1
|
Farajdokht F, Sadigh-Eteghad S, Vatandoust S, Hosseini L, Morsali S, Feizi H, Shadbad PG, Mahmoudi J. Sericin Improves Memory Impairment Via Activation of the PKA-CREB-BDNF Signaling Pathway and Suppression of Oxidative Stress in Ovariectomized Mice. Neurochem Res 2024; 49:1093-1104. [PMID: 38291264 DOI: 10.1007/s11064-023-04094-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024]
Abstract
Menopause results in estrogen hormone deficiency which causes changes in brain morphology and cognitive impairments. The risk of breast and ovarian cancer increases with estrogen therapy. Thus, finding a substitute treatment option for women in menopause is necessary. In the current study, the impact of chronic sericin treatment (200 mg/kg/day for 6 weeks, gavage) on memory process, oxidative stress markers, synaptic neurotransmission, and acetylcholinesterase (AChE) activity in the hippocampus (HIP) of ovariectomized (OVX) mice was examined and compared to the effects of 17β-estradiol (Es; 20 µg/kg, s.c.). The results demonstrated that sericin and Es administration improved spatial and recognition memory of the OVX animals in the both Lashley III maze and novel object recognition tests. Moreover, sericin-treated OVX mice showed decreased ROS levels, increased endogenous antioxidant defense capacity, and decreased AChE activity in the HIP. Additionally, sericin and Es therapy up-regulated pre-and-post-synaptic protein markers and increased BDNF, CREB, and protein kinase A (PKA) protein expressions in the HIP of OVX mice. Overall, the activation of the PKA-CREB-BDNF signaling pathway by sericin can provide protection against OVX-induced cognitive dysfunction, making it a potential alternative for managing cognitive deficits in postmenopausal women.
Collapse
Affiliation(s)
- Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran
| | - Seyedmahdi Vatandoust
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran
| | - Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soroush Morsali
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Feizi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pedram Ghaderi Shadbad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran.
| |
Collapse
|
2
|
Singh N, Garg M, Prajapati P, Singh PK, Chopra R, Kumari A, Mittal A. Adaptogenic property of Asparagus racemosus: Future trends and prospects. Heliyon 2023; 9:e14932. [PMID: 37095959 PMCID: PMC10121633 DOI: 10.1016/j.heliyon.2023.e14932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Major depressive disorder (MDD) is a multimodal neuropsychiatric and neurodegenerative illness characterized by anhedonia, continued melancholy, dysfunctional circadian rhythm and many other behavioral infirmities. Depression is also associated with somatic ailments such as cardiometabolic diseases. The existing and upcoming hypotheses have succeeded in explaining the pathophysiology of depression. Only a few of the most validated theories, such as hyperactivity of the HPA axis, activated inflammatory-immune response, and monoaminergic and GABAergic deficit hypotheses, have been discussed in this review. So, an effective and safer alternative approach beyond symptomatic relief has been desired. Therefore, botanical products have steadily been probed to strengthen the modern medicinal system as a promising medicament. In this line, Asparagus racemosus Willd. belongs to Asparagaceace family is the well-documented adaptogen cited in the ancient texts namely, Ayurvedic, Greek, and Chinese medicine system. The whole plant possesses pleiotropic therapeutic activity, antioxidant, anti-inflammatory, immunomodulatory, neuroprotective, nootropic, antidepressant, etc., without showing any remarkable side effects. The literature review has also suggested that A. racemosus administration at varied levels alleviates depression by modulating the HPA axis, increasing BDNF levels, and monoaminergic and GABAergic neurotransmission. Alongside, spikes the level of antioxidant enzymes, SOD, GSH peroxidase, GSH, and catalase in distinct brain regions (i.e., hippocampus, prefrontal cortex, amygdala, and hypothalamus) and promote neurogenesis and neuroplasticity. Thus, it could be a new generation antidepressant that provides relief from both behavioral and somatic illness. The review first describes the plant characteristics, then discusses the hypotheses associated with the pathogenesis of depression, and gives an insight into A. racemosus antidepressant properties and the underlying mechanism.
Collapse
|
3
|
Chikhale RV, Sinha SK, Patil RB, Prasad SK, Shakya A, Gurav N, Prasad R, Dhaswadikar SR, Wanjari M, Gurav SS. In-silico investigation of phytochemicals from Asparagus racemosus as plausible antiviral agent in COVID-19. J Biomol Struct Dyn 2021; 39:5033-5047. [PMID: 32579064 PMCID: PMC7335809 DOI: 10.1080/07391102.2020.1784289] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022]
Abstract
COVID-19 has ravaged the world and is the greatest of pandemics in human history, in the absence of treatment or vaccine the mortality and morbidity rates are very high. The present investigation was undertaken to screen and identify the potent leads from the Indian Ayurvedic herb, Asparagus racemosus (Willd.) against SARS-CoV-2 using molecular docking and dynamics studies. The docking analysis was performed on the Glide module of Schrödinger suite on two different proteins from SARS-CoV-2 viz. NSP15 Endoribonuclease and spike receptor-binding domain. Asparoside-C, Asparoside-D and Asparoside -F were found to be most effective against both the proteins as confirmed through their docking score and affinity. Further, the 100 ns molecular dynamics study also confirmed the potential of these compounds from reasonably lower root mean square deviations and better stabilization of Asparoside-C and Asparoside-F in spike receptor-binding domain and NSP15 Endoribonuclease respectively. MM-GBSA based binding free energy calculations also suggest the most favourable binding affinities of Asparoside-C and Asparoside-F with binding energies of -62.61 and -55.19 Kcal/mol respectively with spike receptor-binding domain and NSP15 Endoribonuclease. HighlightsAsparagus racemosus have antiviral potentialPhytochemicals of Shatavari showed promising in-silico docking and MD resultsAsparaoside-C and Asparoside-F has good binding with target proteinsAsparagus racemosus holds promise as SARS-COV-2 (S) and (N) proteins inhibitor Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Saurabh K. Sinha
- Department of Pharmaceutical Sciences, Mohanlal Shukhadia University, Udaipur, India
| | - Rajesh B. Patil
- Sinhgad Technical Education Society’s, Smt. Kashibai Navale College of Pharmacy, Pune, India
| | | | - Anshul Shakya
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, India
| | - Nilambari Gurav
- PES’s Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa University, Goa, India
| | - Rupali Prasad
- Department of Pharmaceutical Sciences, R.T.M. University, Nagpur, India
| | | | - Manish Wanjari
- Regional Ayurveda Research Institute for Drug Development, Aamkho, Gwalior, India
| | - Shailendra S. Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Goa, India
| |
Collapse
|
4
|
Majumdar S, Gupta S, Prajapati SK, Krishnamurthy S. Neuro-nutraceutical potential of Asparagus racemosus: A review. Neurochem Int 2021; 145:105013. [PMID: 33689806 DOI: 10.1016/j.neuint.2021.105013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Debilitating neuropsychiatric and neurodegenerative conditions are associated with complex multifactorial pathophysiology. Their treatment strategies often only provide symptomatic relief, delaying disease progression without giving a complete cure. Potent and safer treatment alternatives beyond symptomatic relief are sought. Herbal supplements have surely been explored due to their multiple component nature to enhance the effect of western medications. One such well-documented nutraceutical in the ancient Greek, Chinese, and Ayurvedic medicine system known for its various medicinal benefits is Asparagus racemosus. Widely used for its lactogenic properties, A. racemosus is also cited in Ayurveda as a nervine tonic. A. racemosus based nutraceuticals have shown to possess adaptogenic, neuroprotective, antioxidant, anti-inflammatory, and nootropic activity under preclinical and clinical settings without posing significant adverse effects. A. racemosus extracts restore the perturbed neurotransmitters and prevent oxidative neuronal damage. From the available neuropharmacological researches, the physiological actions of A. racemosus can ultimately be directed for either augmentation of cognitive ability or in the management of neurological conditions such as stress, anxiety, depression, epilepsy, Parkinson's, and Alzheimer's disease. The studies focus on the multi-component extract, and the lack of standardization has been a major hurdle in preventing the allotment of reported neuropharmacological activity to one of the phytoconstituent. Herbal standardization of the plant extract based on a specific biomarker can help elucidate the intricate biomolecular pathway and neurocircuitries being involved. This, followed by rigorous standardized clinical trials, fixing dosages, and determining contraindications would facilitate the translation of A. racemosus to a FDA-approved neuromedicine for neurological disorders.
Collapse
Affiliation(s)
- Shreyasi Majumdar
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Smriti Gupta
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Santosh Kumar Prajapati
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
5
|
El-Khatib YA, Sayed RH, Sallam NA, Zaki HF, Khattab MM. 17β-Estradiol augments the neuroprotective effect of agomelatine in depressive- and anxiety-like behaviors in ovariectomized rats. Psychopharmacology (Berl) 2020; 237:2873-2886. [PMID: 32535690 DOI: 10.1007/s00213-020-05580-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
Abstract
RATIONALE AND OBJECTIVE Estradiol decline has been associated with depression and anxiety in post-menopausal women. Agomelatine (Ago) is an agonist of the melatonergic MT1/MT2 receptors and an antagonist of the serotonergic 5-HT2c receptors. The present study aimed to evaluate the effects of combining Ago with 17β-estradiol (E2) on ovariectomy (OVX)-induced depressive- and anxiety-like behaviors in young adult female rats. METHODS OVX rats were treated with Ago (40 mg/kg/day, p.o.) for 10 days starting 1 week after surgery alone or combined with two doses of E2 (40 μg/kg/day, s.c.) given before behavioral testing. RESULTS Co-administration of E2 enhanced the anti-depressant and anxiolytics effects of Ago as evidenced by decreased immobility time in the forced swimming test, as well as increased time spent in the open arms and number of entries to open arms in the elevated plus-maze. In parallel, Ago increased hippocampal norepinephrine, dopamine, melatonin, and brain-derived neurotrophic factor (BDNF). Meanwhile, Ago-treated rats exhibited reduced hippocampal nuclear factor kappa beta (NF-kB) P65 expression and pro-inflammatory cytokine level. Ago upregulated estrogen receptor (ER α and β) mRNA expression in the hippocampus of OVX rats and elevated serum estradiol levels. Co-administration of E2 with Ago synergistically decreased NF-kB P65 expression and pro-inflammatory cytokines, and increased BDNF levels. CONCLUSION E2 augmented the neuroprotective effect of Ago in OVX rats via its anti-inflammatory and neurotrophic effects. The combined treatment of E2 and Ago should be further investigated as a treatment of choice for depression, anxiety, and sleep disturbances associated with menopause.
Collapse
Affiliation(s)
- Yasmine A El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt.
| | - Nada A Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| |
Collapse
|
6
|
Lorenzana-Martínez G, Santerre A, Andrade-González I, Bañuelos-Pineda J. Effects of Hibiscus sabdariffa calyces on spatial memory and hippocampal expression of BDNF in ovariectomized rats. Nutr Neurosci 2020; 25:670-680. [PMID: 32787648 DOI: 10.1080/1028415x.2020.1804095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ovarian hypofunction is characterized by decay in brain-derived neurotrophic factor (BDNF), a neurotrophin associated with cognitive and memory function. Hormone replacement therapy is the most common treatment to counteract the negative effects of ovarian insufficiency; however, this therapy may increase the odds of endometrial cancer, blood clots, stroke, and breast cancer. Therefore, a safer alternative to synthetic estrogens is needed. One possible candidate may be phytoestrogens. Hibiscus sabdariffa L. (Malvaceae) is a source of natural food colorants; the calyces and leaves of the plant are consumed in drinks and culinary preparations and are recognized for several health benefits related to their high content of anthocyanins. In the present study, we used an ovariectomized rat model to assess the phytoestrogenic effect of H. sabdariffa, and evaluated spatial memory and BDNF expression. Ninety-day-old female Wistar rats were randomly separated into six groups. Rats from four groups were ovariectomized and injected with a physiological dose of estradiol, or given, in drinking water, an extract prepared from calyces of H. sabdariffa at doses of 50 or 100 mg/kg body weight. Both Intact and Sham groups were included as controls. At day 42, short- and long-term memories were assessed by the Barnes maze test, and hippocampal BDNF expression was evaluated by RT-qPCR and Western blot. Ovariectomy significantly decreased memory performance and BDNF expression, compared with controls. However, administration of H. sabdariffa extract reversed the negative effect of ovariectomy on short- and long-term memory parameters and BDNF expression. A stronger effect was observed at a lower dose of the extract. In conclusion, the extract from H. sabdariffa acted as a phytoestrogen in ovariectomized rats, improving spatial memory performance and hippocampal BDNF expression. Based on these promising results, further clinical experimentation is recommended to study the benefits of H. sabdariffa as an alternative hormonal therapy in patients with ovarian hypofunction.
Collapse
Affiliation(s)
| | - Anne Santerre
- Laboratorio de Biomarcadores Moleculares en Biomedicina y Ecología, Universidad de Guadalajara, Zapopan, México
| | - Isaac Andrade-González
- Planta Piloto de Procesos Agroalimentarios, TecNM/Instituto Tecnológico de Tlajomulco, Tlajomulco de Zúñiga, Jalisco, México
| | | |
Collapse
|
7
|
Chikhale RV, Gupta VK, Eldesoky GE, Wabaidur SM, Patil SA, Islam MA. Identification of potential anti-TMPRSS2 natural products through homology modelling, virtual screening and molecular dynamics simulation studies. J Biomol Struct Dyn 2020; 39:1-16. [PMID: 32741259 DOI: 10.1080/07391102.2020.1798813] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022]
Abstract
Recent outbreak of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to a pandemic of COVID-19. The absence of a therapeutic drug and vaccine is causing severe loss of life and economy worldwide. SARS-CoV and SARS-CoV-2 employ the host cellular serine protease TMPRSS2 for spike (S) protein priming for viral entry into host cells. A potential way to reduce the initial site of SARS-CoV-2 infection may be to inhibit the activity of TMPRSS2. In the current study, the three-dimensional structure of TMPRSS2 was generated by homology modelling and subsequently validated with a number of parameters. The structure-based virtual screening of Selleckchem database was performed through 'Virtual Work Flow' (VSW) to find out potential lead-like TMPRSS2 inhibitors. Camostat and bromhexine are known TMPRSS2 inhibitor drugs, hence these were used as control molecules throughout the study. Based on better dock score, binding-free energy and binding interactions compared to the control molecules, six molecules (Neohesperidin, Myricitrin, Quercitrin, Naringin, Icariin, and Ambroxol) were found to be promising against the TMPRSS2. Binding interactions analysis revealed a number of significant binding interactions with binding site amino residues of TMPRSS2. The all-atoms molecular dynamics (MD) simulation study indicated that all proposed molecules retain inside the receptor in dynamic states. The binding energy calculated from the MD simulation trajectories also favour the strong affinity of the molecules towards the TMPRSS2. Proposed molecules belong to the bioflavonoid class of phytochemicals and are reported to possess antiviral activity, our study indicates their possible potential for application in COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Vivek K Gupta
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Agra, India
| | - Gaber E Eldesoky
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saikh M Wabaidur
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shripad A Patil
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Agra, India
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- School of Health Sciences, University of Kwazulu-Natal, Durban, South Africa
- Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
8
|
Myrtus communis subsp. communis improved cognitive functions in ovariectomized diabetic rats. Gene 2020; 744:144616. [PMID: 32222531 DOI: 10.1016/j.gene.2020.144616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/25/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022]
Abstract
AIM The purpose of this study was to investigate the possible effects of Myrtus communis subsp. communis (MC) on cognitive impairment in ovariectomized diabetic rats. MATERIAL AND METHOD Female Sprague-Dawley rats were divided into 5 groups consisting of 15 rats each; Control (C), Diabetes (D), Ovariectomy and diabetes (OVX + D), Ovariectomy, diabetes and donepezil (OVX + D + Don), Ovariectomy, diabetes and Myrtus communis subsp. communis (OVX + D + MC). Blood glucose measurements were made at the beginning and end of the experiments. The animals underwent the novel object recognition test (NORT) and their performance was evaluated. In hippocampal tissues; amyloid beta (Aβ) and neprilysin levels, acetylcholinesterase (AChE), and choline acetyltransferase (ChAT) activities, polysialylated neural cell adhesion molecule (PSA-NCAM), α7 subunit of neuronal nicotinic acetylcholine receptor (α7-nAChR) and brain derived neurotrophic factor (BDNF) gene expressions were examined. RESULTS Animals with ovariectomy and diabetes showed increased levels of blood glucose, AChE activity and Aβ levels, and decreased neprilysin levels, ChAT activity, α7-nAChR, PSA-NCAM and BDNF gene expressions in parallel with a decrease in NORT performance score. On the other hand, in the MC-treated OVX + D group, there was a significant decrease observed in blood glucose levels and AChE activities while there was improvement in NORT performances and an increase in hippocampal ChAT activity, neprilysin levels, α7-nAChR, PSA-NCAM and BDNF expressions. CONCLUSION These results suggest that MC extract could improve cognitive and neuronal functions with its anticholinesterase and antihyperglycemic properties.
Collapse
|
9
|
Nootropic and Anti-Alzheimer's Actions of Medicinal Plants: Molecular Insight into Therapeutic Potential to Alleviate Alzheimer's Neuropathology. Mol Neurobiol 2018; 56:4925-4944. [PMID: 30414087 DOI: 10.1007/s12035-018-1420-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/29/2018] [Indexed: 12/21/2022]
Abstract
Medicinal plants are the backbone of modern medicine. In recent times, there is a great urge to discover nootropic medicinal plants to reverse cognitive dysfunction owing to their less adverse effects. Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by the inevitable loss of cognitive function, memory and language impairment, and behavioral disturbances, which turn into gradually more severe. Alzheimer's has no current cure, but symptomatic treatments are available and research continues. The number of patients suffering from AD continues to rise and today, there is a worldwide effort under study to find better ways to alleviate Alzheimer's pathogenesis. In this review, the nootropic and anti-Alzheimer's potentials of 6 medicinal plants (i.e., Centella asiatica, Clitoria ternatea, Crocus sativus, Terminalia chebula, Withania somnifera, and Asparagus racemosus) were explored through literature review. This appraisal focused on available information about neuroprotective and anti-Alzheimer's use of these plants and their respective bioactive compounds/metabolites and associated effects in animal models and consequences of its use in human as well as proposed molecular mechanisms. This review progresses our existing knowledge to reveal the promising linkage of traditional medicine to halt AD pathogenesis. This analysis also avowed a new insight to search the promising anti-Alzheimer's drugs.
Collapse
|