1
|
Zheng L, Li B, Yuan A, Bi S, Puscher H, Liu C, Qiao L, Qiao Y, Wang S, Zhang Y. TFEB activator tanshinone IIA and derivatives derived from Salvia miltiorrhiza Bge. Attenuate hepatic steatosis and insulin resistance. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118662. [PMID: 39117022 DOI: 10.1016/j.jep.2024.118662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza Bge. (SMB) is an herbal medicine extensively used for improving metabolic disorders, including Nonalcoholic fatty liver disease (NAFLD). However, the potential material basis and working mechanism still remained to be elucidated. AIM OF THE STUDY To find potential ingredients for therapy of NAFLD by high content screening and further verify the efficacy on restoring hepatic steatosis and insulin resistance, and clarify the potential working mechanism. MATERIALS AND METHODS The mouse transcription factor EB (Tfeb) in preadipocytes was knocked out by CRISPR-Cas9 gene editing. High content screening of TFEB nuclear translocation was performed to identify TFEB activators. The effect of candidate compounds on reducing lipid accumulation was evaluated using Caenorhabditis elegans (C. elegans). Then the role of Salvia miltiorrhiza extract (SMB) containing Tanshinone IIA and the derivatives were further investigated on high-fat diet (HFD) fed mice. RNA-seq was performed to explore potential molecular mechanism of SMB. Finally, the gut microbiota diversity was evaluated using 16S rRNA sequencing to investigate the protective role of SMB on regulating gut microbiota homeostasis. RESULTS Knockout of Tfeb led to excessive lipid accumulation in adipocytes while expression of TFEB homolog HLH-30 in C. elegans (MAH240) attenuated lipid deposition. Screening of TFEB activators identified multiple candidates from Salvia miltiorrhiza, all of them markedly induced lysosome biogenesis in HepG2 cells. One of the candidate compounds Tanshinone IIA significantly decreased lipid droplet deposition in HFD fed C. elegans. Administration of SMB on C57BL/6J mice via gastric irrigation at the dose of 15 g/kg/d markedly alleviated hepatic steatosis, restored serum lipid profile, and glucose tolerance. RNA-seq showed that gene expression profile was altered and the genes related to lipid metabolism were restored. The disordered microbiome was remodeled by SMB, Firmicutes and Actinobacteriotawere notably reduced, Bacteroidota and Verrucomicrobiota were significantly increased. CONCLUSION Taken together, the observations presented here help address the question concerning what were the main active ingredients in SMB for alleviating NAFLD, and established that targeting TFEB was key molecular basis for the efficacy of SMB.
Collapse
Affiliation(s)
- Lulu Zheng
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beisanhuan East Road No. 11, Chaoyang District, Beijing, 100029, China
| | - Beiyan Li
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beisanhuan East Road No. 11, Chaoyang District, Beijing, 100029, China
| | - Anlei Yuan
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beisanhuan East Road No. 11, Chaoyang District, Beijing, 100029, China
| | - Shijie Bi
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beisanhuan East Road No. 11, Chaoyang District, Beijing, 100029, China
| | - Harrison Puscher
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Chaoqun Liu
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beisanhuan East Road No. 11, Chaoyang District, Beijing, 100029, China
| | - Liansheng Qiao
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beisanhuan East Road No. 11, Chaoyang District, Beijing, 100029, China
| | - Yanjiang Qiao
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beisanhuan East Road No. 11, Chaoyang District, Beijing, 100029, China
| | - Shifeng Wang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beisanhuan East Road No. 11, Chaoyang District, Beijing, 100029, China.
| | - Yanling Zhang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beisanhuan East Road No. 11, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
2
|
Yang X, Zheng X, Xiao X, Li L. Effects and mechanisms of Salvia miltiorrhiza Bunge extract on myocardial cell apoptosis in rat heart failure model. Acta Cir Bras 2024; 39:e396524. [PMID: 39356933 PMCID: PMC11441121 DOI: 10.1590/acb396524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/09/2024] [Indexed: 10/04/2024] Open
Abstract
PURPOSE This work aimed to investigate the effects of Tanshinone IIA (Tan IIA) on myocardial cell (MC) apoptosis in a rat model of heart failure (HF). METHODS Tan IIA was extracted from Salvia miltiorrhiza Bunge (SMB) using an ethanol reflux method. Fifty rats were randomly divided into five groups: sham (no treatment), mod (HF model establishment), low dose (LD: 0.1 mL/kg Tan IIA), medium dose (MD: 0.3 mL/kg Tan IIA), and high dose (HD: 0.5 mL/kg Tan IIA), with 10 rats in each group. The effects of different doses of Tan IIA on cardiac function, MC apoptosis, and the levels of proteins associated with the PI3K/Akt/mTOR signaling pathway were compared. RESULTS Mod group showed a significant decrease in systolic arterial pressure, mean arterial pressure, heart rate, left ventricular systolic pressure, left ventricular ejection fraction, left ventricular fractional shortening, and the levels of p-PI3K, p-Akt, and p-mTOR proteins versus sham group (p < 0.05). Additionally, the left ventricular end-diastolic diameter (LVIDd), end-systolic diameter, diastolic pressure, and MC apoptosis were significantly increased (p < 0.05). LD, MD, and HD groups exhibited significant improvements across various indicators of cardiac function and MC apoptosis versus mod group (p < 0.05). CONCLUSIONS Tan IIA may improve cardiac function and inhibit MC apoptosis in rats with HF by modulating the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xiaofang Yang
- Changsha Fourth Hospital – Department of Cardiology – Changsha – Hunan – China
| | - Xuebin Zheng
- Changsha Fourth Hospital – Department of Cardiology – Changsha – Hunan – China
| | - Xiangqian Xiao
- Changsha Fourth Hospital – Department of Cardiology – Changsha – Hunan – China
| | - Li Li
- Changsha Fourth Hospital – Department of Cardiology – Changsha – Hunan – China
| |
Collapse
|
3
|
Wu YT, Zhang GY, Li L, Liu B, Wang RY, Song RQ, Hua Y, Bi YM, Han X, Zhang F, Wang D, Xie LP, Zhou YC. Salvia miltiorrhiza suppresses cardiomyocyte ferroptosis after myocardial infarction by activating Nrf2 signaling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118214. [PMID: 38641076 DOI: 10.1016/j.jep.2024.118214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ferroptosis, a recently identified non-apoptotic form of cell death reliant on iron, is distinguished by an escalation in lipid reactive oxygen species (ROS) that are iron-dependent. This phenomenon has a strong correlation with irregularities in iron metabolism and lipid peroxidation. Salvia miltiorrhiza Bunge (DS), a medicinal herb frequently utilized in China, is highly esteemed for its therapeutic effectiveness in enhancing blood circulation and ameliorating blood stasis, particularly during the treatment of cardiovascular diseases (CVDs). Numerous pharmacological studies have identified that DS manifests antioxidative stress effects as well as inhibits lipid peroxidation. However, ambiguity persists regarding the potential of DS to impede ferroptosis in cardiomyocytes and subsequently improve myocardial damage post-myocardial infarction (MI). AIM OF THE STUDY The present work focused on investigating whether DS could be used to prevent the ferroptosis of cardiomyocytes and improve post-MI myocardial damage. MATERIALS AND METHODS In vivo experiments: Through ligation of the left anterior descending coronary artery, we constructed both a wild-type (WT) and NF-E2 p45-related factor 2 knockout (Nrf2-/-) mouse model of MI. Effects of DS and ferrostatin-1 (Fer-1) on post-MI cardiomyocyte ferroptosis were examined through detecting ferroptosis and myocardial damage-related indicators as well as Nrf2 signaling-associated protein levels. In vitro experiments: Erastin was used for stimulating H9C2 cardiomyocytes to construct an in vitro ferroptosis cardiomyocyte model. Effects of DS and Fer-1 on cardiomyocyte ferroptosis were determined based on ferroptosis-related indicators and Nrf2 signaling-associated protein levels. Additionally, inhibitor and activator of Nrf2 were used for confirming the impact of Nrf2 signaling on DS's effect on cardiomyocyte ferroptosis. RESULTS In vivo: In comparison to the model group, DS suppressed ferroptosis in cardiomyocytes post-MI and ameliorated myocardial damage by inducing Nrf2 signaling-related proteins (Nrf2, xCT, GPX4), diminishing tissue ferrous iron and malondialdehyde (MDA) content. Additionally, it enhanced glutathione (GSH) levels and total superoxide dismutase (SOD) activity, effects that are aligned with those of Fer-1. Moreover, the effect of DS on alleviating cardiomyocyte ferroptosis after MI could be partly inhibited through Nrf2 knockdown. In vitro: Compared with the erastin group, DS inhibited cardiomyocyte ferroptosis by promoting the expression of Nrf2 signaling-related proteins, reducing ferrous iron, ROS, and MDA levels, but increasing GSH content and SOD activity, consistent with the effect of Fer-1. Additionally, Nrf2 inhibition increased erastin-mediated ferroptosis of cardiomyocytes through decreasing Nrf2 signaling-related protein expressions. Co-treatment with DS and Nrf2 activator failed to further enhance the anti-ferroptosis effect of DS. CONCLUSION MI is accompanied by cardiomyocyte ferroptosis, whose underlying mechanism is probably associated with Nrf2 signaling inhibition. DS possibly suppresses ferroptosis of cardiomyocytes and improves myocardial damage after MI through activating Nrf2 signaling.
Collapse
Affiliation(s)
- Yu-Ting Wu
- Binzhou Medical University Hospital, Binzhou, 256603, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Guo-Yong Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Lei Li
- Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Bin Liu
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Ru-Yu Wang
- School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | | | - Yue Hua
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yi-Ming Bi
- The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University, Guangzhou, 510000, China
| | - Xin Han
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Feng Zhang
- Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Dong Wang
- Binzhou Medical University Hospital, Binzhou, 256603, China.
| | - Ling-Peng Xie
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, China.
| | - Ying-Chun Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Yao L, Fang J, Zhao J, Yu J, Zhang X, Chen W, Han L, Peng D, Chen Y. Dendrobium huoshanense in the treatment of ulcerative colitis: Network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117729. [PMID: 38190953 DOI: 10.1016/j.jep.2024.117729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium huoshanense C. Z. Tang et S. J. Cheng (DH) is a traditional medicinal herb with a long history of medicinal use. DH has been recorded as protecting the gastrointestinal function. Modern pharmacology research shows that DH regulates intestinal flora, intestinal mucosal immunity, gastrointestinal peristalsis and secretion of digestive juices. At the same time, some studies have shown that DH has a good therapeutic effect on ulcerative colitis, but its mechanism of action has not been fully elucidated. AIMS OF THIS STUDY To investigate the mechanism and effect of Dendrobium huoshanense C. Z. Tang et S. J. Cheng (DH) in the treatment of ulcerative colitis (UC) by combining network pharmacology and in vivo experimental validation. METHODS A network pharmacology approach was used to perform component screening, target prediction, PPI network interaction analysis, GO and KEGG enrichment analysis to initially predict the mechanism of DH treatment for UC. Then, the mechanism was validated with the UC mouse model induced by 3% DSS. RESULTS Based on the network pharmacological analysis, a comprehensive of 101 active components were identified, with 19 of them potentially serving as the crucial elements in DH's effectiveness against UC treatment. Additionally, the study revealed 314 potential core therapeutic targets along with the top 5 key targets: SRC, STAT3, AKT1, HSP90AA1, and PIK3CA. In experiments conducted on live mice with UC, DH was found to decrease the levels of IL-6 and TNF-α in the blood, while increasing the levels of IL-10 and TGF-β. This led to notable improvements in colon length, injury severity, and an up-regulation of SRC, STAT3, HSP90AA1, PIK3CA, p-AKT1 and PI3K/AKT signaling pathway expression in the colon tissue. CONCLUSIONS In this study, the active components and main targets of DH for UC treatment were initially forecasted, and the potential mechanism was investigated through network pharmacology. These findings offer an experimental foundation for the clinical utilization of DH.
Collapse
Affiliation(s)
- Liang Yao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China.
| | - Jing Fang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| | - Junwei Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| | - Jiao Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| | - Xiaoqian Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China; Key Laboratory of Modern Traditional Chinese Medicines of Anhui Higher Education Institutes, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China.
| | - Lan Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China; Key Laboratory of Modern Traditional Chinese Medicines of Anhui Higher Education Institutes, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China.
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China; Xin'an Medicine, Key Laboratory of Chinese Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China; Key Laboratory of Modern Traditional Chinese Medicines of Anhui Higher Education Institutes, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China.
| | - Yunna Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| |
Collapse
|
5
|
Tong R, Wu T, Chen J. Chinese Medicine Supplementing Qi and Activating Blood Circulation Relieves the Progression of Diabetic Cardiomyopathy. Endocr Metab Immune Disord Drug Targets 2024; 24:163-171. [PMID: 37138487 DOI: 10.2174/1871530323666230501151924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is the leading cause of diabetic death as the final occurrence of heart failure and arrhythmia. Traditional Chinese medicine is usually used to treat various diseases including diabetes. OBJECTIVE This study sought to investigate the effects of Traditional Chinese medicine supplementing Qi and activating blood circulation (SAC) in DCM. METHODS After the construction of the DCM model by streptozotocin (STZ) injection and high glucose/fat diet feeding, rats were administered intragastrically with SAC. Then, cardiac systolic/diastolic function was evaluated by detecting left ventricular systolic pressure (LVSP), maximal rate of left ventricular pressure rise (+LVdp/dtmax), and fall (-LVdp/dtmax), heart rate (HR), left ventricular ejection fraction (EF), LV fractional shortening (FS) and left ventricular end-diastolic pressure (LVEDP). Masson’s and TUNEL staining were used to assess fibrosis and cardiomyocyte apoptosis. RESULTS DCM rats exhibited impaired cardiac systolic/diastolic function manifested by decreasing LVSP, + LVdp/dtmax, -LVdp/dtmax, HR, EF and FS, and increasing LVEDP. Intriguingly, traditional Chinese medicine SAC alleviated the above-mentioned symptoms, indicating a potential role in improving cardiac function. Masson’s staining substantiated that SAC antagonized the increased collagen deposition and interstitial fibrosis area and the elevations in protein expression of fibrosis-related collagen I and fibronectin in heart tissues of DCM rats. Furthermore, TUNEL staining confirmed that traditional Chinese medicine SAC also attenuated cardiomyocyte apoptosis in DCM rats. Mechanically, DCM rats showed the aberrant activation of the TGF-β/Smad signaling, which was inhibited after SAC. CONCLUSION SAC may exert cardiac protective efficacy in DCM rats via the TGF-β/Smad signaling, indicating a new promising therapeutic approach for DCM.
Collapse
Affiliation(s)
- Ruxi Tong
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, P.R. China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, P.R. China
| | - Tianmin Wu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, P.R. China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, P.R. China
| | - Jinshui Chen
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, P.R. China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, P.R. China
| |
Collapse
|
6
|
Wu ZX, Chen SS, Lu DY, Xue WN, Sun J, Zheng L, Wang YL, Li C, Li YJ, Liu T. Shenxiong glucose injection inhibits oxidative stress and apoptosis to ameliorate isoproterenol-induced myocardial ischemia in rats and improve the function of HUVECs exposed to CoCl 2. Front Pharmacol 2023; 13:931811. [PMID: 36686658 PMCID: PMC9849394 DOI: 10.3389/fphar.2022.931811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Shenxiong Glucose Injection (SGI) is a traditional Chinese medicine formula composed of ligustrazine hydrochloride and Danshen (Radix et rhizoma Salviae miltiorrhizae; Salvia miltiorrhiza Bunge, Lamiaceae). Our previous studies and others have shown that SGI has excellent therapeutic effects on myocardial ischemia (MI). However, the potential mechanisms of action have yet to be elucidated. This study aimed to explore the molecular mechanism of SGI in MI treatment. Methods: Sprague-Dawley rats were treated with isoproterenol (ISO) to establish the MI model. Electrocardiograms, hemodynamic parameters, echocardiograms, reactive oxygen species (ROS) levels, and serum concentrations of cardiac troponin I (cTnI) and cardiac troponin T (cTnT) were analyzed to explore the protective effect of SGI on MI. In addition, a model of oxidative damage and apoptosis in human umbilical vein endothelial cells (HUVECs) was established using CoCl2. Cell viability, Ca2+ concentration, mitochondrial membrane potential (MMP), apoptosis, intracellular ROS, and cell cycle parameters were detected in the HUVEC model. The expression of apoptosis-related proteins (Bcl-2, Caspase-3, PARP, cytoplasmic and mitochondrial Cyt-c and Bax, and p-ERK1/2) was determined by western blotting, and the expression of cleaved caspase-3 was analyzed by immunofluorescence. Results: SGI significantly reduced ROS production and serum concentrations of cTnI and cTnT, reversed ST-segment elevation, and attenuated the deterioration of left ventricular function in ISO-induced MI rats. In vitro, SGI treatment significantly inhibited intracellular ROS overexpression, Ca2+ influx, MMP disruption, and G2/M arrest in the cell cycle. Additionally, SGI treatment markedly upregulated the expression of anti-apoptotic protein Bcl-2 and downregulated the expression of pro-apoptotic proteins p-ERK1/2, mitochondrial Bax, cytoplasmic Cyt-c, cleaved caspase-3, and PARP. Conclusion: SGI could improve MI by inhibiting the oxidative stress and apoptosis signaling pathways. These findings provide evidence to explain the pharmacological action and underlying molecular mechanisms of SGI in the treatment of MI.
Collapse
Affiliation(s)
- Zhong-Xiu Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants and Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China,School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Shuai-Shuai Chen
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) and State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Ding-Yan Lu
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) and State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Wei-Na Xue
- School of Medicine and Health Management, Guizhou Medical University, Guiyang, China
| | - Jia Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants and Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Lin Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants and Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Yong-Lin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants and Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Chun Li
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yong-Jun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) and State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China,*Correspondence: Yong-Jun Li, ; Ting Liu,
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants and Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China,*Correspondence: Yong-Jun Li, ; Ting Liu,
| |
Collapse
|
7
|
Zhao H, Han B, Li X, Sun C, Zhai Y, Li M, Jiang M, Zhang W, Liang Y, Kai G. Salvia miltiorrhiza in Breast Cancer Treatment: A Review of Its Phytochemistry, Derivatives, Nanoparticles, and Potential Mechanisms. Front Pharmacol 2022; 13:872085. [PMID: 35600860 PMCID: PMC9117704 DOI: 10.3389/fphar.2022.872085] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/08/2022] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is one of the most deadly malignancies in women worldwide. Salvia miltiorrhiza, a perennial plant that belongs to the genus Salvia, has long been used in the management of cardiovascular and cerebrovascular diseases. The main anti-breast cancer constituents in S. miltiorrhiza are liposoluble tanshinones including dihydrotanshinone I, tanshinone I, tanshinone IIA, and cryptotanshinone, and water-soluble phenolic acids represented by salvianolic acid A, salvianolic acid B, salvianolic acid C, and rosmarinic acid. These active components have potent efficacy on breast cancer in vitro and in vivo. The mechanisms mainly include induction of apoptosis, autophagy and cell cycle arrest, anti-metastasis, formation of cancer stem cells, and potentiation of antitumor immunity. This review summarized the main bioactive constituents of S. miltiorrhiza and their derivatives or nanoparticles that possess anti-breast cancer activity. Besides, the synergistic combination with other drugs and the underlying molecular mechanisms were also summarized to provide a reference for future research on S. miltiorrhiza for breast cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yi Liang
- *Correspondence: Yi Liang, ; Guoyin Kai,
| | - Guoyin Kai
- *Correspondence: Yi Liang, ; Guoyin Kai,
| |
Collapse
|
8
|
Chen Y, Wang Y, Guo J, Yang J, Zhang X, Wang Z, Cheng Y, Du Z, Qi Z, Huang Y, Dennis M, Wei Y, Yang D, Huang L, Liang Z. Integrated Transcriptomics and Proteomics to Reveal Regulation Mechanism and Evolution of SmWRKY61 on Tanshinone Biosynthesis in Salvia miltiorrhiza and Salvia castanea. FRONTIERS IN PLANT SCIENCE 2022; 12:820582. [PMID: 35309951 PMCID: PMC8928407 DOI: 10.3389/fpls.2021.820582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/27/2021] [Indexed: 05/27/2023]
Abstract
Tanshinones found in Salvia species are the main active compounds for the treatment of cardiovascular and cerebrovascular diseases, but their contents are hugely different in different species. For example, tanshinone IIA content in Salvia castanea Diels f. tomentosa Stib. is about 49 times higher than that in Salvia miltiorrhiza Bunge. The molecular mechanism responsible for this phenomenon remains largely unknown. To address this, we performed comparative transcriptomic and proteomic analyses of S. miltiorrhiza and S. castanea. A total of 296 genes in S. castanea and 125 genes in S. miltiorrhiza were highly expressed at both the transcriptional and proteome levels, including hormone signal regulation, fungus response genes, transcription factors, and CYP450. Among these differentially expressed genes, the expression of SmWRKY61 was particularly high in S. castanea. Overexpression of SmWRKY61 in S. miltiorrhiza could significantly increase the content of tanshinone I and tanshinone IIA, which were 11.09 and 33.37 times of the control, respectively. Moreover, SmWRKY61 had a strong regulatory effect, elevating the expression levels of tanshinone pathway genes such as DXS2, CMK, HMGS2, 1, KSL1, KSL2, CYP76AH1, and CYP76AK3. For the WRKY family, 79 SmWRKYs were originally obtained and classified into three main groups. Collinearity analysis indicated a more specific extension of WRKY gene family in Salvia genus. In 55 Salvia species, only 37 species contained the WRKY61 sequence, and high SmWRKY61 expression in some Salvia L. species was often accompanied by high tanshinone accumulation. The above results suggest that SmWRKY61 is a highly effective regulator of tanshinone accumulation and may be a key factor resulting in high tanshinone accumulation in S. castanea.
Collapse
Affiliation(s)
- Yue Chen
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yanting Wang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian Yang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaodan Zhang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zixuan Wang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ying Cheng
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zewei Du
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhechen Qi
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yanbo Huang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Mans Dennis
- Faculty of Medical Sciences, Anton de Kom University of Suriname, Paramaribo, Suriname
| | - Yukun Wei
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Dongfeng Yang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongsuo Liang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
9
|
Peng M, Liu H, Ji Q, Ma P, Niu Y, Ning S, Sun H, Pang X, Yang Y, Zhang Y, Han J, Hao G. Fufang Xueshuantong Improves Diabetic Cardiomyopathy by Regulating the Wnt/ β-Catenin Pathway. Int J Endocrinol 2022; 2022:3919161. [PMID: 36237833 PMCID: PMC9553353 DOI: 10.1155/2022/3919161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/02/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is one of the main complications of diabetic patients and the major reason for the high prevalence of heart failure in diabetic patients. Fufang Xueshuantong (FXST) is a traditional Chinese medicine formula commonly used in the treatment of diabetic retinopathy and stable angina pectoris. However, the role of FXST in DCM has not yet been clarified. This study was conducted to investigate the effects of FXST on diabetic myocardial lesions and reveal its molecular mechanism. The rats were intraperitoneally injected with 65 mg/kg streptozotocin (STZ) to induce diabetes mellitus (DM). DM rats were given saline or FXST. The rats in the control group were intraperitoneally injected with an equal amount of sodium citrate buffer and gavaged with saline. After 12 weeks, echocardiography, heart weight index (HWI), and myocardial pathological changes were determined. The expression of transforming growth factor-beta1 (TGF-β1), collagen I, and collagen III was examined using immunofluorescence staining and western blot. The expressions of Wnt/β-catenin signaling pathway-related proteins and mRNA were detected by western blot and real-time PCR. The results showed that FXST significantly improved cardiac function, ameliorated histopathological changes, and decreased HWI in the DM rats. FXST significantly inhibited the expression of myocardial TGF-β1, collagen I, and collagen III in DM rats. Furthermore, FXST significantly inhibited the Wnt/β-catenin pathway. Taken together, FXST has a protective effect on DCM, which might be mediated by suppressing the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Meizhong Peng
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hanying Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qingxuan Ji
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Pan Ma
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yiting Niu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shangqiu Ning
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Huihui Sun
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xinxin Pang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuqian Yang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuting Zhang
- Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Han
- Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Gaimei Hao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Gansu Provincial Hospital of Traditional Chinese Medicine, Gansu, China
| |
Collapse
|
10
|
Liu J, Wang F, Sheng P, Xia Z, Jiang Y, Yan BC. A network-based method for mechanistic investigation and neuroprotective effect on treatment of tanshinone Ⅰ against ischemic stroke in mouse. JOURNAL OF ETHNOPHARMACOLOGY 2021; 272:113923. [PMID: 33617968 DOI: 10.1016/j.jep.2021.113923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/22/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tanshinone-Ⅰ (TSNⅠ), a member of the mainly active components of Salvia miltiorrhiza Bunge (Dan Shen), which is widely used for the treatment for modern clinical diseases including cardiovascular and cerebrovascular diseases, has been reported to show the properties of anti-oxidation, anti-inflammation, neuroprotection and other pharmacological actions. However, whether TSNⅠ can improve neuron survival and neurological function against transient focal cerebral ischemia (tMCAO) in mice is still a blank field. AIM OF THE STUDY This study aims to investigate the neuroprotective effects of TSNⅠ on ischemic stroke (IS) induced by tMCAO in mice and explore the potential mechanism of TSNⅠ against IS by combining network pharmacology approach and experimental verification. MATERIALS AND METHODS In this study, the pivotal candidate targets of TSNⅠ against IS were screened by network pharmacology firstly. Enrichment analysis and molecular docking of those targets were performed to identify the possible mechanism of TSNⅠ against IS. Afterwards, experiments were carried out to further verify the mechanism of TSNⅠ against IS. The infarct volume and neurological deficit were evaluated by 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining and Longa respectively. Immunohistochemistry was used to observe neuronal death in the hippocampus and cortical regions by detecting the change of NeuN. The predicting pathways of signaling-related proteins were assessed by Western blot in vitro and in vivo experiments. RESULTS In vivo, TSNⅠ was found to dose-dependently decrease mice's cerebral infarct volume induced by tMCAO. In vitro, pretreatment with TSNⅠ could increase cell viability of HT-22 cell following oxygen-glucose deprivation (OGD/R). Moreover, the results showed that 125 candidate targets were identified, Protein kinase B (AKT) signaling pathway was significantly enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and mitogen-activated protein kinases 1 (MAPK1) and AKT1 could be bound to TSNⅠ more firmly by molecular docking analysis, which implies that TSNⅠ may play a role in neuroprotection through activating AKT and MAPK signaling pathways. Meanwhile, TSNⅠ was confirmed to significantly protect neurons from injury induced by IS through activating AKT and MAPK signaling pathways. CONCLUSION In conclusion, our study clarifies that the mechanism of TSNⅠ against IS might be related to AKT and MAPK signaling pathways, which may provide the basic evidence for further development and utilization of TSNⅠ.
Collapse
Affiliation(s)
- Jiajia Liu
- Medical College, Institute of Translational Medicine, Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, 225001, PR China
| | - Fuxing Wang
- Medical College, Institute of Translational Medicine, Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, 225001, PR China
| | - Peng Sheng
- Medical College, Institute of Translational Medicine, Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, 225001, PR China
| | - Zihao Xia
- Medical College, Institute of Translational Medicine, Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, 225001, PR China
| | - Yunyao Jiang
- School of Pharmaceutical Sciences, Institute for Chinese Materia Medica, Tsinghua University, Beijing, 100084, PR China
| | - Bing Chun Yan
- Medical College, Institute of Translational Medicine, Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China.
| |
Collapse
|
11
|
Xie Q, Gong L, Huang F, Cao M, Liu Y, Yuan H, Li B, Jian Y, Peng C, Zhou S, Chu Y, Wang W. A Rapid and Accurate 1HNMR Method for the Identification and Quantification of Major Constituents in Qishen Yiqi Dripping Pills. J AOAC Int 2021; 104:506-514. [PMID: 33349848 DOI: 10.1093/jaoacint/qsaa130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/03/2020] [Accepted: 09/10/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Qishen Yiqi dripping pills (QSYQ), composed of four herbal medicines-Salvia miltiorrhiza, Astragalus membranaceus, Panax notoginseng, and Dalbergiaodorifera-are widely used to treat ischemic cerebrovascular and hemorrhagic cerebrovascular conditions. OBJECTIVE In this study, a rapid and accurate proton NMR (1HNMR) spectroscopy method was established to control the quality of QSYQ and ensure their clinical efficacy. METHOD Firstly, different types of metabolites were identified based on the proton signal peaks of chemical shifts, coupling constants, and related information provided through two-dimensional NMR spectroscopy. Secondly, a quantitative 1HNMR method was established for the simultaneous determination of major constituents in QSYQ samples. In addition, an HPLC method was performed to verify the results obtained by the quantitative proton NMR (qHNMR) method. RESULTS In the present study, 26 metabolites were identified in the 1HNMR spectra of QSYQ. In addition, a rapid and accruate qHNMR method was established for the simultaneous determination of protocatechualdehyde, rosmarinic acid, danshensu, calycosin-7-O-β-D-glucoside, and ononin in ten batches of QSYQ samples for the first time. Moreover, the proposed qHNMR method and HPLC method were compared using Bland-Altman and plots Passing-Bablok regression, indicating no significant differences and a strong correlation between the two analytical methods. CONCLUSIONS This method is an important tool for the identification and quantification of major constituents in QSYQ. HIGHLIGHTS Compared with traditional HPLC, the established qHNMR method has the advantages of simple sample preparation, short analysis time, and non-destructive analysis.
Collapse
Affiliation(s)
- Qingling Xie
- Hunan University of Chinese Medicine, School of Pharmacy, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, TCM and Ethnomedicine Innovation & Development International Laboratory, Changsha, Hunan, P. R. China, 4108208
| | - Limin Gong
- Hunan University of Chinese Medicine, School of Pharmacy, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, TCM and Ethnomedicine Innovation & Development International Laboratory, Changsha, Hunan, P. R. China, 4108208
| | - Feibing Huang
- Hunan University of Chinese Medicine, School of Pharmacy, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, TCM and Ethnomedicine Innovation & Development International Laboratory, Changsha, Hunan, P. R. China, 4108208
| | - Mengru Cao
- Hunan University of Chinese Medicine, School of Pharmacy, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, TCM and Ethnomedicine Innovation & Development International Laboratory, Changsha, Hunan, P. R. China, 4108208
| | - Yongbei Liu
- Hunan University of Chinese Medicine, School of Pharmacy, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, TCM and Ethnomedicine Innovation & Development International Laboratory, Changsha, Hunan, P. R. China, 4108208
| | - Hanwen Yuan
- Hunan University of Chinese Medicine, School of Pharmacy, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, TCM and Ethnomedicine Innovation & Development International Laboratory, Changsha, Hunan, P. R. China, 4108208
| | - Bin Li
- Hunan University of Chinese Medicine, School of Pharmacy, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, TCM and Ethnomedicine Innovation & Development International Laboratory, Changsha, Hunan, P. R. China, 4108208
| | - Yuqing Jian
- Hunan University of Chinese Medicine, School of Pharmacy, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, TCM and Ethnomedicine Innovation & Development International Laboratory, Changsha, Hunan, P. R. China, 4108208
| | - Caiyun Peng
- Hunan University of Chinese Medicine, School of Pharmacy, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, TCM and Ethnomedicine Innovation & Development International Laboratory, Changsha, Hunan, P. R. China, 4108208
| | - Shuiping Zhou
- Tasly Holding Group Co., Ltd, Tasly Academy, Tianjin, P. R. China, 300410
| | - Yang Chu
- Tasly Holding Group Co., Ltd, Tasly Academy, Tianjin, P. R. China, 300410.,Tasly Pharmaceutical Group Co., Ltd, State Key Laboratory of Core Technology in Innovation Chinese Medicine, Tianjin, P. R. China, 300410
| | - Wei Wang
- Hunan University of Chinese Medicine, School of Pharmacy, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, TCM and Ethnomedicine Innovation & Development International Laboratory, Changsha, Hunan, P. R. China, 4108208
| |
Collapse
|
12
|
Hou Z, Liang Z, Li Y, Su F, Chen J, Zhang X, Yang D. Quantitative Determination and Validation of Four Phenolic Acids in Salvia Miltiorrhiza Bunge using 1H-NMR Spectroscopy. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916666191231104909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Although chromatography and spectrometry-based methods have been used to
analyse phenolic acids in Chinese traditional medicine Salvia miltiorrhiza Bunge (SMB), quantitative
nuclear magnetic resonance (qNMR) has never previously been used to analyse fresh SMB root extracts.
Objective:
To establish a fast and simple method of quantitating danshensu, lithospermic acid, rosmarinic
acid, and salvianolic acid B content in fresh SMB root using 1H-NMR spectroscopy.
Method:
Fresh SMB root was extracted using a 70% methanol aqueous solution and quantitatively
analysed for danshensu, lithospermic acid, rosmarinic acid, and salvianolic acid B using 1H-NMR
spectroscopy. Different internal standards were compared and the results were validated using highperformance
liquid chromatography.
Results:
The established method was accurate and precise with good recovery. The LOD and LOQ
indicated the excellent sensitivity of the method. The robustness was testified by the modification of
four different parameters, and the differences among each parameter were all less than 2%.
Conclusion:
qNMR offers a fast, reliable, and accurate method of identifying and quantifying danshensu,
lithospermic acid, rosmarinic acid, and salvianolic acid B in fresh SMB root extracts.
Collapse
Affiliation(s)
- Zhuoni Hou
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou,China
| | - Zongsuo Liang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou,China
| | - Yuanyuan Li
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou,China
| | - Feng Su
- College of Pharmaceutical Sciences, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou,China
| | - Jipeng Chen
- College of Pharmaceutical Sciences, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou,China
| | - Xiaodan Zhang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou,China
| | - Dongfeng Yang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou,China
| |
Collapse
|
13
|
Wang H, Pang W, Xu X, You B, Zhang C, Li D. Cryptotanshinone Attenuates Ischemia/Reperfusion-induced Apoptosis in Myocardium by Upregulating MAPK3. J Cardiovasc Pharmacol 2021; 77:370-377. [PMID: 33662979 DOI: 10.1097/fjc.0000000000000971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/26/2020] [Indexed: 01/17/2023]
Abstract
ABSTRACT Chinese people have used the root of Salvia miltiorrhiza Bunge (called "Danshen" in Chinese) for centuries as an anticancer agent, anti-inflammatory agent, antioxidant, and cardiovascular disease drug. In addition, Danshen is considered to be a drug that can improve ischemia/reperfusion (I/R)-induced myocardium injury in traditional Chinese medicine. However, Danshen is a mixture that includes various bioactive substances. In this study, we aimed to identify the protective component and mechanism of Danshen on myocardium through network pharmacology and molecular simulation methods. First, cryptotanshinone (CTS) was identified as a potential active compound from Danshen that was associated with apoptosis by a network pharmacology approach. Subsequently, biological experiments validated that CTS inhibited ischemia/reperfusion-induced cardiomyocyte apoptosis in vivo and in vitro. Molecular docking techniques were used to screen key target information. Based on the simulative results, MAPKs were verified as well-connected molecules of CTS. Western blotting assays also demonstrated that CTS could enhance MAPK expression. Furthermore, we demonstrated that inhibition of the MAPK pathway reversed the CTS-mediated effect on cardiomyocyte apoptosis. Altogether, our work screened out CTS from Danshen and demonstrated that it protected cardiomyocytes from apoptosis.
Collapse
Affiliation(s)
- Hefeng Wang
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Wenhui Pang
- Department of Otolaryngology Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xingsheng Xu
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Beian You
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Cuijuan Zhang
- Department of Cardiology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; and
| | - Dan Li
- Department of Cardiology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; and
| |
Collapse
|
14
|
Hou Z, Li Y, Su F, Chen J, Zhang X, Xu L, Yang D, Liang Z. Application of 1H-NMR combined with qRT-PCR technology in the exploration of rosmarinic acid biosynthesis in hair roots of Salvia miltiorrhiza Bunge and Salvia castanea f. tomentosa Stib. PLANTA 2020; 253:2. [PMID: 33247370 PMCID: PMC7695671 DOI: 10.1007/s00425-020-03506-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/29/2020] [Indexed: 05/06/2023]
Abstract
MAIN CONCLUSION Methyl jasmonate promotes the synthesis of rosmarinic acid in Salvia miltiorrhiza Bunge and Salvia castanea f. tomentosa Stib, and it promotes the latter more strongly. Salvia miltiorrhiza Bunge (SMB) is a traditional Chinese medicinal material, its water-soluble phenolic acid component rosmarinic acid has very important medicinal value. Salvia castanea f. tomentosa Stib (SCT) mainly distributed in Nyingchi, Tibet. Its pharmacological effects are similar to SMB, but its rosmarinic acid is significantly higher than the former. Methyl jasmonate (MJ) as an inducer can induce the synthesis of phenolic acids in SMB and SCT. However, the role of MJ on rosmarinic acid in SMB is controversial. Therefore, this study used SMB and SCT hair root as an experimental material and MJ as a variable. On one hand, exploring the controversial reports in SMB; on the other hand, comparing the differences in the mechanism of action of MJ on the phenolic acids in SMB and SCT. The content of related metabolites and the expression of key genes in the synthesis pathway of rosmarinic acid was analyzed by 1H-NMR combined with qRT-PCR technology. Our research has reached the following conclusions: first of all, MJ promotes the accumulation of rosmarinic acid and related phenolic acids in the metabolic pathways of SMB and SCT. After MJ treatment, the content of related components and gene expression are increased. Second, compared to SMB, SCT has a stronger response to MJ. It is speculated that the different responses of secondary metabolism-related genes to MJ may lead to different metabolic responses of salvianolic acid between the two.
Collapse
Affiliation(s)
- Zhuoni Hou
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuanyuan Li
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Feng Su
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, 18 Chao Wang Road, Hangzhou, 310014, China
| | - Jipeng Chen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, 18 Chao Wang Road, Hangzhou, 310014, China
| | - Xiaodan Zhang
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ling Xu
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Dongfeng Yang
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zongsuo Liang
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
15
|
Wang X, Wang Q, Li W, Zhang Q, Jiang Y, Guo D, Sun X, Lu W, Li C, Wang Y. TFEB-NF-κB inflammatory signaling axis: a novel therapeutic pathway of Dihydrotanshinone I in doxorubicin-induced cardiotoxicity. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:93. [PMID: 32448281 PMCID: PMC7245789 DOI: 10.1186/s13046-020-01595-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Doxorubicin is effective in a variety of solid and hematological malignancies. Unfortunately, clinical application of doxorubicin is limited due to a cumulative dose-dependent cardiotoxicity. Dihydrotanshinone I (DHT) is a natural product from Salvia miltiorrhiza Bunge with multiple anti-tumor activity and anti-inflammation effects. However, its anti-doxorubicin-induced cardiotoxicity (DIC) effect, either in vivo or in vitro, has not been elucidated yet. This study aims to explore the anti-inflammation effects of DHT against DIC, and to elucidate the potential regulatory mechanism. METHODS Effects of DHT on DIC were assessed in zebrafish, C57BL/6 mice and H9C2 cardiomyocytes. Echocardiography, histological examination, flow cytometry, immunochemistry and immunofluorescence were utilized to evaluate cardio-protective effects and anti-inflammation effects. mTOR agonist and lentivirus vector carrying GFP-TFEB were applied to explore the regulatory signaling pathway. RESULTS DHT improved cardiac function via inhibiting the activation of M1 macrophages and the excessive release of pro-inflammatory cytokines both in vivo and in vitro. The activation and nuclear localization of NF-κB were suppressed by DHT, and the effect was abolished by mTOR agonist with concomitant reduced expression of nuclear TFEB. Furthermore, reduced expression of nuclear TFEB is accompanied by up-regulated phosphorylation of IKKα/β and NF-κB, while TFEB overexpression reversed these changes. Intriguingly, DHT could upregulate nuclear expression of TFEB and reduce expressions of p-IKKα/β and p-NF-κB. CONCLUSIONS Our results demonstrated that DHT can be applied as a novel cardioprotective compound in the anti-inflammation management of DIC via mTOR-TFEB-NF-κB signaling pathway. The current study implicates TFEB-IKK-NF-κB signaling axis as a previously undescribed, druggable pathway for DIC.
Collapse
Affiliation(s)
- Xiaoping Wang
- grid.24695.3c0000 0001 1431 9176School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Qiyan Wang
- grid.24695.3c0000 0001 1431 9176School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Weili Li
- grid.24695.3c0000 0001 1431 9176School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Qian Zhang
- grid.24695.3c0000 0001 1431 9176School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Yanyan Jiang
- grid.24695.3c0000 0001 1431 9176School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Dongqing Guo
- grid.24695.3c0000 0001 1431 9176School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Xiaoqian Sun
- grid.24695.3c0000 0001 1431 9176School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Wenji Lu
- grid.24695.3c0000 0001 1431 9176School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Chun Li
- grid.24695.3c0000 0001 1431 9176Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Yong Wang
- grid.24695.3c0000 0001 1431 9176School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029 China ,grid.24695.3c0000 0001 1431 9176School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| |
Collapse
|
16
|
Application of Traditional Chinese Medicines in Postoperative Abdominal Adhesion. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8073467. [PMID: 32419827 PMCID: PMC7199640 DOI: 10.1155/2020/8073467] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 12/16/2022]
Abstract
Adhesion is a frequent complication after abdominal surgery. Although various methods have been applied to prevent and treat postoperative abdominal adhesion (PAA), few modern drugs designed for clinical applications have reached the expected preventive or therapeutic effect so far. There is an imperative to develop some new strategies for the treatment of PAA. Traditional Chinese medicine (TCM) has been widely practiced for thousands of years and played an indispensable role in the prevention and treatment of diseases. Modern medicine researchers have accepted the therapeutic effects of many active components derived from Chinese medicinal herbs. The review stresses the most commonly used TCM treatment, including Chinese medicinal herbals and monomers, TCM formulas, and acupuncture treatment.
Collapse
|
17
|
Chuang CY, Ho YC, Lin CW, Yang WE, Yu YL, Tsai MC, Yang SF, Su SC. Salvianolic acid A suppresses MMP-2 expression and restrains cancer cell invasion through ERK signaling in human nasopharyngeal carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2020; 252:112601. [PMID: 31981746 DOI: 10.1016/j.jep.2020.112601] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/07/2020] [Accepted: 01/18/2020] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza Bunge, as known as Danshen, has used for the prevention and treatment of cardiovascular diseases clinically and anti-cancer activities. Salvianolic acid A (SAA), one of the most abundant ingredients, hydrophilic derivatives of Salvia miltiorrhiza Bunge, exerts a variety of pharmacological actions, such as anti-oxidative, anti-inflammatory and anti-cancer activities. However, the impact of SAA on nasopharyngeal carcinoma (NPC) invasion and metastasis remains unexplored. AIM OF THE STUDY To investigate the potential of SAA to prevent migration and invasion on NPC cell. MATERIALS AND METHODS MTT assay and Boyden chamber assay were performed to determine cell proliferation, migration and invasion abilities, respectively. The activity and protein expression of matrix metalloproteinase-2 (MMP-2) were determined by gelatin zymography and western blotting. RESULTS Here, we showed that SAA considerably suppressed the migrative and invasive activity of human NPC cells but not rendered cytotoxicity. In SAA-treated NPC cells, the activity and expression of matrix metalloproteinase-2 (MMP-2), a key regulator of cancer cell invasion, were reduced. Additionally, the presence of high concentrations of SAA dramatically abolished the activation of focal adhesion kinase (FAK) and moderately inhibited the phosphorylation of Src and ERK in NPC cells. CONCLUSIONS Our results demonstrated that SAA inhibited the migration and invasion of NPC cells, accompanied by downregulation of MMP-2 and inactivation of FAK, Src, and ERK pathways. These findings indicate a usefulness of SAA on restraining NPC invasion and metastasis.
Collapse
Affiliation(s)
- Chun-Yi Chuang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yung-Chuan Ho
- School of Medical Applied Chemistry, Chung Shan Medical University, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wei-En Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yung-Luen Yu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Ming-Chieh Tsai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan; Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Linkou and Keelung, Taiwan.
| |
Collapse
|
18
|
Guo Y, Yang Q, Weng XG, Wang YJ, Hu XQ, Zheng XJ, Li YJ, Zhu XX. Shenlian Extract Against Myocardial Injury Induced by Ischemia Through the Regulation of NF-κB/IκB Signaling Axis. Front Pharmacol 2020; 11:134. [PMID: 32210797 PMCID: PMC7069067 DOI: 10.3389/fphar.2020.00134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 01/31/2020] [Indexed: 12/22/2022] Open
Abstract
Ischemic heart disease (IHD), caused predominantly by atherosclerosis, is a leading cause of global mortality. Our previous studies showed that Shenlian extract (SL) could prevent the formation of atherosclerosis and enhance the stability of atherosclerotic plaques. To further investigate the protective effects of SL on myocardial ischemic injury and its possible mechanisms, anesthetized dogs, ex vivo rat hearts, and H9c2 cardiomyocytes were used as models. The results showed that SL had a significant protective effect on the anesthetized dog ligating coronary artery model, reduced the degree of myocardial ischemia (Σ-ST), and reduced the scope of myocardial ischemia (N-ST). Meanwhile, SL alleviated ischemic reperfusion damage in ex vivo rat hearts with improved LVEDP and ± dp/dtmax values of the left ventricle. SL reduced the pathological changes of LDH, IL-1β, MDA, and NO contents, all of which are related to the expression of NF-κB. Further analysis by Bio-Plex array and signal pathway blocker revealed that the phosphorylation of IκB was a key factor for SL to inhibit myocardial ischemic injury, and the regulation of SL on IκB was primarily related to degradation of the IκB protein. These results provided dependable evidence that SL could protect against myocardial ischemic injury through the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yuan Guo
- Pharmacokinetics Laboratory, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Yang
- Pharmacokinetics Laboratory, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Gang Weng
- Pharmacokinetics Laboratory, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ya-Jie Wang
- Pharmacokinetics Laboratory, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue-Qi Hu
- College of Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao-Jun Zheng
- Pharmacy Department, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yu-Jie Li
- Pharmacokinetics Laboratory, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Xin Zhu
- Pharmacokinetics Laboratory, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Zhang Y, Cheng BCY, Zhou W, Xu B, Gao X, Qiao Y, Luo G. Improved Understanding of the High Shear Wet Granulation Process under the Paradigm of Quality by Design Using Salvia miltiorrhiza Granules. Pharmaceutics 2019; 11:E519. [PMID: 31600941 PMCID: PMC6835650 DOI: 10.3390/pharmaceutics11100519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/27/2019] [Accepted: 10/06/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND High shear wet granulation (HSWG) is a shaping process for granulation that has been enhanced for application in the pharmaceutical industry. However, study of HSWG is complex and challenging due to the relatively poor understanding of HSWG, especially for sticky powder-like herbal extracts. AIM In this study, we used Salvia miltiorrhiza granules to investigate the HSWG process across different scales using quality by design (QbD) approaches. METHODS A Plackett-Burman experimental design was used to screen nine granulation factors in the HSWG process. Moreover, a quadratic polynomial regression model was established based on a Box-Behnken experimental design to optimize the granulation factors. In addition, the scale-up of HSWG was implemented based on a nucleation regime map approach. RESULTS According to the Plackett-Burman experimental design, it was found that three granulation factors, including salvia ratio, binder amount, and chopper speed, significantly affected the granule size (D50) of S. miltiorrhiza in HSWG. Furthermore, the results of the Box-Behnken experimental design and validation experiment showed that the model successfully captured the quadratic polynomial relationship between granule size and the two granulation factors of salvia ratio and binder amount. At the same experiment points, granules at all scales had similar size distribution, surface morphology, and flow properties. CONCLUSIONS These results demonstrated that rational design, screening, optimization, and scale-up of HSWG are feasible using QbD approaches. This study provides a better understanding of HSWG process under the paradigm of QbD using S. miltiorrhiza granules.
Collapse
Affiliation(s)
- Yi Zhang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Brian Chi-Yan Cheng
- College of Professional and Continuing Education, Hong Kong Polytechnic University, Hong Kong 999077, China.
| | - Wenjuan Zhou
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
- Interdisciplinary Research Center on Multi-Omics of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102400, China.
| | - Bing Xu
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
- Beijing Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing 102400, China.
| | - Xiaoyan Gao
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
- Interdisciplinary Research Center on Multi-Omics of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102400, China.
- Beijing Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing 102400, China.
| | - Yanjiang Qiao
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
- Beijing Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing 102400, China.
| | - Gan Luo
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
- Interdisciplinary Research Center on Multi-Omics of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102400, China.
- Beijing Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing 102400, China.
| |
Collapse
|
20
|
Ren J, Fu L, Nile SH, Zhang J, Kai G. Salvia miltiorrhiza in Treating Cardiovascular Diseases: A Review on Its Pharmacological and Clinical Applications. Front Pharmacol 2019; 10:753. [PMID: 31338034 PMCID: PMC6626924 DOI: 10.3389/fphar.2019.00753] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022] Open
Abstract
Bioactive chemical constitutes from the root of Salvia miltiorrhiza classified in two major groups, viz., liposoluble tanshinones and water-soluble phenolics. Tanshinone IIA is a major lipid-soluble compound having promising health benefits. The in vivo and in vitro studies showed that the tanshinone IIA and salvianolate have a wide range of cardiovascular and other pharmacological effects, including antioxidative, anti-inflammatory, endothelial protective, myocardial protective, anticoagulation, vasodilation, and anti-atherosclerosis, as well as significantly help to reduce proliferation and migration of vascular smooth muscle cells. In addition, some of the clinical studies reported that the S. miltiorrhiza preparations in combination with Western medicine were more effective for treatment of various cardiovascular diseases including angina pectoris, myocardial infarction, hypertension, hyperlipidemia, and pulmonary heart diseases. In this review, we demonstrated the potential applications of S. miltiorrhiza, including pharmacological effects of salvianolate, tanshinone IIA, and its water-soluble derivative, like sodium tanshinone IIA sulfonate. Moreover, we also provided details about the clinical applications of S. miltiorrhiza preparations in controlling the cardiovascular diseases.
Collapse
Affiliation(s)
- Jie Ren
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Li Fu
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Shivraj Hariram Nile
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun Zhang
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Guoyin Kai
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai, China.,Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
21
|
Shah SMA, Akram M, Riaz M, Munir N, Rasool G. Cardioprotective Potential of Plant-Derived Molecules: A Scientific and Medicinal Approach. Dose Response 2019; 17:1559325819852243. [PMID: 31205459 PMCID: PMC6537262 DOI: 10.1177/1559325819852243] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2022] Open
Abstract
Since the beginning of human civilization, plants have been used in alleviating the human distress and it was recorded for about thousands of years ago that the plants are being used for medicinal purposes. Natural bioactive compounds called phytochemicals are obtained from medicinal plants, vegetables, and fruits, which functions to combat against various ailments. There is dire need to explore the plant biodiversity for its medicinal and pharmacological potentials. Different databases such as Google scholar, Medline, PubMed, and the Directory of Open Access Journals were searched to find the articles describing the cardioprotective function of medicinal plants. Various substances from a variety of plant species are used for the treatment of cardiovascular abnormalities. The cardioprotective plants contain a variety of bioactive compounds, including diosgenin, isoflavones, sulforaphane, carotinized, catechin, and quercetin, have been proved to enhance cardioprotection, hence reducing the risk of cardiac abnormalities. The present review article provides the data on the use of medicinal plants particularly against cardiac diseases and to explore the molecules/phytoconstituents as plant secondary metabolites for their cardioprotective potential.
Collapse
Affiliation(s)
- Syed Muhammad Ali Shah
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences, Faculty of Medical and Health Sciences, University of Sargodha, Sargodha, Pakistan
| | - Naveed Munir
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ghulam Rasool
- Department of Allied Health Sciences, Faculty of Medical and Health Sciences, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
22
|
Wang N, Li Y, Li Z, Liu C, Xue P. Sal B targets TAZ to facilitate osteogenesis and reduce adipogenesis through MEK-ERK pathway. J Cell Mol Med 2019; 23:3683-3695. [PMID: 30907511 PMCID: PMC6484321 DOI: 10.1111/jcmm.14272] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/14/2022] Open
Abstract
Salvianolic acid B (Sal B), a major bioactive component of Chinese herb, was identified as a mediator for bone metabolism recently. The aim of this study is to investigate the underlying mechanisms by which Sal B regulates osteogenesis and adipogenesis. We used MC3T3-E1 and 3T3-L1 as the study model to explore the changes of cell differentiation induced by Sal B. The results indicated that Sal B at different concentrations had no obvious toxicity effects on cell proliferation during differentiation. Furthermore, Sal B facilitated osteogenesis but inhibited adipogenesis by increasing the expression of transcriptional co-activator with PDZ-binding motif (TAZ). Accordingly, TAZ knock-down offset the effects of Sal B on cell differentiation into osteoblasts or adipocytes. Notably, the Sal B induced up-expression of TAZ was blocked by U0126 (the MEK-ERK inhibitor), rather than LY294002 (the PI3K-Akt inhibitor). Moreover, Sal B increased the p-ERK/ERK ratio to regulate the TAZ expression as well as the cell differentiation. In summary, this study suggests for the first time that Sal B targets TAZ to facilitate osteogenesis and reduce adipogenesis by activating MEK-ERK signalling pathway, which provides evidence for Sal B to be used as a potential therapeutic agent for the management of bone diseases.
Collapse
Affiliation(s)
- Na Wang
- Department of Endocrinology, Hebei Medical University, Third Affiliated Hospital, Shijiazhuang, PR China.,Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, PR China
| | - Yukun Li
- Department of Endocrinology, Hebei Medical University, Third Affiliated Hospital, Shijiazhuang, PR China.,Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, PR China
| | - Ziyi Li
- Department of Endocrinology, Hebei Medical University, Third Affiliated Hospital, Shijiazhuang, PR China.,Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, PR China
| | - Chang Liu
- Department of Endocrinology, Hebei Medical University, Third Affiliated Hospital, Shijiazhuang, PR China.,Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, PR China
| | - Peng Xue
- Department of Endocrinology, Hebei Medical University, Third Affiliated Hospital, Shijiazhuang, PR China.,Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, PR China
| |
Collapse
|
23
|
Heo JY, Im DS. Anti-allergic effects of salvianolic acid A and tanshinone IIA from Salvia miltiorrhiza determined using in vivo and in vitro experiments. Int Immunopharmacol 2018; 67:69-77. [PMID: 30537633 DOI: 10.1016/j.intimp.2018.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022]
Abstract
Salvia miltiorrhiza root has been used in Asian traditional medicine for the treatment of cardiovascular diseases, asthma, and other conditions. Salvianolic acid B from S. miltiorrhiza extracts has been shown to improve airway hyperresponsiveness. We investigated the effects of salvianolic acid A, tanshinone I, and tanshinone IIA from S. miltiorrhiza in allergic asthma by using rat RBL-2H3 mast cells and female Balb/c mice. Antigen-induced degranulation was assessed by measuring β-hexosaminidase activity in vitro. In addition, a murine ovalbumin-induced allergic asthma model was used to test the in vivo efficacy of salvianolic acid A and tanshinone IIA. Tanshinone I and tanshinone IIA inhibited antigen-induced degranulation of mast cells, but salvianolic acid A did not. Administration of salvianolic acid A and tanshinone IIA decreased the number of immune cells, particularly eosinophils in allergic asthma-induced mice. Histological studies showed that salvianolic acid A and tanshinone IIA reduced mucin production and inflammation in the lungs. Administration of salvianolic acid A and tanshinone IIA reduced the expression and secretion of Th2 cytokines (IL-4 and IL-13) in the bronchoalveolar lavage fluid and lung tissues of mice with ovalbumin-induced allergic asthma. These findings provide evidence that salvianolic acid A and tanshinone IIA may be potential anti-allergic therapeutics.
Collapse
Affiliation(s)
- Jae-Yeong Heo
- College of Pharmacy, Pusan National University, Busan 609-735, Republic of Korea
| | - Dong-Soon Im
- College of Pharmacy, Pusan National University, Busan 609-735, Republic of Korea.
| |
Collapse
|
24
|
Genotoxicity Evaluation of an Ethanol Extract Mixture of Astragali Radix and Salviae miltiorrhizae Radix. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5684805. [PMID: 30402128 PMCID: PMC6198562 DOI: 10.1155/2018/5684805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022]
Abstract
Myelophil, a combination of Astragali Radix and Salviae Radix, is one of the most commonly used remedies for disorders of Qi and blood in traditional Chinese medicine. Based on the clinical applications of these plants, in particular to pregnant woman, this study aimed to evaluate the genotoxic potential of an ethanol extract mixture of the above two herbs, called Myelophil. Following the Organization for Economic Cooperation and Development (OECD) Guideline methods, a genotoxicity test was conducted using a bacterial reverse mutation test with Salmonella typhimurium (TA98, TA100, TA1535, and TA1537) and Escherichia coli (WP2μvrA), an in vitro mammalian chromosome aberration test using a Chinese hamster ovary cell line (CHO-K1), and an in vivo mammalian erythrocyte micronucleus test using ICR mouse bone marrow. In the Ames test, for both types of mutations (base substitution and frameshift) under conditions with/without an S9 mix up to 5,000 μg/plate, Myelophil did not increase the number of revertant colonies of all S. typhimurium strains as well as E. coli strain. For both short (6 h) and long tests with/without S9 mix, the chromosome aberration test did not show any significant increase in the number of structural or numerical chromosome aberrations by Myelophil. In addition, no significant change in the number of micronucleated polychromatic erythrocytes or polychromatic erythrocytes was observed in the bone marrow of an ICR mouse administered Myelophil orally at 2,000 mg/kg/day for 2 days, respectively. These results are the first to provide experimental evidence that Myelophil, an ethanol extract mixture of Astragali Radix and Salviae Radix, has no risk of genotoxicity.
Collapse
|