1
|
Hong N, An JH, Kim SS, Park SM, Lim GH, Oh YI, Seo KW, Youn HY. Effect of Oligo-Fucoidan, Fucoxanthin, and L-Carnitine on Chronic Kidney Disease in Dogs: A Retrospective Study. Animals (Basel) 2024; 14:1696. [PMID: 38891743 PMCID: PMC11171177 DOI: 10.3390/ani14111696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic kidney disease (CKD) commonly occurs in old dogs and cats. Oligo-fucoidan, fucoxanthin, and L-carnitine (OFL) compounds have a variety of reno-protective properties, including anti-inflammatory, anti-oxidative, and anti-fibrotic effects. Because their effects have not been investigated in naturally occurring canine CKD, we examined their reno-protective activities in dog patients with CKD. A total of 50 patients (OFL, n = 28; control, n = 22) were included in the analysis. A significant difference was identified in serum blood urea nitrogen and creatinine concentrations between the control and OFL groups at 6 months. No significant difference in electrolytes was found between the groups. A significant difference was identified in serum creatinine concentration between the control and OFL groups in azotemic (CKD IRIS stage 2-4) at 6 months. The OFL compounds showed a reno-protective effect, consistent with previous animal studies. The OFL combination can potentially delay the progression of canine CKD and be used as an adjuvant therapy.
Collapse
Affiliation(s)
- Naeun Hong
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; (N.H.); (S.-M.P.); (G.-H.L.); (K.-W.S.)
| | - Ju-Hyun An
- Department of Veterinary Emergency and Critical Care Medicine, College of Veterinary Medicine, Kangwon National University, Chuncheon-si 24341, Republic of Korea;
| | - Sung-Soo Kim
- VIP Animal Medical Center KR, Seoul 02830, Republic of Korea;
| | - Su-Min Park
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; (N.H.); (S.-M.P.); (G.-H.L.); (K.-W.S.)
| | - Ga-Hyun Lim
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; (N.H.); (S.-M.P.); (G.-H.L.); (K.-W.S.)
| | - Ye-In Oh
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Kyoung-Won Seo
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; (N.H.); (S.-M.P.); (G.-H.L.); (K.-W.S.)
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; (N.H.); (S.-M.P.); (G.-H.L.); (K.-W.S.)
| |
Collapse
|
2
|
Yan P, Ke B, Fang X. Ion channels as a therapeutic target for renal fibrosis. Front Physiol 2022; 13:1019028. [PMID: 36277193 PMCID: PMC9581181 DOI: 10.3389/fphys.2022.1019028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Renal ion channel transport and electrolyte disturbances play an important role in the process of functional impairment and fibrosis in the kidney. It is well known that there are limited effective drugs for the treatment of renal fibrosis, and since a large number of ion channels are involved in the renal fibrosis process, understanding the mechanisms of ion channel transport and the complex network of signaling cascades between them is essential to identify potential therapeutic approaches to slow down renal fibrosis. This review summarizes the current work of ion channels in renal fibrosis. We pay close attention to the effect of cystic fibrosis transmembrane conductance regulator (CFTR), transmembrane Member 16A (TMEM16A) and other Cl− channel mediated signaling pathways and ion concentrations on fibrosis, as well as the various complex mechanisms for the action of Ca2+ handling channels including Ca2+-release-activated Ca2+ channel (CRAC), purinergic receptor, and transient receptor potential (TRP) channels. Furthermore, we also focus on the contribution of Na+ transport such as epithelial sodium channel (ENaC), Na+, K+-ATPase, Na+-H+ exchangers, and K+ channels like Ca2+-activated K+ channels, voltage-dependent K+ channel, ATP-sensitive K+ channels on renal fibrosis. Proposed potential therapeutic approaches through further dissection of these mechanisms may provide new therapeutic opportunities to reduce the burden of chronic kidney disease.
Collapse
|
3
|
Din NAS, Mohd Alayudin ‘AS, Sofian-Seng NS, Rahman HA, Mohd Razali NS, Lim SJ, Wan Mustapha WA. Brown Algae as Functional Food Source of Fucoxanthin: A Review. Foods 2022; 11:2235. [PMID: 35954003 PMCID: PMC9368577 DOI: 10.3390/foods11152235] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
Fucoxanthin is an algae-specific xanthophyll of aquatic carotenoid. It is prevalent in brown seaweed because it functions as a light-harvesting complex for algal photosynthesis and photoprotection. Its exceptional chemical structure exhibits numerous biological activities that benefit human health. Due to these valuable properties, fucoxanthin's potential as a potent source for functional food, feed, and medicine is being explored extensively today. This article has thoroughly reviewed the availability and biosynthesis of fucoxanthin in the brown seaweed, as well as the mechanism behind it. We included the literature findings concerning the beneficial bioactivities of fucoxanthin such as antioxidant, anti-inflammatory, anti-obesity, antidiabetic, anticancer, and other potential activities. Last, an additional view on its potential as a functional food ingredient has been discussed to facilitate a broader application of fucoxanthin as a promising bioactive compound.
Collapse
Affiliation(s)
- Nur Akmal Solehah Din
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
| | - ‘Ain Sajda Mohd Alayudin
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
| | - Noor-Soffalina Sofian-Seng
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Hafeedza Abdul Rahman
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Noorul Syuhada Mohd Razali
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Seng Joe Lim
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Wan Aida Wan Mustapha
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
4
|
Zhiyin L, Jinliang C, Qiunan C, Yunfei Y, Qian X. Fucoxanthin rescues dexamethasone induced C2C12 myotubes atrophy. Biomed Pharmacother 2021; 139:111590. [PMID: 33865017 DOI: 10.1016/j.biopha.2021.111590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Muscle atrophy and weakness are the adverse effects of long-term or high dose usage of glucocorticoids. In the present study, we explored the effects of fucoxanthin (10 μM) on dexamethasone (10 μM)-induced atrophy in C2C12 myotubes and investigated its underlying mechanisms. The diameter of myotubes was observed under a light microscope, and the expression of myosin heavy chain (MyHC), proteolysis-related, autophagy-related, apoptosis-related, and mitochondria-related proteins was analyzed by western blots or immunoprecipitation. Fucoxanthin alleviates dexamethasone-induced muscle atrophy in C2C12 myotubes, indicated by increased myotubes diameter and expression of MyHC, decreased expression of muscle atrophy F-box (Atrogin-1) and muscle ring finger 1 (MuRF1). Through activating SIRT1, fucoxanthin inhibits forkhead box O (FoxO) transcriptional activity to reduce protein degradation, induces autophagy to enhance degraded protein clearance, promotes mitochondrial function and diminishes apoptosis. In conclusion, we identified fucoxanthin ameliorates dexamethasone induced C2C12 myotubes atrophy through SIRT1 activation.
Collapse
Affiliation(s)
- Liao Zhiyin
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, China.
| | - Chen Jinliang
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, China.
| | - Chen Qiunan
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, China.
| | - Yang Yunfei
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, China.
| | - Xiao Qian
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, China.
| |
Collapse
|
5
|
Cytoprotective Potential of Fucoxanthin in Oxidative Stress-Induced Age-Related Macular Degeneration and Retinal Pigment Epithelial Cell Senescence In Vivo and In Vitro. Mar Drugs 2021; 19:md19020114. [PMID: 33670685 PMCID: PMC7923087 DOI: 10.3390/md19020114] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress is identified as a major inducer of retinal pigment epithelium (RPE) cell dysregulation and is associated with age-related macular degeneration (AMD). The protection of RPE disorders plays an essential role in the pathological progress of retinal degeneration diseases. The pharmacological functions of fucoxanthin, a characteristic carotenoid, including anti-inflammatory and antioxidant properties, may ameliorate an outstanding bioactivity against premature senescence and cellular dysfunction. This study demonstrates that fucoxanthin protects RPE cells from oxidative stress-induced premature senescence and decreased photoreceptor cell loss in a sodium iodate-induced AMD animal model. Similarly, oxidative stress induced by hydrogen peroxide, nuclear phosphorylated histone (γH2AX) deposition and premature senescence-associated β-galactosidase staining were inhibited by fucoxanthin pretreatment in a human RPE cell line, ARPE-19 cells. Results reveal that fucoxanthin treatment significantly inhibited reactive oxygen species (ROS) generation, reduced malondialdehyde (MDA) concentrations and increased the mitochondrial metabolic rate in oxidative stress-induced RPE cell damage. Moreover, atrophy of apical microvilli was inhibited in cells treated with fucoxanthin after oxidative stress. During aging, the RPE undergoes well-characterized pathological changes, including amyloid beta (Aβ) deposition, beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1) expression and tight junction disruption, which were also reduced in fucoxanthin-treated groups by immunofluorescence. Altogether, pretreatment with fucoxanthin may protect against premature senescence and cellular dysfunction in retinal cells by oxidative stress in experimental AMD animal and human RPE cell models.
Collapse
|
6
|
Chen YC, Cheng CY, Liu CT, Sue YM, Chen TH, Hsu YH, Huang NJ, Chen CH. Combined protective effects of oligo-fucoidan, fucoxanthin, and L-carnitine on the kidneys of chronic kidney disease mice. Eur J Pharmacol 2021; 892:173708. [PMID: 33152336 DOI: 10.1016/j.ejphar.2020.173708] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
Abstract
Chronic kidney disease (CKD) is a common global progressive disease, but there are no ideal drugs for the treatment. Fucoidan and fucoxanthin, and L-carnitine are one of the very few natural products that have a therapeutic effect on CKD in animal experiments. However, the combined effects of these compounds on CKD are unknown. We established a mouse CKD model by right nephrectomy with transient ischemic injury to the left kidney. Oligo-fucoidan and fucoidan were extracted from Laminaria japonica. We fed CKD mice with the two compounds and L-carnitine to evaluate the combined effects on CKD. Oligo-fucoidan and fucoidan inhibited renal fibrosis and reduced serum creatine in CKD mice to a greater extent than any single compound. L-carnitine had no measurable effect on renal fibrosis but promoted the protective effect of the mixture of oligo-fucoidan and fucoidan on renal function in CKD mice. In the two-month safety test, the combined mixture further improved renal function and did not elevate serum aspartate aminotransferase and alanine aminotransferase levels in CKD mice. Furthermore, the weights of CKD mice treated with the combination increased to the normal level. We also found that all oligo-fucoidan, fucoxanthin, and L-carnitine inhibit H2O2-induced apoptosis and activated Akt in rat renal tubular cells. Our results confirm that oligo-fucoidan, fucoxanthin, and L-carnitine have a combined protective effect on the kidneys. The combined mixture may be beneficial for CKD patients.
Collapse
Affiliation(s)
- Yen-Cheng Chen
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Urology and Kidney, Taipei, Taiwan
| | - Chung-Yi Cheng
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Urology and Kidney, Taipei, Taiwan
| | - Chung-Te Liu
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Urology and Kidney, Taipei, Taiwan
| | - Yuh-Mou Sue
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Urology and Kidney, Taipei, Taiwan
| | - Tso-Hsiao Chen
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Urology and Kidney, Taipei, Taiwan
| | - Yung-Ho Hsu
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Urology and Kidney, Taipei, Taiwan
| | - Nai-Jen Huang
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Urology and Kidney, Taipei, Taiwan.
| |
Collapse
|
7
|
Iyappan P, Bala M, Sureshkumar M, Veeraraghavan VP, Palanisamy A. Fucoxanthin induced apoptotic cell death in oral squamous carcinoma (KB) cells. Bioinformation 2021; 17:181-191. [PMID: 34393435 PMCID: PMC8340688 DOI: 10.6026/97320630017181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 12/31/2020] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
Fucoxanthin (Fx) is an active compound commonly found in the many types of seaweed with numerous biological activities. The main goal of this investigation is to explore the effect of Fx against the cell proliferation, apoptotic induction and oxidative stress in the oral squamous (KB) cell line. Cytotoxicity of Fx was determined by MTT assay. The intracellular ROS production, mitochondrial membrane potential (MMP) and apoptosis induction in KB cells were examined through DCFH-DA, Rhodamine-123 and DAPI, and dual staining techniques. Effect of Fx on the antioxidant enzymes and lipid peroxidation in the KB cells was studied through the standard procedures. Fx treated KB cells showed morphological changes and reduced cell survival, which is exhibited by the cytotoxic activity of 50 µM/ml (IC50) Fx against the KB cells. The Fx treatment considerably induced the apoptotosis cells (EB/AO) and decreased the MMP (Rh-123) in KB cells. Further, it was pointed out that there was an increased lipid peroxidation (LPO) with decreased antioxidants (CAT, SOD and GSH). These results concluded that Fx has the cytotoxic effect against KB cells and has the potential to induce the apoptosis via increased oxidative stress. Hence, the Fx can be a promising agent for the treatment of oral cancer and it may lead to the development of cancer therapeutics.
Collapse
Affiliation(s)
- Petchi Iyappan
- Senior Lecturer, Faculty of Medicine, Bioscience and Nursing, School of Bioscience, Mahsa University, Saujana Putra Campus, Jalan SP2, Bandar Saujana Putra, 42610, Jenjarom, Selangor, Malaysia
| | - M.Devi Bala
- Research Scholar, Muthayammal College of Arts & Science (A Unit of VANETRA Group), Rasipuram, 637408, Namakkal, Tamilnadu, India
| | - M Sureshkumar
- Department of Zoology & Biotechnology, Muthayammal College of Arts & Science (A Unit of VANETRA Group), Rasipuram, 637408, Namakkal, Tamilnadu, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077
| | - Arulselvan Palanisamy
- Adjunct Associate Professor,Muthayammal Centre for Advanced Research (MCAR), Muthayammal College of Arts & Science (A Unit of VANETRA Group),Rasipuram, 637408, Namakkal, Tamilnadu, India
| |
Collapse
|