1
|
Hikmawanti NPE, Saputri FC, Yanuar A, Jantan I, Ningrum RA, Mun'im A. Insights into the anti-infective effects of Pluchea indica (L.) Less and its bioactive metabolites against various bacteria, fungi, viruses, and parasites. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117387. [PMID: 37944874 DOI: 10.1016/j.jep.2023.117387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/12/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pluchea indica (L.) Less (family Asteraceae) is popularly consumed as a medicinal vegetable and used in ethnomedicine to treat various diseases including gastrointestinal problems such as dysentery and leucorrhoea, which are due to bacterial, fungal or parasitic infections. There have been numerous studies on the antimicrobial effects of the plant due to these ethnomedicine use. AIM OF THIS REVIEW This review is comprehensively discussed the information on the anti-infective properties of P. indica and its secondary metabolites, and highlight the potential of the plant as a new source of anti-infective agents. MATERIALS AND METHODS Scientific databases such as Scopus, Google Scholar, ScienceDirect, PubMed, Wiley Online Library, and ACS Publications were used to gather the relevant information on the ability of P. indica to fight infections, with the leaves and roots receiving most of the attention. RESULTS Anti-bacterial, anti-mycobacterial, anti-malarial, and anti-viral activities have been the most exploited. Most studies were carried out on the crude extracts of the plant and in most studies the bioactive extracts were not standardized or chemically characterized. Several studies have reported the anti-infective activity of several bioactive components of P. indica including caffeoylquinic acids, terpenoid glycosides, thiophenes, and kaempferol. CONCLUSIONS The strong anti-infective effect and underlying mechanisms of the compounds provide insights into the potential of P. indica as a source of new leads for the development of anti-infective agents for use in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Ni Putu Ermi Hikmawanti
- Graduate Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Indonesia, Cluster of Health Sciences Building, Depok, 16424, West Java, Indonesia; Department of Pharmaceutical Biology, Faculty of Pharmacy and Sciences, Universitas Muhammadiyah Prof. DR. HAMKA, East Jakarta, 13460, DKI Jakarta, Indonesia; National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, 16424, Indonesia.
| | - Fadlina Chany Saputri
- Department of Pharmacology-Toxicology, Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia; National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, 16424, Indonesia.
| | - Arry Yanuar
- Department of Biomedical Computation-Drug Design, Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia; National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, 16424, Indonesia.
| | - Ibrahim Jantan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Selangor, Malaysia.
| | - Ratih Asmana Ningrum
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Raya Bogor Street KM.46, Cibinong, Bogor, West Java, 16911, Indonesia; National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, 16424, Indonesia.
| | - Abdul Mun'im
- Department of Pharmacognosy-Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Cluster of Health Sciences Building, Depok, 16424, West Java, Indonesia; National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, 16424, Indonesia.
| |
Collapse
|
2
|
Xia F, Li B, Song K, Wang Y, Hou Z, Li H, Zhang X, Li F, Yang L. Polyploid Genome Assembly Provides Insights into Morphological Development and Ascorbic Acid Accumulation of Sauropus androgynus. Int J Mol Sci 2023; 25:300. [PMID: 38203470 PMCID: PMC10778994 DOI: 10.3390/ijms25010300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Sauropus androgynus (S. androgynus) (2n = 4x = 52) is one of the most popular functional leafy vegetables in South and Southeast Asia. With its rich nutritional and pharmaceutical values, it has traditionally had widespread use for dietary and herbal purposes. Here, the genome of S. androgynus was sequenced and assembled, revealing a genome size of 1.55 Gb with 26 pseudo-chromosomes. Phylogenetic analysis traced back the divergence of Sauropus from Phyllanthus to approximately 29.67 million years ago (Mya). Genome analysis revealed that S. androgynus polyploidized around 20.51 Mya and shared a γ event about 132.95 Mya. Gene function analysis suggested that the expansion of pathways related to phloem development, lignin biosynthesis, and photosynthesis tended to result in the morphological differences among species within the Phyllanthaceae family, characterized by varying ploidy levels. The high accumulation of ascorbic acid in S. androgynus was attributed to the high expression of genes associated with the L-galactose pathway and recycling pathway. Moreover, the expanded gene families of S. androgynus exhibited multiple biochemical pathways associated with its comprehensive pharmacological activity, geographic adaptation and distinctive pleasurable flavor. Altogether, our findings represent a crucial genomic asset for S. androgynus, casting light on the intricate ploidy within the Phyllanthaceae family.
Collapse
Affiliation(s)
- Fagang Xia
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.X.); (Y.W.)
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bin Li
- Agricultural Big-Data Research Center, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.L.); (K.S.); (H.L.); (X.Z.)
| | - Kangkang Song
- Agricultural Big-Data Research Center, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.L.); (K.S.); (H.L.); (X.Z.)
| | - Yankun Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.X.); (Y.W.)
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhuangwei Hou
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
| | - Haozhen Li
- Agricultural Big-Data Research Center, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.L.); (K.S.); (H.L.); (X.Z.)
| | - Xiaohua Zhang
- Agricultural Big-Data Research Center, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.L.); (K.S.); (H.L.); (X.Z.)
| | - Fangping Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
| | - Long Yang
- Agricultural Big-Data Research Center, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.L.); (K.S.); (H.L.); (X.Z.)
| |
Collapse
|
3
|
Fan Q, Jiu Y, Zou D, Feng J, Zhao M, Zhang Q, Lv D, Song J, Xu Z, Ye H. Alkaline humic acid fertilizer alters the distribution, availability, and translocation of cadmium and zinc in the acidic soil-Sauropus androgynus system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115698. [PMID: 37976927 DOI: 10.1016/j.ecoenv.2023.115698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/10/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Humic acids (HA) are a popular soil additive to reduce metal availability, but they have the drawbacks of reduced effectiveness over time and a significant reduction in soil pH. An alkaline humic acid fertilizer (AHAF) combining alkaline additives with HA was developed to overcome such drawbacks. A field experiment was conducted to investigate the effects of different AHAF application rates on the physicochemical properties, bioavailability, accumulation, and translocation of Cd and Zn heavy metals in Sauropus androgynus grown in acidic soil. Based on our results, the 100AF (100% AHAF) treatment significantly increased soil pH, cation exchange capacity (CEC), and organic matter content (OM) after one year of application. Compared with the control treatment (CK), the application of different rates of AHAF resulted in a 37.1-40.3% decrease in soil exchangeable Cd fractions (Exc-Cd) and an increase in the humic acid-bound Cd fractions (HA-Cd) Fe- and Mn-oxide-bound Cd fractions (OX-Cd), and organic matter-bound Cd fractions (OM-Cd) by 9.5-64.6%, 24.8-45.1%, and 158.8-191.2%, respectively (P < 0.05). The different AHAF treatments decreased the Res-Zn, Exc-Zn, and OM-Zn fractions by 69.6-73.0%, 7.4-23.9%, and 18.1-23.2%, respectively (P < 0.05), and increased the HA-Zn fraction by 8.4-28.1%. In the control treatment, the bioconcentration factors (BCFs) for Cd and Zn in different S. androgynus plant organs were in the following order: (Cd) Leaves > Stems > Branches > Roots > Edible branches; (Zn) Roots > Stems > Leaves > Branches > Edible branches. The transfer factors (TFs) of Cd and Zn in S. androgynus were classified as follows: TF2 > TF1 > TF3 > TF4. Thus, S. androgynus stems, and roots had a strong ability to transport Cd and Zn to the leaves. Compared with CK, the 100AF treatment significantly increased the BCFs for Zn in all plant parts (except BCFedible branches). In contrast, it significantly decreased all BCFs and TFs for Cd and the TF4 for Zn, effectively reducing Cd and Zn accumulation in the edible branches of S. androgynus. Soil pH, CEC, OM, and HA-M fraction were highly and significantly negatively correlated with Cd and Zn content in edible branches (P < 0.001). Stepwise multiple linear regression analysis revealed that the soil HA-M fraction was the key contributing factor for Zn accumulation and translocation in S. androgynus. Moreover, based on our findings, the absorption, uptake, and translocation of Cd and Zn were mainly determined by metal speciation and the pH in the soil. Moreover, the competitive antagonistic mechanisms between Zn and Cd absorption also affected their accumulation in S. androgynus. Thus, AHAF can be used as a soil amendment to sustainably improve acidic soils and effectively reduce Cd and Zn accumulation in edible branches of S. androgynus.
Collapse
Affiliation(s)
- Qiong Fan
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Yuanda Jiu
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Dongmei Zou
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Jian Feng
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Min Zhao
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Qun Zhang
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Daizhu Lv
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Jia Song
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Zhi Xu
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Haihui Ye
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China.
| |
Collapse
|
4
|
Hwong CS, Leong KH, Abdul Aziz A, Mat Junit S, Mohd Noor S, Kong KW. Alternanthera sessilis: Uncovering the nutritional and medicinal values of an edible weed. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115608. [PMID: 35973630 DOI: 10.1016/j.jep.2022.115608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Weeds are often considered undesirable as they interfere with the habitat of native plants, and therefore they are underestimated and underutilised. In fact, some edible weeds have beneficial nutritional and medicinal values. Alternanthera sessilis (L.) R. Br. ex DC., an edible medicinal weed is a species of the Amaranthaceae family that consists of two cultivars: green and red. Local communities in different regions have traditionally consumed the plants as food and medicine, with the green cultivar being applied to relieve pain, treat wound healing, dysentery, asthma and hypertension, while the red cultivar is applied to prevent cardiovascular and liver diseases in general. AIM OF THE STUDY The present review intends to provide an in-depth discussion and scientific basis of A. sessilis green and red's health-promoting properties in relation to their ethnobotanical use, nutritional components and bioactive compounds. MATERIALS AND METHODS The literature search was conducted using relevant keywords on scientific search engines such as the Web of Science, Google Scholar, Medline and Scopus. RESULTS A. sessilis shows potent antioxidant activity as a result of its diverse phytochemical constituents, such as polyphenols, terpenes, alkaloid and carotenoids in addition to its nutritional components: vitamin C, E and unsaturated fatty acids, which contribute to its various bioactive properties: anti-microbial and anthelmintic, anti-diabetic, lipid lowering, anti-inflammatory and analgesic activities, anti-cancer and other biological activities. Toxicity evaluation revealed the absence of adverse effect of A. sesslis extracts. CONCLUSION A. sessilis has a great potential to be used as complementary medicine and ingredients for pharmaceuticals, nutraceuticals and functional foods, instead of being regarded as a pest. Prospects for enhancing the development and commercialisation of this edible medicinal weed as a high value health-promoting product are suggested.
Collapse
Affiliation(s)
- Chia Shing Hwong
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Kok Hoong Leong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Azlina Abdul Aziz
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sarni Mat Junit
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Suzita Mohd Noor
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kin Weng Kong
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
5
|
Dedvisitsakul P, Watla-iad K. Antioxidant activity and antidiabetic activities of Northern Thai indigenous edible plant extracts and their phytochemical constituents. Heliyon 2022; 8:e10740. [PMID: 36185148 PMCID: PMC9519484 DOI: 10.1016/j.heliyon.2022.e10740] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/25/2022] [Accepted: 09/15/2022] [Indexed: 12/31/2022] Open
Abstract
Diabetes mellitus is the most common non-infective disease characterized by hyperglycemia (high level of blood glucose). Formation of advanced glycation end products (AGEs) in long termed-hyperglycemia and oxidative stress are the key factors to accelerate diabetic complications. To screen potential candidates for treating diabetes, total phenolic content, total flavonoid content, antioxidant activity from crude extracts of some Thai edible plants were primarily assessed, and the inhibiting potential of diabetes and its complications provided from some of these plants were evaluated in terms of their inhibitory activities of α-amylase, α-glycosidase, and AGEs formation. The highest amounts of phenolic and flavonoid compounds were found in the ethanolic extract of Caesalpinia mimosoides (S20, 12.63 ± 1.70 mg GAE/g DW) and Glochidion hirsutum (S8, 3.02 ± 0.25 mg CE/g DW), respectively. The highest antioxidant activity was found in Schinus terebinthifolius Raddi (S26, 217.94 ± 32.30 μg AAE/g DW) whereas the highest inhibitory activities of α-amylase and α-glycosidase were obtained from Basella alba L. (S11, IC50 = 0.21 ± 0.01 mg/ml) and S. terebinthifolius (S26, IC50 = 0.05 ± 0.02 mg/ml) respectively. The inhibitory effects of AGEs formation were studied in vitro using two model systems: BSA-glucose and BSA-methylglycoxal (MGO). The extracts of Glochidion hirsutum (Roxb.) Voigt (S8, IC50 = 0.20 ± 0.01 mg/ml) and Polygonum odoratum Lour. (S13, IC50 = 0.03 ± 0.01 mg/ml) exhibited the inhibitory activity of AGEs formation derived from glucose (BSA-glucose system) stronger than aminoguanidine (AG) (0.26 ± 0.00 mg/ml), which is a common AGEs formation inhibitory drug. By BSA-MGO assay, the inhibition of some selected extracts in this study (G. hirsutum, G. sphaerogynum, and S. terebinthifolius with IC50 = 0.11 ± 0.01, 0.11 ± 0.01, and 0.10 ± 0.00 mg/ml, respectively) were slightly less efficient than AG (the IC50 = 0.06 ± 0.00 mg/ml). These results indicated that some selected Thai edible plants in this present study provided potential applications towards the prevention of diabetes and their complications via the inhibitory of α-amylase, α-glycosidase, AGEs formation, and oxidative stress. This fundamental information would be important for alternative drug discovery and nutritional recommendations for diabetic patients.
Collapse
Affiliation(s)
- Plaipol Dedvisitsakul
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Microbial Products and Innovation (MP&I) Research Unit, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kanchana Watla-iad
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Chemical Innovation for Sustainability, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Corresponding author.
| |
Collapse
|
6
|
Lu J, Li W, Gao T, Wang S, Fu C, Wang S. The association study of chemical compositions and their pharmacological effects of Cyperi Rhizoma (Xiangfu), a potential traditional Chinese medicine for treating depression. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114962. [PMID: 34968659 DOI: 10.1016/j.jep.2021.114962] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/13/2021] [Accepted: 12/26/2021] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cyperi Rhizoma (CR) derives from the rhizome or tuber of Cyperus rotundus L. of Cyperaceae. It is an herbal medicine which has been widely used in different healthcare systems like in China, India, Iran, and Japan. In Chinese medicine, CR could promote the flow of Qi in the Liver and Sanjiao channels, regulate menstruation and alleviate pain. Clinically, CR is used for depression, flatulence, hypochondriac pain, and dysmenorrhea. Thus, it has a long history and significant curative effect for the treatment of various Qi stagnation symptoms. AIM OF THIS REVIEW This review focuses on explaining the major antidepressant mechanisms of CR, and assessing the shortcomings of existing work. Besides, clinical applications, pharmacological effects and their corresponding chemical compositions and quality control of CR have been researched. MATERIALS AND METHODS The search terms "Cyperus rotundus L." was used to obtain the literatures from electronic databases such as Web of Science, ScienceDirect, PubMed, and China National Knowledge Infrastructure (CNKI). The information provided in this review to illustrate material basis of CR were only limited to papers which reported on the chemical compositions and pharmacological effects simultaneously. RESULT The study showed that CR has significant application in Qi stagnation, like depressed liver, stomach, and bowel disorders, etc. in different countries or districts. Aqueous extract, EtOH extract, essential oil, total oligomeric flavonoids and five other extracts were effective constituents displaying pharmacological activities such as antibacterial, antioxidant, neuroprotective, antihemolytic, and anti-inflammatory effect. 41 kinds of specific components like α-cyperone, nootkatone exhibited corresponding pharmacological activities mentioned above. Different concentrations of ethanol extract, essential oil, decoction of CR and monomer composition like α-cyperone, rotunduside G had anti-depressant effects. CONCLUSIONS In the present study, we have provided scientific information and research developments on traditional uses, phytochemical compositions and corresponding pharmacological activities, and quality control status on CR. The antidepression effect and its corresponding chemical compositions were generalized separately. The pharmacological activities studies should be more focused on the reflection of traditional clinical values. CR could be a significant potential herbal medicine to develop antidepressant drugs with lower side effects.
Collapse
Affiliation(s)
- Junrong Lu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, 611137, Sichuan, China; West China School of Pharmacy, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Wenbing Li
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Institute of Qinghai-Tibetan plateau, Southwest Minzu University, Chengdu, 610225, Sichuan, China.
| | - Tianhui Gao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, 611137, Sichuan, China.
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, SAR, China.
| | - Chaomei Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, 611137, Sichuan, China.
| | - Shu Wang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
7
|
Fabri RL, Freitas JCO, Lemos ASO, Campos LM, Diniz IOM, Pinto NCC, Silva TP, Palazzi C, Marchesini P, Monteiro C, Barbosa AF, Carvalho MG, Chedier LM, Araújo MGF, Apolônio ACM, Rocha VN, Melo RCN, Pinto PF. Spilanthol as a promising antifungal alkylamide for the treatment of vulvovaginal candidiasis. Med Mycol 2021; 59:1210-1224. [PMID: 34468763 DOI: 10.1093/mmy/myab054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/11/2021] [Accepted: 08/30/2021] [Indexed: 12/21/2022] Open
Abstract
Spilanthol is a bioactive alkylamide from the native Amazon plant species, Acmella oleracea. However, antifungal activities of spilanthol and its application to the therapeutic treatment of candidiasis remain to be explored. This study sought to evaluate the in vitro and in vivo antifungal activity of spilanthol previously isolated from A. oleracea (spilanthol(AcO)) against Candida albicans ATCC® 10231™, a multidrug-resistant fungal strain. Microdilution methods were used to determine inhibitory and fungicidal concentrations of spilanthol(AcO). In planktonic cultures, the fungal growth kinetics, yeast cell metabolic activity, cell membrane permeability and cell wall integrity were investigated. The effect of spilanthol(AcO) on the proliferation and adhesion of fungal biofilms was evaluated by whole slide imaging and scanning electron microscopy. The biochemical composition of the biofilm matrix was also analyzed. In parallel, spilanthol(AcO) was tested in vivo in an experimental vulvovaginal candidiasis model. Our in vitro analyses in C. albicans planktonic cultures detected a significant inhibitory effect of spilanthol(AcO), which affects both yeast cell membrane and cell wall integrity, interfering with the fungus growth. C. albicans biofilm proliferation and adhesion, as well as, carbohydrates and DNA in biofilm matrix were reduced after spilanthol(AcO) treatment. Moreover, infected rats treated with spilanthol(AcO) showed consistent reduction of both fungal burden and inflammatory processes compared to the untreated animals. Altogether, our findings demonstrated that spilanthol(AcO) is an bioactive compound against planktonic and biofilm forms of a multidrug resistant C. albicans strain. Furthermore, spilanthol(AcO) can be potentially considered for therapeutical treatment of vulvovaginal candidiasis caused by C. albicans. LAY SUMMARY This study sought to evaluate the antifungal activity of spilanthol against Candida albicans ATCC® 10 231™, a multidrug-resistant fungal strain. Our findings demonstrated that spilanthol(AcO) can be potentially considered for therapeutical treatment of vulvovaginal candidiasis caused by C. albicans.
Collapse
Affiliation(s)
- Rodrigo L Fabri
- Bioactive Natural Products Laboratory and Protein Structure and Function Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, CEP 36036-900, Juiz de Fora, MG, Brazil
| | - Jhamine C O Freitas
- Bioactive Natural Products Laboratory and Protein Structure and Function Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, CEP 36036-900, Juiz de Fora, MG, Brazil
| | - Ari S O Lemos
- Bioactive Natural Products Laboratory and Protein Structure and Function Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, CEP 36036-900, Juiz de Fora, MG, Brazil
| | - Lara M Campos
- Bioactive Natural Products Laboratory and Protein Structure and Function Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, CEP 36036-900, Juiz de Fora, MG, Brazil
| | - Irley O M Diniz
- Bioactive Natural Products Laboratory and Protein Structure and Function Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, CEP 36036-900, Juiz de Fora, MG, Brazil
| | - Nícolas C C Pinto
- Bioactive Natural Products Laboratory and Protein Structure and Function Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, CEP 36036-900, Juiz de Fora, MG, Brazil
| | - Thiago P Silva
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, CEP 36036-900, Juiz de Fora, MG, Brazil
| | - Cinthia Palazzi
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, CEP 36036-900, Juiz de Fora, MG, Brazil
| | - Paula Marchesini
- Post-graduate Program in Veterinary Science, Federal Rural University of Rio de Janeiro, CEP 323897-970, Seropédica, RJ, Brazil
| | - Caio Monteiro
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, CEP 374690-000, Goiânia, Go, Brazil
| | - Alan F Barbosa
- Federal Institute of Education, Science and Technology of Mato Grosso, CEP 378890-000, Sorriso, MG, Brazil
| | - Mário G Carvalho
- Department of Chemistry, Institute of Exact Sciences, Federal Rural University of Rio de Janeiro, CEP 323897-970, Seropédica, RJ, Brazil
| | - Luciana M Chedier
- Department of Botany, Institute of Biological Sciences, Federal University of Juiz de Fora, CEP 36036-900, Juiz de Fora, MG, Brazil
| | - Marcelo G F Araújo
- Federal University of São João Del-Rei, Campus Centro Oeste Dona Lindu, CEP 35501-296, Divinópolis, MG, Brazil
| | - Ana Carolina M Apolônio
- Department of Parasitology, Microbiology and Imunology, Institute of Biological Sciences, Federal University of Juiz de Fora, CEP 36036-900, Juiz de Fora, MG, Brazil
| | - Vinícius N Rocha
- Department of Veterinary Medicine, Faculty of Medicine, Federal University of Juiz de Fora, CEP 36036-900, Juiz de Fora, MG, Brazil
| | - Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, CEP 36036-900, Juiz de Fora, MG, Brazil
| | - Priscila F Pinto
- Bioactive Natural Products Laboratory and Protein Structure and Function Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, CEP 36036-900, Juiz de Fora, MG, Brazil
| |
Collapse
|
8
|
Diplazium esculentum (Retz.) Sw.: Ethnomedicinal, Phytochemical, and Pharmacological Overview of the Himalayan Ferns. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1917890. [PMID: 34512863 PMCID: PMC8433033 DOI: 10.1155/2021/1917890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/07/2021] [Accepted: 08/13/2021] [Indexed: 11/18/2022]
Abstract
The genus Diplazium (family: Athyriaceae) comprises approximately 350 species of pteridophytes. Diplazium esculentum (Retz.) Sw. is an important member of this genus and commonly known as a wild vegetable in the Himalayan and sub-Himalayan communities. According to the literature analysis, D. esculentum was traditionally used for the prevention or treatment of several diseases such as diabetes, smallpox, asthma, diarrhea, rheumatism, dysentery, headache, fever, wounds, pain, measles, hypertension, constipation, oligospermia, bone fracture, and glandular swellings. Various extracts of D. esculentum were evaluated to elucidate their phytochemical and pharmacological activities. A wide array of pharmacological properties such as antioxidant, antimicrobial, antidiabetic, immunomodulatory, CNS stimulant, and antianaphylactic activities have been recognized in different parts of D. esculentum. The review covers a systematic examination of pharmacognosy, phytochemistry, and pharmacological applications of D. esculentum, but scientifically, it is not fully assessed regarding complete therapeutic effects, toxicity, and safety in the human body. The published literature on D. esculentum and its therapeutic properties were collected from different search engines including Wiley online, PubMed, Springer Link, Scopus, Science Direct, Web of Science, Google Scholar, and ACS publications by using specific terms such as "Diplazium esculentum, bioactive compounds, biological activities and health benefits" from 1984 to 2021 (March). Therefore, further studies are required to identify the detailed action mechanism of D. esculentum in vitro/in vivo, and also, more studies should focus on conservation, cultivation, and sustainable utilization of the species.
Collapse
|
9
|
Moyo M, Aremu AO. Nutritional, phytochemical and diverse health-promoting qualities of Cleome gynandra. Crit Rev Food Sci Nutr 2021; 62:3535-3552. [PMID: 33397131 DOI: 10.1080/10408398.2020.1867055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cleome gynandra (Syn. Gynandropsis gynandra) is fast emerging as one of the most widely consumed leafy vegetables due to its nutrition and health-promoting properties. In addition to its high nutritional content, the plant has a rich pool of diverse antioxidant phytochemicals. The current review provides a critical appraisal on the increasing nutritional significance of Cleome gynandra due to its rich pool of natural bioactive compounds and beneficial health-promoting qualities. The rich nutritional content especially the high levels of macro- and micronutrients is an indication of its potential to mitigate malnutrition and the increasing incidence of diet-related obesity and non-communicable diseases. The presence of health-promoting natural compounds, notably polyphenols, glucosinates and terpernoids has been confirmed in Cleome gynandra using different analytical methods. Cleome gynandra possesses high levels of α-tocopherol, β-tocopherol and γ-tocopherol, ascorbic acid, α-carotene, β-carotene, lutein, violaxanthin, and β-cryptoxanthin. These nutritional compounds could be useful in food applications as supplements, colorants and extending shelf-life of food products. Cleome gynandra extracts have demonstrated promising effects in several biological assays using in vitro and in vivo systems. Clearly, diversified diets that include a regular intake of dark green leafy vegetables including Cleome gynandra, holds great promise in ensuring food and nutrition security.
Collapse
Affiliation(s)
- Mack Moyo
- Department of Horticulture, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Adeyemi O Aremu
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa.,Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
10
|
Nesakumar N, Baskar C, Balaguru Rayappan JB, Alwarappan S. Application of ATR-FTIR for a rapid evaluation of storage life of fresh dwarf copperleaf via its moisture content. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Li H, Qu Y, Zhang J, Zhang J, Gao W. Spasmolytic activity of Aquilariae Lignum Resinatum extract on gastrointestinal motility involves muscarinic receptors, calcium channels and NO release. PHARMACEUTICAL BIOLOGY 2018; 56:559-566. [PMID: 31070538 PMCID: PMC6292371 DOI: 10.1080/13880209.2018.1492000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
CONTEXT Aquilariae Lignum Resinatum (ALR), the dry rhizome of Aquilaria agallocha R. (Thymelaeaeeae), has been widely used to treat emesis, stomachache and gastrointestinal dysfunction. OBJECTIVE This study evaluates the effects of ALR methanol extract on gastrointestinal motility (GIM) and possible mechanisms of the action involved. MATERIALS AND METHODS In vivo, the study evaluated the effects of ALR (200-800 mg/kg) on gastric emptying and small intestinal motility in normal and neostigmine-induced adult KM mice. The in vitro effects of ALR (0.2-1.6 mg/mL) on GIM were performed on isolated jejunum of Wistar rats, pretreated with acetylcholine (ACh), KCl, CaCl2, and pre-incubation with l-NAME (a selective inhibitor of the nitric oxide synthase). RESULTS In vivo, ALR (800 mg/kg) decreased gastric emptying (70.82 ± 9.81%, p < 0.01, compared with neostigmine group 91.40 ± 7.81%), small intestinal transit (42.82 ± 3.82%, p < 0.01, compared with neostigmine group 85.53 ± 5.57%). In vitro, ALR concentration dependently decreased the contractions induced by ACh (10-5 M) and KCl (60 mM) with respective EC50 values of 0.35 and 0.32 mg/mL. The Ca2+ concentration-response curves were shifted by ALR to the right, similar to that caused by verapamil (the positive). The spasmolytic activity of ALR was inhibited by pre-incubation with l-NAME. DISCUSSION AND CONCLUSIONS ALR played a spasmolytic role in GIM, which is probably mediated through inhibition of muscarinic receptors, blockade of Ca2+ influx and NO release. This is the first study presenting a comprehensive description of the effects of ALR on GIM.
Collapse
Affiliation(s)
- Huimin Li
- Department of Pharmacy, Special Drugs R&D Center of People’s Armed Police Forces, Logistics University of Chinese People’s Armed Police Forces, Tianjin, China
| | - Yanfei Qu
- Department of Pharmacy, Special Drugs R&D Center of People’s Armed Police Forces, Logistics University of Chinese People’s Armed Police Forces, Tianjin, China
| | - Jiawei Zhang
- Department of Pharmacy, Special Drugs R&D Center of People’s Armed Police Forces, Logistics University of Chinese People’s Armed Police Forces, Tianjin, China
| | - Jingze Zhang
- Department of Pharmacy, Special Drugs R&D Center of People’s Armed Police Forces, Logistics University of Chinese People’s Armed Police Forces, Tianjin, China
- CONTACT Jingze Zhang Department of Pharmacy, Logistics College of Chinese People’s Armed Police Forces, Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Tianjin300162, China; Wenyuan Gao School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin300072, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- CONTACT Jingze Zhang Department of Pharmacy, Logistics College of Chinese People’s Armed Police Forces, Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Tianjin300162, China; Wenyuan Gao School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin300072, China
| |
Collapse
|