Beijing University of Chinese Medicine Beijing China
| |
Collapse
|
12
|
Xavier A, Toumi H, Lespessailles E. Animal Model for Glucocorticoid Induced Osteoporosis: A Systematic Review from 2011 to 2021. Int J Mol Sci 2021; 23:377. [PMID: 35008803 PMCID: PMC8745049 DOI: 10.3390/ijms23010377] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/25/2022] Open
Abstract
Clinical and experimental data have shown that prolonged exposure to GCs leads to bone loss and increases fracture risk. Special attention has been given to existing emerging drugs that can prevent and treat glucocorticoid-induced osteoporosis GIOP. However, there is no consensus about the most relevant animal model treatments on GIOP. In this systematic review, we aimed to examine animal models of GIOP centering on study design, drug dose, timing and size of the experimental groups, allocation concealment, and outcome measures. The present review was written according to the PRISMA 2020 statement. Literature searches were performed in the PubMed electronic database via Mesh with the publication date set between April, 2011, and February 2021. A total of 284 full-text articles were screened and 53 were analyzed. The most common animal species used to model GIOP were rats (66%) and mice (32%). In mice studies, males (58%) were preferred and genetically modified animals accounted for 28%. Our work calls for a standardization of the establishment of the GIOP animal model with better precision for model selection. A described reporting design, conduction, and selection of outcome measures are recommended.
Collapse
Affiliation(s)
- Andy Xavier
- EA 4708 I3MTO Laboratory, Orleans University, 45067 Orleans, France; (A.X.); (H.T.)
- Translational Medicine Research Platform, PRIMMO, Regional Hospital of Orleans, 45007 Orleans, France
| | - Hechmi Toumi
- EA 4708 I3MTO Laboratory, Orleans University, 45067 Orleans, France; (A.X.); (H.T.)
- Translational Medicine Research Platform, PRIMMO, Regional Hospital of Orleans, 45007 Orleans, France
- Department Rheumatology, Regional Hospital of Orleans, 14 Avenue de L’Hopital, 45007 Orleans, France
| | - Eric Lespessailles
- EA 4708 I3MTO Laboratory, Orleans University, 45067 Orleans, France; (A.X.); (H.T.)
- Translational Medicine Research Platform, PRIMMO, Regional Hospital of Orleans, 45007 Orleans, France
- Department Rheumatology, Regional Hospital of Orleans, 14 Avenue de L’Hopital, 45007 Orleans, France
| |
Collapse
|
13
|
Song M, Cui Y, Wang Q, Zhang X, Zhang J, Liu M, Li Y. Ginsenoside Rg3 Alleviates Aluminum Chloride-Induced Bone Impairment in Rats by Activating the TGF-β1/Smad Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12634-12644. [PMID: 34694773 DOI: 10.1021/acs.jafc.1c04695] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aluminum (Al)-induced bone formation and metabolism disorder through inhibition of the TGF-β1/Smad signaling pathway is one of the important mechanisms of bone impairment. Ginsenoside Rg3 (Rg3), a specific biological effector molecule, can provide protection to bones. Previously, we demonstrated that Rg3 can reverse aluminum chloride (AlCl3)-induced oxidative stress and metabolic disorder of bones; however, whether the TGF-β1/Smad signaling pathway is involved in it remains unclear. First, we found that Rg3 attenuated Al-induced bone impairment in vivo and in vitro by relieving structural damage to the femur, increasing MC3T3-E1 cell activity, differentiation, mineralization, inhibition of cell apoptosis, and upregulating the extracellular matrix (ECM) synthesis and the expression of TGF-β1/Smad signaling pathway key factors. Subsequently, in the signal pathway intervention experiment, the protective effect of Rg3 on bone impairment induced by Al was weakened; these results indicate that activating the TGF-β1/Smad signaling pathway is one of the mechanisms of Rg3-attenuated Al-induced bone impairment.
Collapse
Affiliation(s)
- Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Yilong Cui
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Qi Wang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Menglin Liu
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| |
Collapse
|
14
|
Yong EL, Cheong WF, Huang Z, Thu WPP, Cazenave-Gassiot A, Seng KY, Logan S. Randomized, double-blind, placebo-controlled trial to examine the safety, pharmacokinetics and effects of Epimedium prenylflavonoids, on bone specific alkaline phosphatase and the osteoclast adaptor protein TRAF6 in post-menopausal women. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153680. [PMID: 34352588 DOI: 10.1016/j.phymed.2021.153680] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/04/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Fragility fractures due to menopausal osteoporosis are a major cause of morbidity and mortality. Osteoporotic medications have substantial side effects that limit long term use. HYPOTHESES Ingestion of a purified extract of Epimedium spp. (EP) is safe, can increase serum levels of prenylflavonoid metabolites, exert positive changes in bone specific alkaline phosphatase (BSAP), suppress of tumor necrosis factor receptor associated factor 6 (TRAF6) protein in osteoclast-precursor monocytes in peripheral blood and therefore have the potential to reduce post-menopausal bone loss. STUDY DESIGN & METHODS Healthy postmenopausal women were randomized in a double-blind fashion to consume either EP prenylflavonoid extract (740 mg daily) or placebo daily for 6 weeks. The main outcome measures were safety and pharmacokinetics of EP flavonoids. Fasting blood was collected at 3- and 6-weeks, and two weeks after stopping medication for safety evaluations and measurement of BSAP. Peripheral blood monocytes were harvested for measurement of TRAF6 levels. Serum levels of the EP metabolites icariin, icariside I & II, icaritin and desmethylicaritin were measured using tandem mass spectrometry, and non-compartmental pharmacokinetic analyses performed using WinNonlin software. RESULTS Between October 2018 and Jun 2020, 58 postmenopausal women, aged 57.9 ± 8.9 years, were randomized and completed the study. Consumption of EP prenylflavonoids was not associated with any significant adverse symptoms, with no changes in hepatic, hematological, and renal parameters observed. The main metabolites detected in sera after ingestion of EP prenylflavonoid capsules were desmethylicaritin, icaritin and icariside II. Icariin and icariside I were below detection levels. Ingestion of EP prenylflavonoids induced a median Cmax and AUC0→∞ for desmethylicaritin of 60.9 nM, and 157.9 nM ×day, respectively; and were associated with higher levels of BSAP (p < 0.05) and a trend (p = 0.068) towards lower levels of TRAF6 in peripheral blood monocytes eight weeks after commencing prenylflavonoid ingestion. Prenylflavonoid metabolites were not detected in the sera of placebo participants. CONCLUSIONS Despite the widespread consumption of EP extracts, the safety, mechanisms of action of their bioactive compounds, and therapeutic indications in humans are unknown. Daily consumption of EP prenylflavonoids for six weeks was safe. The predominant metabolite in sera was desmethylicaritin. Rise in prenylflavonoid metabolites was associated with higher levels of the bone anabolic marker BSAP, suggesting potential therapeutic value for post-menopausal osteoporosis.
Collapse
Affiliation(s)
- Eu-Leong Yong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore.
| | - Wei Fun Cheong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore
| | - Zhongwei Huang
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore; Institute of Molecular and Cell Biology, Agency of Science, Technology and Research, 138673 Singapore
| | - Win Pa Pa Thu
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore
| | - Amaury Cazenave-Gassiot
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, 117456 Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596 Singapore
| | - Kok Yong Seng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore
| | - Susan Logan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore
| |
Collapse
|
15
|
Cang D, Zou G, Yang C, Shen X, Li F, Wu Y, Ji B. Dencichine prevents ovariectomy-induced bone loss and inhibits osteoclastogenesis by inhibiting RANKL-associated NF-κB and MAPK signaling pathways. J Pharmacol Sci 2021; 146:206-215. [PMID: 34116734 DOI: 10.1016/j.jphs.2021.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/05/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
AIMS To investigate the effect of dencichine on osteoclastogenesis in vivo and in vitro. METHODS RANKL-induced osteoclastogenesis were treated with different concentrations of dencichine. Pit forming assays were applied to evaluate the degree of bone resorption. Osteoclastogenic markers were detected by real-time quantitative PCR (RT-qPCR) and Western blot. Micro CT was conducted to investigate the effects of dencichine on osteoclastogenesis in ovariectomized (OVX) mice. RESULTS Dencichine suppressed osteoclastogenesis through the inhibition of phosphorylation of p65, p50 (NF-κB pathway), p38, ERK and JNK (MAPKs pathway) in vitro. Furthermore, dencichine inhibited the function of osteoclasts in a dose-dependent manner. In addition, the expression levels of the nuclear factor of activated T cells 1 (NFATc1) and osteoclastogenesis markers were decreased by dencichine, including MMP-9, Cathepsin K (CTSK), Tartrate-Resistant Acid Phosphatase (TRAP), C-FOS, dendritic cell specific transmembrane protein (DC-STAMP). In vivo data proved that dencichine alleviated ovariectomy-induced bone loss and osteoclastogenesis in mice. CONCLUSION Our results demonstrate that dencichine alleviates OVX-induced bone loss in mice and inhibits RANKL-mediated osteoclastogenesis via inhibition of NF-κB and MAPK pathways in vitro, suggesting that dencichine might serve as a promising candidate for treatment of bone loss diseases, including PMOP and rheumatoid arthritis.
Collapse
Affiliation(s)
- Dingwei Cang
- Department of Orthopaedics, Yancheng City No.1 People's Hospital, Yancheng, Jiangsu 224006, China
| | - Guoyou Zou
- Department of Orthopaedics, Yancheng City No.1 People's Hospital, Yancheng, Jiangsu 224006, China
| | - Chi Yang
- Department of R& D, Rochen Pharma Co., Ltd, Shanghai 201514, China
| | - Xiaofei Shen
- Department of Orthopaedics, Yancheng City No.1 People's Hospital, Yancheng, Jiangsu 224006, China
| | - Feng Li
- Department of Orthopaedics, Yancheng City No.1 People's Hospital, Yancheng, Jiangsu 224006, China
| | - Ya Wu
- Department of Orthopaedics, Yancheng City No.1 People's Hospital, Yancheng, Jiangsu 224006, China.
| | - Biao Ji
- Department of Orthopaedics, Yancheng City No.1 People's Hospital, Yancheng, Jiangsu 224006, China.
| |
Collapse
|
16
|
Ma Z, Li X, Chen Y, Tang X, Gao Y, Wang H, Liu R. Comprehensive evaluation of the combined extracts of Epimedii Folium and Ligustri Lucidi Fructus for PMOP in ovariectomized rats based on MLP-ANN methods. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113563. [PMID: 33176184 DOI: 10.1016/j.jep.2020.113563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/25/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kidney deficiency is the main pathogenesis of osteoporosis based on the theory of "kidney governing bones" in traditional Chinese medicine (TCM). Osteoporosis is a systemic disease; kidney deficiency influences the growth, aging and reproduction of human body, reflecting in endocrine, nerve, immunity, metabolism and other functions. Multi-target drugs composed of natural non-toxic products from kidney-reinforcing herbs, are being investigated for the treatment of osteoporosis. Therefore, it is necessary and imperative to develop an objective and comprehensive method to evaluate and compare the effects of herbs with listed drugs. AIM OF THE STUDY This study was designed to evaluate and compare the therapeutic effects and the underlying molecular mechanism of the combined extracts of Epimedii Folium and Ligustri Lucidi Fructus (EL) with Raloxifene hydrochloride (RH) in ovariectomy (OVX)-induced postmenopausal osteoporosis (PMOP) rats based on the multi-layer perception (MLP)-artificial neural network (ANN) model. MATERIALS AND METHODS Female SD rats were subjected to either sham surgery (n = 8) or bilateral OVX (n = 48). One week after recovering from surgery, the OVX-induced rats were randomly divided into three groups: OVX model group (n = 32, every 8 rats were killed at the end of the 5th, 9th, 11th or 13th week after OVX), EL group (treated with EL 0.35 g/kg, n = 8), and RH group (treated with RH 6.25 mg/kg, n = 8). The rats in the treatment groups were administrated once a day for 12 weeks, then sacrificed. We observed bone mass and quality, bone remodeling, the function of estrogen and TGF-β1/Smads pathway in all rats. RESULTS Both EL and RH could increase bone mineral density, enhance bone strength, relieve bone micro-structure degeneration, re-balance bone remodeling, regulate estrogen dysfunction, and up-regulate TGF-β1 expression. The evaluation of the MLP-ANN model showed that EL and RH had markedly anti-PMOP effects, and there was no significant difference in the comprehensive evaluation of anti-osteoporosis between the two drugs. However, RH had better effects on bone mass and quality and TGF-β1/Smads pathway than EL; EL had better effects on estrogen function than RH. CONCLUSION Combined extracts of Epimedii Folium and Ligustri Lucidi Fructus (EL) exhibited bone-protective effects on PMOP. The MLP-ANN method evaluated the efficacy of drugs more comprehensively, which provided a new direction for the evaluation and comparison of drugs.
Collapse
Affiliation(s)
- Zitong Ma
- School of Traditional Chinese Medicine, Capital Medical University and Beijing Key Lab of TCM Collateral Disease Theory Research, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069, China
| | - Xiaoxi Li
- School of Traditional Chinese Medicine, Capital Medical University and Beijing Key Lab of TCM Collateral Disease Theory Research, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069, China
| | - Yuheng Chen
- School of Traditional Chinese Medicine, Capital Medical University and Beijing Key Lab of TCM Collateral Disease Theory Research, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069, China
| | - Xiufeng Tang
- School of Traditional Chinese Medicine, Capital Medical University and Beijing Key Lab of TCM Collateral Disease Theory Research, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069, China
| | - Yingying Gao
- School of Traditional Chinese Medicine, Capital Medical University and Beijing Key Lab of TCM Collateral Disease Theory Research, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069, China
| | - Han Wang
- School of Traditional Chinese Medicine, Capital Medical University and Beijing Key Lab of TCM Collateral Disease Theory Research, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069, China
| | - Renhui Liu
- School of Traditional Chinese Medicine, Capital Medical University and Beijing Key Lab of TCM Collateral Disease Theory Research, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
17
|
Zhong Z, Li Y, Chen Y, Chen W, Li S, Lv X, Luo S. Predicting and Exploring the Mechanisms of Erzhi Pill in Prevention and Treatment of Osteoporosis Based on Network Pharmacology and Zebrafish Experiments. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:817-827. [PMID: 33658763 PMCID: PMC7917472 DOI: 10.2147/dddt.s293455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/19/2021] [Indexed: 01/05/2023]
Abstract
Background Erzhi Pill (EZP), a traditional Chinese medicine (TCM) prescription, has been widely applied to improve bone metabolism and treat osteoporosis (OP) in China. However, its effective constituents and mechanisms remain unclear. Methods By combining network pharmacology and zebrafish experiments, an integrative method was employed to address this problem. Firstly, the disease targets of OP were collected from two public gene databases. Secondly, the active compounds and drug targets of EZP were obtained from the traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP). Thirdly, a drug-target-disease interaction network was constructed, and the key active components were identified by analyzing the topological characteristics of the network. Finally, these predicted results were tested by zebrafish experiments and compared with those from the literature. Specifically, quercetin as an important representative active component of EZP was applied to wild type and transgenic zebrafish larvae to assess its effects on skull mineralization and osteoplastic differentiation. Results Our study identified 72 active compounds, 220 targets and 166 signaling pathways probably involved in the prevention and treatment of OP by EZP, wherein quercetin, apigenin, daidzein, luteolin, ursolic acid and kaempferol could be the key compounds, while PI3K-Akt signaling pathway, TNF signaling pathway and IL-17 signaling pathway could be the key signaling pathways. The experiments indicated that quercetin attenuated both the decrease of skull mineralization and the inhibition of skull osteoplastic differentiation in zebrafish larvae trigged by dexamethasone. Conclusion Our study not only investigated potentially effective constituents and mechanisms of EZP in the prevention and treatment of OP, but also provided a reference for the in-depth research, development and application of TCM.
Collapse
Affiliation(s)
- Zhiguo Zhong
- Traditional Chinese Medicine Department, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Yuyun Li
- Department of Pharmacology, School of Pharmacy, Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, 523808, People’s Republic of China
| | - Yan Chen
- Department of Pharmacology, School of Pharmacy, Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, 523808, People’s Republic of China
| | - Wen Chen
- Department of Pharmacology, School of Pharmacy, Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Siyan Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People’s Republic of China
| | - Xiaohua Lv
- Department of Pharmacology, School of Pharmacy, Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Shiying Luo
- Department of Pharmacology, School of Pharmacy, Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Correspondence: Shiying Luo Department of Pharmacology, School of Pharmacy, Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Guangdong Medical University, No. 2 East Wenming Road, Xiashan District, Zhanjiang, 524023, Guangdong, People’s Republic of ChinaTel +86 13763058766Fax +86 7592388588 Email
| |
Collapse
|
18
|
Gu Z, Xie D, Huang C, Ding R, Zhang R, Li Q, Lin C, Qiu Y. MicroRNA-497 elevation or LRG1 knockdown promotes osteoblast proliferation and collagen synthesis in osteoporosis via TGF-β1/Smads signalling pathway. J Cell Mol Med 2020; 24:12619-12632. [PMID: 32975015 PMCID: PMC7687005 DOI: 10.1111/jcmm.15826] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/13/2020] [Accepted: 05/03/2020] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) have been corroborated to engage in the process of cellular activities in osteoporosis. However, few researches have been conducted to expose the integrated role of miR‐497, leucine‐rich alpha‐2‐glycoprotein‐1 (LRG1) and transforming growth factor beta 1 (TGF‐β1)/Smads signalling pathway in osteoporosis. Thereafter, the study is set out to delve into miR‐497/LRG1/TGF‐β1/Smads signalling pathway axis in osteoporosis. Osteoporosis bone tissues and normal bone tissues were collected. Rat osteoporosis models were constructed via ovariectomy. Model rats were injected with restored miR‐497 or depleted LRG1 to explore their roles in osteoporosis. Rat osteoblasts were extracted from osteoporosis rats and transfected with restored miR‐497 or depleted LRG1 for further verification. MiR‐497 and LRG1 expression in femoral head tissues and osteoblasts of osteoporosis rats were detected. TGF‐β1/Smads signalling pathway‐related factors were detected. MiR‐497 was poorly expressed while LRG1 was highly expressed and TGF‐β1/Smads signalling pathway activation was inhibited in osteoporosis. MiR‐497 up‐regulation or LRG1 down‐regulation activated TGF‐β1/Smads signalling pathway, promoted collagen type 1 synthesis and suppressed oxidative stress in femoral head tissues in osteoporosis. MiR‐497 restoration or LRG1 knockdown activated TGF‐β1/Smads signalling pathway, promoted viability and suppressed apoptosis of osteoblasts in osteoporosis. Our study suggests that miR‐497 up‐regulation or LRG1 down‐regulation promotes osteoblast viability and collagen synthesis via activating TGF‐β1/Smads signalling pathway, which may provide a novel reference for osteoporosis treatment.
Collapse
Affiliation(s)
- ZhengTao Gu
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Academy of Orthopedics of Guangdong Province, Guangzhou, China
| | - DengHui Xie
- Division of joint surgery, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Academy of Orthopedics of Guangdong Province, Guangzhou, China
| | - CaiQiang Huang
- Division of spine surgery, section Ⅱ, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Academy of Orthopedics of Guangdong Province, Guangzhou, China
| | - Rui Ding
- Division of spine surgery, section Ⅱ, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Academy of Orthopedics of Guangdong Province, Guangzhou, China
| | - RongKai Zhang
- Division of joint surgery, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Academy of Orthopedics of Guangdong Province, Guangzhou, China
| | - QingChu Li
- Division of spine surgery, section Ⅱ, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Academy of Orthopedics of Guangdong Province, Guangzhou, China
| | - ChuangXin Lin
- Department of Orthopedic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, P. R. China
| | - YiYan Qiu
- Division of spine surgery, section Ⅱ, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Academy of Orthopedics of Guangdong Province, Guangzhou, China
| |
Collapse
|
19
|
Tang XF, Ma ZT, Gao YY, Wang H, Li XX, Yu P, Liu RH. Systemic osteoprotective effects of Epimedii Folium and Ligustri Lucidi Fructus in senile osteoporosis rats by promoting the osteoblastogenesis and osteoclastogenesis based on MLP-ANN model. Chin Med 2020; 15:87. [PMID: 32843893 PMCID: PMC7441627 DOI: 10.1186/s13020-020-00368-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/13/2020] [Indexed: 12/23/2022] Open
Abstract
Background Senile osteoporosis (SOP), which is caused by unbalanced bone remodeling, leads to significant economic and societal burdens globally. The combination of Epimedii Folium (EF) and Ligustri Lucidi Fructus (LLF) serves as a commonly-used prescription for SOP in Traditional Chinese Medicine (TCM). This study aimed to evaluate the osteoprotective effects of EF and LLF in combination on SOP rats based on the constructed multilayer perception (MLP)-artificial neural network (ANN) model. Methods 15 month old male Sprague-Dawley rats were administrated with EF, LLF or the combination of EF and LLF (EF&LLF) for 2 months, while 17 month old rats were used as the aging control group. All the rats were anesthetized with 25% ethyl carbamate, then their serum liver and bone tissues were taken. We detected bone mass, bone mineral density (BMD), biomechanics and the microstructure of bone trabecula by micro-CT and H&E staining to evaluate the degree of osteoporosis. Blood lipids and serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and γ-glutamyl transferase (GGT) and liver pathology were use to assess the side effects of drugs. Levels of alkaline phosphatase (ALP) and Tartrate-resistant acid phosphatase (TRACP) and the ratio of ALP to TRACP both in serum and bone were measured for the evaluation of bone turnover rate. The bone mRNA and protein expression of osteoprotegerin (OPG), nuclear factor-kappa B ligand (RANKL), macrophage colony-stimulating factor (M-CSF), d2 isoform of vacuolar (H+) ATPase (ATP6V0d2), insulin-like growth factor (IGF-1), bone morphogenetic protein-2 (BMP2), M-CSF, Wnt5a, transforming growth factor-β1 (TGF-β1) were detected for evaluating bone metabolism. Results The results showed that EF&LLF improved bone mass and bone quality by preventing bone loss, increasing maximal load as well as protecting the micro-structural retrogressive change of trabecular bone in SOP rats; ameliorated the steatosis in the liver and decreased blood lipids and serum ALT, AST and GGT; enhanced bone remodeling by stimulating the expression of ALP and TRACP. At the molecular levels, EF&LLF stimulated the osteoclastogenesis by upregulating the protein and mRNA expression of OPG, RANKL, M-CSF and ATP6V0d2; meanwhile, EF&LLF stimulated osteoblastogenesis by enhancing the expression of TGF-β1, BMP2, Wnt5a and IGF-1. According to our established MLP model, EF&LLF has a better effect on osteoclastogenesis or steoblastogenesis in SOP rats than EF or LLF. Conclusions These findings demonstrate that the systemic bone protective effects of EF&LLF by promoting bone remodeling in aging rats might be a substitute medicine for the treatment of SOP.
Collapse
Affiliation(s)
- Xiu-Feng Tang
- Shandong Tumor Hospital and Institute, Jinan, Shandong China
| | - Zi-Tong Ma
- School of Traditional Chinese Medicine, Capital Medical University, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069 China
| | - Ying-Ying Gao
- School of Traditional Chinese Medicine, Capital Medical University, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069 China
| | - Han Wang
- School of Traditional Chinese Medicine, Capital Medical University, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069 China
| | - Xiao-Xi Li
- School of Traditional Chinese Medicine, Capital Medical University, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069 China
| | - Ping Yu
- School of Traditional Chinese Medicine, Capital Medical University, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069 China
| | - Ren-Hui Liu
- School of Traditional Chinese Medicine, Capital Medical University, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069 China
| |
Collapse
|
20
|
Xing YF, Wei CS, Zhou TR, Huang DP, Zhong WC, Chen B, Jin H, Hu XY, Yang ZY, He Q, Jiang KP, Jiang JM, Hu ZB, Deng X, Yang F, Li FY, Zhao G, Wang LC, Mi YQ, Gong ZJ, Guo P, Wu JH, Shi WQ, Yang HZ, Zhou DQ, Tong GD. Efficacy of a Chinese herbal formula on hepatitis B e antigen-positive chronic hepatitis B patients. World J Gastroenterol 2020; 26:4501-4522. [PMID: 32874061 PMCID: PMC7438193 DOI: 10.3748/wjg.v26.i30.4501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/29/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND No guideline recommends antiviral therapy for hepatitis B e antigen (HBeAg)-positive chronic hepatitis B patients with persistently normal alanine aminotransferase levels and a high hepatitis B virus (HBV) DNA viral load.
AIM To evaluate the feasibility and safety of a Chinese herbal formula as a therapeutic option for chronic HBV infection.
METHODS In total, 395 patients (30–65 years old) with confirmed HBeAg-positive chronic hepatitis B infection and persistently normal alanine aminotransferase were randomized to receive either Chinese herbal formula or placebo for 96 wk. Endpoints to evaluate therapeutic efficacy included: (1) HBV DNA levels decreased to less than 4 log10 IU/mL at weeks 48 and 96; and (2) HBeAg clearance and seroconversion rates at weeks 48 and 96.
RESULTS HBV DNA levels ≤ 4 log10 IU/mL were 10.05% at week 48 and 18.59% at week 96 in the treatment group. The HBeAg clearance and conversion rates were 8.54% and 8.04% at week 48 and 16.08% and 14.57% at week 96, respectively. However, HBV DNA levels ≤ 4 log10 IU/mL were 2.55% and 2.55% at weeks 48 and 96, respectively, and the HBeAg clearance rates were 3.06% and 5.61% at weeks 48 and 96, respectively, in the control group. The quantitative hepatitis B surface antigen and HBeAg levels at baseline and changes during the treatment period as well as the alanine aminotransferase elevation at weeks 12 and 24 were strong predictors of HBeAg clearance.
CONCLUSION High rates of HBV DNA reduction, HBeAg clearance and seroconversion could be achieved with Chinese herbal formula treatments, and the treatments were relatively safe for HBeAg-positive chronic hepatitis B-infected patients with persistently normal alanine aminotransferase. The ability of the compound to modulate host immune function probably contributed to this effect.
Collapse
Affiliation(s)
- Yu-Feng Xing
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| | - Chun-Shan Wei
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| | - Tian-Ran Zhou
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| | - Dan-Ping Huang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| | - Wei-Chao Zhong
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| | - Bin Chen
- Department of Hepatology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Hua Jin
- Department of Integrated Traditional and Western Medicine on Liver Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xiao-Yu Hu
- Department of Infectious Disease, The Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, Sichuan Province, China
| | - Zhi-Yun Yang
- Department of Integrated Traditional and Western Medicine on Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Qing He
- The First Department of Hepatology, Shenzhen No. 3 People’s Hospital, Shenzhen 518100, Guangdong Province, China
| | - Kai-Ping Jiang
- Department of Hepatology, Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, Guangdong Province, China
| | - Jun-Min Jiang
- Department of Hepatology, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Zhen-Bin Hu
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530012, Guangxi Province, China
| | - Xin Deng
- Department of Hepatology, Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning 530012, Guangxi Province, China
| | - Fan Yang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430060, Hubei Province, China
| | - Feng-Yi Li
- Treatment and Research Center of Infectious Disease, 302 Military Hospital of China, Beijing 100039, China
| | - Gang Zhao
- Department of Hepatology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201204, China
| | - Li-Chun Wang
- Center of Infectious Disease, Huaxi Hospital, Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Yu-Qiang Mi
- Department of Infectious Disease, Tianjin Infectious Disease Hospital, Tianjin 300192, China
| | - Zuo-Jiong Gong
- Department of Infectious Disease, Hubei People’s Hospital, Wuhan 430060, Hubei Province, China
| | - Peng Guo
- Department of Hepatology, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing 100080, China
| | - Jian-Hua Wu
- Center of Hepatology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen 361009, Fujian Province, China
| | - Wei-Qun Shi
- Department of Hepatology, Xinhua Hospital, Zhejiang University of Traditional Chinese Medicine, Hangzhou 310005, Zhejiang Province, China
| | - Hong-Zhi Yang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510620, Guangdong Province, China
| | - Da-Qiao Zhou
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| | - Guang-Dong Tong
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| |
Collapse
|
21
|
Zhou Q, Zhang Z, Geng P, Huang B, Wang X, Yu X. Pharmacokinetics of ligustroflavone in rats and tissue distribution in mice by UPLC–MS/MS. ACTA CHROMATOGR 2020. [DOI: 10.1556/1326.2019.00586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method was developed and validated for quantification of ligustroflavone, which was then applied in pharmacokinetics study in rat and tissue distribution in mouse. Twelve male Sprague Dawley rats were used for pharmacokinetics after intravenous (2 or 8 mg/kg) administration of ligustroflavone, six rats for each dose. Twenty-five mice were randomly divided into 5 groups (5 mice for each group, 1 group for each time point) and received 16 mg/kg ligustroflavone via intraperitoneal administration. The linear range of the calibration curve was over 2–2000 ng/mL for ligustroflavone in rat plasma and mouse tissues. The intra-day and inter-day precision expressed in % RSD were less than 14%, and the accuracy was between 88.5% and 108.4%.
The tissue distribution results indicated that ligustroflavone diffuses rapidly and widely into major organs. The level of ligustroflavone was highest in the mouse liver, followed by the kidney, spleen, and lung. The overwhelming accumulation in the liver indicated that the liver was responsible for the extensive metabolism.
Collapse
Affiliation(s)
- Quan Zhou
- 1 Laboratory of Clinical Pharmacy, The People's Hospital of Lishui, Lishui 323000, China
| | - Zhiguang Zhang
- 2 Laboratory Animal Center, Wenzhou Medical University, Wenzhou 325035, China
| | - Peiwu Geng
- 1 Laboratory of Clinical Pharmacy, The People's Hospital of Lishui, Lishui 323000, China
| | - Bingge Huang
- 2 Laboratory Animal Center, Wenzhou Medical University, Wenzhou 325035, China
| | - Xianqin Wang
- 3 School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaomin Yu
- 3 School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
22
|
Xiaokeping Mixture Attenuates Diabetic Kidney Disease by Modulating TGF- β/Smad Pathway in db/db Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9241896. [PMID: 31687039 PMCID: PMC6800893 DOI: 10.1155/2019/9241896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/06/2019] [Indexed: 11/17/2022]
Abstract
Xiaokeping mixture (XKP), a traditional Chinese medicine compound preparation, has achieved widespread use for diabetes mellitus and its kidney damage in clinical practice. The current study was carried out to assess the protective effect of XKP in spontaneous diabetic db/db mice and the underlying mechanism whereby XKP regulates TGF-β/Smad pathway. Male C57BLKS/J db/db mice, 12 weeks old, were randomly divided into 3 groups: the model group, 17.5 mg/kg irbesartan-treated group (IST group), and 8 g/kg XKP-treated group (XKP group), while age-matched db/m mice were selected as a control group. After 8 weeks of administration, serum and urea samples were collected from mice for biochemical tests, while the kidneys were removed for histological analysis. The expression of TGF-β/Smad pathway-related mRNA and protein were measured by RT-PCR and western blot analysis. Treatment with XKP significantly improved renal function and attenuated the pathological change of diabetic kidney disease (DKD) in renal histopathology. Furthermore, the overexpression of TGF-β1, Smad3, and p-Smad3 was inhibited, as well as the reduction of Smad7 and SIP1 was weakened by XKP. In conclusion, these results suggest that XKP could attenuate DKD by modulating TGF-β/Smad pathway.
Collapse
|
23
|
Metabolomics profiling provides valuable insights into the underlying mechanisms of Morinda officinalis on protecting glucocorticoid-induced osteoporosis. J Pharm Biomed Anal 2019; 166:336-346. [DOI: 10.1016/j.jpba.2019.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/27/2018] [Accepted: 01/12/2019] [Indexed: 11/21/2022]
|
24
|
Combined Extracts of Herba Epimedii and Fructus Ligustri Lucidi Rebalance Bone Remodeling in Ovariectomized Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1596951. [PMID: 30894875 PMCID: PMC6393883 DOI: 10.1155/2019/1596951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/12/2019] [Accepted: 02/05/2019] [Indexed: 01/09/2023]
Abstract
This study aimed to investigate the osteoprotective effect and the possible molecular mechanisms of the combined extracts of Herba Epimedii and Fructus Ligustri Lucidi on postmenopausal osteoporosis (PMOP). Forty-eight female SD rats were sham-operated (Sham, n = 8) or ovariectomized (OVX, n = 40). Then after a week, OVX rats were divided randomly into five groups (n = 8 in each group): OVX, extracts of Herba Epimedii (HE, 0.35 g/kg), extracts of Fructus Ligustri Lucidi (FLL, 0.35 g/kg), combined extracts of HE and FLL (HE & FLL, 0.20 g/kg HE plus 0.15 g/kg FLL), and Raloxifene hydrochloride (RH, 6.25 mg/kg) groups. All groups were administered once daily for 12 weeks. Indicators related to bone remodeling were detected, including estradiol (E2), bone mineral density (BMD), maximal load, ultimate deflection, micro-CT properties, tartrate-resistant acid phosphatase (TRACP) and alkaline phosphatase (ALP) levels in serum and bone, and the protein and mRNA expression of bone turnover markers (RANKL, M-CSF, Wnt5a, Atp6v0d2, OPG, IGF-1, TGF-β1, and Bmp-2). Results showed that the combined extracts could increase serum E2 levels and BMD, enhance bone strength, reserve bone microstructure degeneration, promote bone formation, and inhibit bone resorption through upregulating the mRNA and protein expression of OPG, IGF-1, TGF-β1, and Bmp-2, while downregulating RANKL, M-CSF, Wnt5a, and Atp6v0d2. These findings demonstrated that the combined extracts of Herba Epimedii and Fructus Ligustri Lucidi with bone protective effects on OVX rats might be an alternative medicine for the treatment of PMOP.
Collapse
|
25
|
Preventive Effects of Evodiamine on Dexamethasone-Induced Osteoporosis in Zebrafish. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5859641. [PMID: 30805367 PMCID: PMC6362467 DOI: 10.1155/2019/5859641] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/30/2018] [Indexed: 12/02/2022]
Abstract
The aim of this study was to investigate the effect of evodiamine (EV) on dexamethasone-induced osteoporosis in zebrafish. Zebrafish larvae were exposed to different concentrations of dexamethasone to obtain the osteoporosis in zebrafish. Calcium, phosphorus, and alizarin red staining determination were performed to evaluate the effects of EV on bone mineralization. Alkaline phosphatase (ALP), hydroxyproline (HP), and tartrate resistant acid phosphatase (TRAP) were also measured by commercial kits. The expression of MMP3-OPN-MAPK pathway in zebrafish was measured by Western blot. RT-PCR was used to determine mRNA levels of MMP3, OPN, and MAPK. EV could significantly increase the content of calcium and phosphorus. The results of alizarin red staining showed that EV could significantly increase the calcium sink of horse fish, increasing the area of bone formation. EV could increase the content of hydroxyproline in zebrafish. EV also increased ALP and TRAP in zebrafish. Western blot and RT-PCR results showed that EV restored the MMP3-OPN-MAPK pathway in zebrafish. In conclusion, we found that EV can alleviate dexamethasone-induced osteoporosis in zebrafish. The mechanism is related to activating MMP3-OPN-MAPK pathway and then activating bone remodeling.
Collapse
|
26
|
Metabolomics Profiling Reveals Rehmanniae Radix Preparata Extract Protects against Glucocorticoid-Induced Osteoporosis Mainly via Intervening Steroid Hormone Biosynthesis. Molecules 2019; 24:molecules24020253. [PMID: 30641909 PMCID: PMC6358733 DOI: 10.3390/molecules24020253] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/02/2019] [Accepted: 01/05/2019] [Indexed: 11/16/2022] Open
Abstract
Rehmanniae Radix Preparata (RR), the dry rhizome of Rehmannia glutinosa Libosch., is a traditional herbal medicine for improving the liver and kidney function. Ample clinical and pharmacological experiments show that RR can prevent post-menopausal osteoporosis and senile osteoporosis. In the present study, in vivo and in vitro experiments, as well as a UHPLC-Q/TOF-MS-based metabolomics study, were used to explore the preventing effect of RR on glucocorticoid-induced osteoporosis (GIOP) and its underlying mechanisms. As a result, RR significantly enhanced bone mineral density (BMD), improved the micro-architecture of trabecular bone, and intervened in biochemical markers of bone metabolism in dexamethasone (DEX)-treated rats. For the in vitro experiment, RR increased the cell proliferation and alkaline phosphatase (ALP) activity, enhanced the extracellular matrix mineralization level, and improved the expression of runt-related transcription factor 2 (RUNX2) and osteopontin (OPN) in DEX-injured osteoblasts. For the metabolomics study, a total of 27 differential metabolites were detected in the DEX group vs. the control group, of which 10 were significantly reversed after RR treatment. These metabolites were majorly involved in steroid hormone biosynthesis, sex steroids regulation, and amino acid metabolism. By metabolic pathway and Western blotting analysis, it was further ascertained that RR protected against DEX-induced bone loss, mainly via interfering steroid hormone biosynthesis, as evidenced by the up-regulation of cytochrome P450 17A1 (CYP17A1) and aromatase (CYP19A1), and the down-regulation of 11β-hydroxysteroid dehydrogenase (HSD11B1). Collectively, these results indicated that RR had a notable preventing effect on GIOP, and the action mechanism might be related to steroid hormone biosynthesis.
Collapse
|
27
|
Tang X, Gao Y, Chen Y, Li X, Yu P, Ma Z, Liu R. Evaluation of the effect of CaD on the bone structure and bone metabolic changes in senile osteoporosis rats based on MLP–ANN methods. Food Funct 2019; 10:8026-8041. [DOI: 10.1039/c9fo01322a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Senile osteoporosis (SOP) is a related disease of systematic degenerative changes in bones during natural aging.
Collapse
Affiliation(s)
- Xiufeng Tang
- School of Traditional Chinese Medicine
- Capital Medical University and Beijing Key Lab of TCM Collateral Disease Theory Research
- Beijing 100069
- China
| | - Yingying Gao
- School of Traditional Chinese Medicine
- Capital Medical University and Beijing Key Lab of TCM Collateral Disease Theory Research
- Beijing 100069
- China
| | - Yuheng Chen
- School of Traditional Chinese Medicine
- Capital Medical University and Beijing Key Lab of TCM Collateral Disease Theory Research
- Beijing 100069
- China
| | - Xiaoxi Li
- School of Traditional Chinese Medicine
- Capital Medical University and Beijing Key Lab of TCM Collateral Disease Theory Research
- Beijing 100069
- China
| | - Ping Yu
- School of Traditional Chinese Medicine
- Capital Medical University and Beijing Key Lab of TCM Collateral Disease Theory Research
- Beijing 100069
- China
| | - Zitong Ma
- School of Traditional Chinese Medicine
- Capital Medical University and Beijing Key Lab of TCM Collateral Disease Theory Research
- Beijing 100069
- China
| | - Renhui Liu
- School of Traditional Chinese Medicine
- Capital Medical University and Beijing Key Lab of TCM Collateral Disease Theory Research
- Beijing 100069
- China
| |
Collapse
|
28
|
Fan S, Gao X, Chen P, Li X. Myricetin ameliorates glucocorticoid-induced osteoporosis through the ERK signaling pathway. Life Sci 2018; 207:205-211. [DOI: 10.1016/j.lfs.2018.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/28/2018] [Accepted: 06/05/2018] [Indexed: 12/14/2022]
|
29
|
Liu J, Mattheos N, Su C, Deng C, Luo N, Wang Z, Tang H. The effects of icariin on wound healing of extraction sites with administration of zoledronic and dexamethasone: A rat model study. J Oral Pathol Med 2017; 47:198-205. [PMID: 29130610 DOI: 10.1111/jop.12659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Jie Liu
- State Key Laboratory of Oral Diseases; National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Nikos Mattheos
- Faculty of Dentistry; The University of Hong Kong; Hong Kong SAR China
| | - Cheng Su
- State Key Laboratory of Oral Diseases; National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Chuanxi Deng
- State Key Laboratory of Oral Diseases; National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Nanyu Luo
- State Key Laboratory of Oral Diseases; National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Zekun Wang
- State Key Laboratory of Oral Diseases; National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Hua Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Implantology; West China Hospital of Stomatology; Sichuan University; Chengdu China
| |
Collapse
|
30
|
Du H, Liu Y, Chen X, Yu X, Hou X, Li H, Zhan M, Lin S, Lu L, Yuan S, Sun L. DT-13 synergistically potentiates the sensitivity of gastric cancer cells to topotecan via cell cycle arrest in vitro and in vivo. Eur J Pharmacol 2017; 818:124-131. [PMID: 29037767 DOI: 10.1016/j.ejphar.2017.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 12/11/2022]
Abstract
Natural medicine has multi-levels, multi-paths and multi-targets, and an increasing number of reports have confirmed that the combination of natural medicine with chemotherapy drugs exhibit a significant synergistic effect. It is necessary to find drug combination strategies to enhance efficacy and reduce toxicity, which can relieve the restrictions on the use of several chemotherapy drugs that have serious toxicity. Our previous reports showed that DT-13 inhibits cancer proliferation, invasion, migration, metastasis, and angiogenesis and induces autophagy. In this study, we evaluated the anti-proliferation effect of DT-13 on a panel of 40 different cancer cell lines for the first time. Moreover, it is also the first time that the combination of DT-13 with 5 different chemotherapy drugs on 3 common cancer cells has been examined. We further confirmed that DT-13 enhanced the sensitivity of gastric cancer cells to topotecan (TPT) via cell cycle arrest in vitro and in vivo. Considering that TPT has been subjected to restriction because of its serious toxicity, DT-13 showed the ability to enhance its effect and reduce its toxicity, which could provide a strategy to reduce the toxic and clinical side effects of TPT.
Collapse
Affiliation(s)
- Hongzhi Du
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yang Liu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xudong Chen
- Department of Intervention Treatment, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Xiaowen Yu
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaoying Hou
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Hongyang Li
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Meixiao Zhan
- Interventional Radiology Center, Zhuhai Precision Medicine Center, Zhuhai People's Hospital of Tongji University, Zhuhai, Guangdong, China
| | - Sensen Lin
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ligong Lu
- Interventional Radiology Center, Zhuhai Precision Medicine Center, Zhuhai People's Hospital of Tongji University, Zhuhai, Guangdong, China.
| | - Shengtao Yuan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Li Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
31
|
Chen B, Wang L, Li L, Zhu R, Liu H, Liu C, Ma R, Jia Q, Zhao D, Niu J, Fu M, Gao S, Zhang D. Fructus Ligustri Lucidi in Osteoporosis: A Review of its Pharmacology, Phytochemistry, Pharmacokinetics and Safety. Molecules 2017; 22:molecules22091469. [PMID: 28872612 PMCID: PMC6151717 DOI: 10.3390/molecules22091469] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/15/2022] Open
Abstract
Background: Fructus Ligustri Lucidi (FLL) has now attracted increasing attention as an alternative medicine in the prevention and treatment of osteoporosis. This study aimed to provide a general review of traditional interpretation of the actions of FLL in osteoporosis, main phytochemical constituents, pharmacokinetics, pharmacology in bone improving effect, and safety. Materials and Methods: Several databases, including PubMed, China National Knowledge Infrastructure, National Science and Technology Library, China Science and Technology Journal Database, and Web of Science were consulted to locate publications pertaining to FLL. The initial inquiry was conducted for the presence of the following keywords combinations in the abstracts: Fructus Ligustri Lucidi, osteoporosis, phytochemistry, pharmacokinetics, pharmacology, osteoblasts, osteoclasts, salidroside. About 150 research papers and reviews were consulted. Results: FLL is assumed to exhibit anti-osteoporotic effects by improving liver and kidney deficiencies and reducing lower back soreness in Traditional Chinese Medicine (TCM). The data from animal and cell experiments demonstrate that FLL is able to improve bone metabolism and bone quality in ovariectomized, growing, aged and diabetic rats through the regulation of PTH/FGF-23/1,25-(OH)2D3/CaSR, Nox4/ROS/NF-κB, and OPG/RANKL/cathepsin K signaling pathways. More than 100 individual compounds have been isolated from this plant. Oleanolic acid, ursolic acid, salidroside, and nuzhenide have been reported to exhibit the anti-osteoporosis effect. The pharmacokinetics data reveals that salidroside is one of the active constituents, and that tyrosol is hard to detect under physiological conditions. Acute and subacute toxicity studies show that FLL is well tolerated and presents no safety concerns. Conclusions: FLL provides a new option for the prevention and treatment of osteoporosis, which attracts rising interests in identifying potential anti-osteoporotic compounds and fractions from this plant. Further scientific evidences are expected from well-designed clinical trials on its bone protective effects and safety.
Collapse
Affiliation(s)
- Beibei Chen
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Lili Wang
- Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing 100029, China.
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Lin Li
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Ruyuan Zhu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Haixia Liu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Chenyue Liu
- Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Rufeng Ma
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Qiangqiang Jia
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Dandan Zhao
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Jianzhao Niu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Min Fu
- The Research Institute of McGill University Health Center, Montreal, QC H4A 3J1, Canada.
| | - Sihua Gao
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Dongwei Zhang
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
32
|
Tang X, Nian H, Li X, Yang Y, Wang X, Xu L, Shi H, Yang X, Liu R. Effects of the combined extracts of Herba Epimedii and Fructus Ligustrilucidi on airway remodeling in the asthmatic rats with the treatment of budesonide. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:380. [PMID: 28764781 PMCID: PMC5540498 DOI: 10.1186/s12906-017-1891-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 07/24/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND Asthma is characterized by chronic airway inflammation, leading to structura1 changes in the airway, collectively termed airway remodeling. Airway remodeling is thought to contribute to airway hyper responsiveness and irreversible airflow limitation. The combination of Herba Epimedii (HE) and Fructus Ligustri Lucidi (FLL) decoction and the systemic administration of glucocorticoids (GC) had a synergistic inhibitory action on airway inflammation in the asthmatic model rats. However, the effects of the combination on airway remodeling have not been studied and compared. In the present study, we investigated the effects of the co-administration of combined extracts of HE and FLL with inhaled GC (budesonide) on airway remodeling in the rat asthmatic model induced by ovalbumin (OVA). METHODS Male Sprague-Dawley rats were sensitized to intraperitoneal OVA followed by repetitive OVA challenge for 7 weeks. Treatments included extracts of HE and FLL (Extracts for short, 100 mg/kg by gastric perfusion), budesonide (1 mg budesonide suspension in 50 ml sterile physiological saline, 3 rats in an ultrasonic nebulizer by nebulized inhabation with a flow of 1.6 ml/min for 30 min), and co-administration of extracts of HE and FLL with budesonide (Co-administration for short) for 4 weeks. Lung histomorphometry and bronchoalveolar lavage fluid (BALF) cell count were assessed 24 h after the final OVA challenge. Levels of interleukin (IL)-4, IL-5 and IgE were measured by ELISA. Expressions of Collagen I and Collagen III were tested by immunohistology. Expressions of transforming growth factor (TGF) -β1, TGF-β2 and Smads mRNA were measured by quantitative real-time PCR. RESULTS Extracts, budesonide and Co-administration significantly reduced allergen-induced increases in the serum levels of IL-4, IL-5 and IgE, the number of eosinophils in BALF, goblet cell hyperplasia, Collagen III integral optical density (IOD) and the mRNA expression of TGF-β2 and Smad2. Extracts and Co-administration could depress the IOD level of Collagen I and the positive area of Collagen I and Collagen III. Budesonide and Co-administration significantly alleviated the thickening of airway wall. Only Co-administration significantly decreased collagen deposition according to the morphometry of Masson's-stained lung sections, the thickening of airway smooth muscle layer, the number of lymphocytes in BALF and the mRNA expression of TGF-β1 and Smad3, and this was associated with a significant increase in levels of Smad7 mRNA. CONCLUSIONS The findings suggested that the combination of budesonide and the herbal extracts had a better synergistic effect on airway remodeling in OVA-reduced asthma rats than the single use of budesonide.
Collapse
Affiliation(s)
- Xiufeng Tang
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069 China
| | - Honglei Nian
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069 China
| | - Xiaoxi Li
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069 China
| | - Yan Yang
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069 China
| | - Xiujuan Wang
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069 China
| | - Liping Xu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069 China
| | - Haotian Shi
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069 China
| | - Xinwei Yang
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069 China
| | - Renhui Liu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069 China
| |
Collapse
|
33
|
Lin YC, Chang TT, Chen HJ, Wang CH, Sun MF, Yen HR. Characteristics of traditional Chinese medicine usage in children with precocious puberty: A nationwide population-based study. JOURNAL OF ETHNOPHARMACOLOGY 2017; 205:231-239. [PMID: 28499829 DOI: 10.1016/j.jep.2017.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Precocious puberty (PP) occurs in children with the early onset of pubertal development leading to physical and psychological problems. Current medical treatment is expensive and has its side effects. However, little is known about the utilization of traditional Chinese medicine (TCM) among patients with PP. To characterize the application of TCM among these patients, we conducted a nationwide population-based study. MATERIALS AND METHODS We used the Taiwanese National Health Insurance Research Database (NHIRD), to perform a nationwide population-based study. The NHIRD has a derived dataset with the information for a randomly selected half of all insured children from 1997 to 2008 in Taiwan. We identified children <18 years of age with newly diagnosed sexual precocity (ICD-9 CM code: 259.1). The subjects were categorized based on the inclusion of TCM in their treatment plan. RESULTS Overall, 3495 newly diagnosed subjects with sexual precocity were included. Among these children, 1.86% (N=65) had used TCM. There were significantly more subjects with no treatment, 87.32% (N=3052), than those with treatment of TCM, western medicine, or both. Most of the TCM users received Chinese herbal remedies (98.25%), and only 1.75% received acupuncture or manipulative therapies. Zhi-Bai-Di-Huang-Wan was the most frequently prescribed TCM formulation (23.73%), while Mai-Ya (Fructus Hordei Germinatus) was the most commonly prescribed single herb (10.87%). CONCLUSION Our study identified the characteristics and prescription patterns of TCM for children with PP in Taiwan. Further basic mechanistic studies and clinical trials are needed to confirm the efficacy and mechanism.
Collapse
Affiliation(s)
- Yi-Chun Lin
- Department of Chinese Medicine, China Medical University Hospital, Taichung 404, Taiwan.
| | - Tung-Ti Chang
- Department of Chinese Medicine, China Medical University Hospital, Taichung 404, Taiwan; School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
| | - Husan-Ju Chen
- Health Data Management Office, China Medical University Hospital, Taichung 404, Taiwan.
| | - Chung-Hsing Wang
- Department of Pediatrics, China Medical University Children's Hospital, Taichung 404, Taiwan; School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan.
| | - Mao-Feng Sun
- Department of Chinese Medicine, China Medical University Hospital, Taichung 404, Taiwan; School of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
| | - Hung-Rong Yen
- Department of Chinese Medicine, China Medical University Hospital, Taichung 404, Taiwan; School of Chinese Medicine, China Medical University, Taichung 404, Taiwan; Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan; Research Center for Chinese Herbal Medicine, China Medical University, Taichung 404, Taiwan; Department of Biotechnology, Asia University, Taichung 404, Taiwan.
| |
Collapse
|