1
|
Dang J, Zhang G, Li J, He L, Ding Y, Cai J, Cheng G, Yang Y, Liu Z, Fan J, Du L, Liu K. Neem Leaf Extract Exhibits Anti-Aging and Antioxidant Effects from Yeast to Human Cells. Nutrients 2024; 16:1506. [PMID: 38794743 PMCID: PMC11124485 DOI: 10.3390/nu16101506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Neem leaves have long been used in traditional medicine for promoting longevity. However, the precise mechanisms underlying their anti-aging effects remain elusive. In this study, we investigated the impact of neem leaf extract (NLE) extracted from a 50% ethanol solution on the chronological lifespan of Saccharomyces cerevisiae, revealing an extension in lifespan, heightened oxidative stress resistance, and a reduction in reactive oxygen species. To discern the active compounds in NLE, LC/MS and the GNPS platform were employed. The majority of identified active compounds were found to be flavonoids. Subsequently, compound-target pharmacological networks were constructed using the STP and STITCH platforms for both S. cerevisiae and Homo sapiens. GOMF and KEGG enrichment analyses of the predicted targets revealed that "oxidoreductase activity" was among the top enriched terms in both yeast and human cells. These suggested a potential regulation of oxidative stress response (OSR) by NLE. RNA-seq analysis of NLE-treated yeast corroborated the anti-oxidative effect, with "oxidoreductase activity" and "oxidation-reduction process" ranking high in enriched GO terms. Notably, CTT1, encoding catalase, emerged as the most significantly up-regulated gene within the "oxidoreductase activity" cluster. In a ctt1 null mutant, the enhanced oxidative stress resistance and extended lifespan induced by NLE were nullified. For human cells, NLE pretreatment demonstrated a decrease in reactive oxygen species levels and senescence-associated β-galactosidase activity in HeLa cells, indicative of anti-aging and anti-oxidative effects. This study unveils the anti-aging and anti-oxidative properties of NLE while delving into their mechanisms, providing novel insights for pharmacological interventions in aging using phytochemicals.
Collapse
Affiliation(s)
- Jinye Dang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Gongrui Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jingjing Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Libo He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yi Ding
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jiaxiu Cai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Guohua Cheng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yuhui Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zhiyi Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jiahui Fan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Linfang Du
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Ke Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Kaur R, Leon Guevara C. Addressing Challenges in Standardizing Helicobacter pylori Treatment Protocols: Importance and Review. Cureus 2024; 16:e59394. [PMID: 38817468 PMCID: PMC11139486 DOI: 10.7759/cureus.59394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
Helicobacter pylori, one of the top carcinogens, is associated with most cases of gastric cancer-related deaths worldwide. Over the past two decades, the rising rates of antibiotic resistance in the bacterium have reduced the efficacy of conventional antibiotic-based treatments. This underscores the urgency for continued research and novel treatment approaches. Establishing a worldwide accepted physician guideline for antibiotic prescription is crucial to combat antibiotic resistance and improve H. pylori infection management. Therefore, it is important to address the challenges that complicate the establishment of a universally accepted treatment protocol to prescribe an antibiotic regimen to eradicate H. pylori. The answers to the questions of why conventional standard triple therapy remains a first-line treatment choice despite its low efficacy, and how different factors affect therapy choice, are needed to identify these challenges. Hence, this review addresses concerns related to H. pylori treatment choice, role of antibiotic resistance and patient compliance in treatment outcomes, first-line vs. second-line therapy options, and methods for enhancing existing treatment methods. We also present a chart to aid antibiotic treatment prescription, which may support physician guidelines in this aspect. Eradication of H. pylori and patient adherence is paramount in overcoming antibiotic resistance in the bacterium, and our chart summarizes key considerations and suggests novel approaches to achieve this goal.
Collapse
Affiliation(s)
- Ranjot Kaur
- Department of Biology, University of the Fraser Valley, Abbotsford, CAN
| | - Carlos Leon Guevara
- Department of Biology, University of the Fraser Valley, Abbotsford, CAN
- Health Sciences, Fairleigh Dickinson University, Vancouver, CAN
| |
Collapse
|
3
|
S PV, Neralla M, V B, Satheesh T. Comparative Extraction and Bioactive Potential of the Leaf Extracts of Azadirachta indica for Combatting Postoperative Head and Neck Infections: An In Vitro Study. Cureus 2023; 15:e51303. [PMID: 38288224 PMCID: PMC10823300 DOI: 10.7759/cureus.51303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
INTRODUCTION Surgical site infections (SSIs) following head and neck cancer surgery are very common postoperative sequelae. Delayed wound healing leads to a poor aesthetic outcome, delay in restarting oral intake, and delay in getting or starting adjuvant therapy. Antibiotic resistance is on the rise necessitating studies that use alternatives to combat the rising antibiotic resistance. Many plant compounds have been studied to explore the possibility. Neem (Azadirachta indica), a high medicinal value plant, possesses a vast array of phytocompounds, which are broadly grouped into isoprenoids and non-isoprenoids. These phytocompounds are crucial for its anti-inflammatory, antioxidant, antimicrobial, antipyretic, and various other pharmacological activities. MATERIALS AND METHODS In this study, we examined the impact of the extraction solvents on the bioactive potential of neem. Neem leaf samples were extracted with water and ethanol; followed by their biological activities like extraction yield, antioxidant, antimicrobial, and cytotoxicity studies were performed. The extraction yield was found to be higher in the ethanolic extract than in the aqueous extract, which also corroborates with increased antioxidant and antibacterial activity. Both the aqueous and ethanolic extracts of neem exhibited antibacterial activities against dental biofilm-producing pathogens like Staphylococcus aureus, Streptococcus mutans, Pseudomonas aeruginosa, and Escherichia coli. Results: Extraction yield was higher in the ethanolic extract of neem. Antioxidant activity was found to be higher in the ethanolic extract than in the aqueous extract. Neem extract has no toxicity, which was observed through hemolytic and zebrafish embryo toxicity assays. The ethanolic extract of neem was shown to be more effective against the Gram-positive and Gram-negative drug-resistant bacterial pathogen Discussion and conclusion: Thus, the utilization of neem extracts is certainly useful in controlling pathogenic bacterial growth in clinical applications. Further, a detailed mechanism of action of neem extract in bacterial growth inhibition at the molecular level is warranted to utilize their potential in disease management.
Collapse
Affiliation(s)
- Prateek Veerendrakumar S
- Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Mahathi Neralla
- Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Baskar V
- Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Tharini Satheesh
- Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
4
|
Dave N, Iqbal A, Patel M, Kant T, Yadav VK, Sahoo DK, Patel A. Deciphering the key pathway for triterpenoid biosynthesis in Azadirachta indica A. Juss.: a comprehensive review of omics studies in nature's pharmacy. FRONTIERS IN PLANT SCIENCE 2023; 14:1256091. [PMID: 38023910 PMCID: PMC10664250 DOI: 10.3389/fpls.2023.1256091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Since ancient times, Azadirachta indica, or Neem, has been a well-known species of plant that produces a broad range of bioactive terpenoid chemicals that are involved in a variety of biological functions. Understanding the molecular mechanisms that are responsible for the biosynthesis and control of terpenoid synthesis is majorly dependent on successfully identifying the genes that are involved in their production. This review provides an overview of the recent developments concerning the identification of genes in A. indica that are responsible for the production of terpenoids. Numerous candidate genes encoding enzymes that are involved in the terpenoid biosynthesis pathway have been found through the use of transcriptomic and genomic techniques. These candidate genes include those that are responsible for the precursor synthesis, cyclization, and modification of terpenoid molecules. In addition, cutting-edge omics technologies, such as metabolomics and proteomics, have helped to shed light on the intricate regulatory networks that govern terpenoid biosynthesis. These networks are responsible for the production of terpenoids. The identification and characterization of genes involved in terpenoid biosynthesis in A. indica presents potential opportunities for genetic engineering and metabolic engineering strategies targeted at boosting terpenoid production as well as discovering novel bioactive chemicals.
Collapse
Affiliation(s)
- Nitish Dave
- Genetics and Tree Improvement Division, Arid Forest Research Institute, Jodhpur, India
| | - Atif Iqbal
- Genetics and Tree Improvement Division, Arid Forest Research Institute, Jodhpur, India
| | - Margi Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Tarun Kant
- Genetics and Tree Improvement Division, Arid Forest Research Institute, Jodhpur, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ashish Patel
- Genetics and Tree Improvement Division, Arid Forest Research Institute, Jodhpur, India
| |
Collapse
|
5
|
Li S, Yang Q, Cheng B, Liu Y, Zhou S, Ai X, Dong J. Neem oil against Aeromonas hydrophila infection by disrupting quorum sensing and biofilm formation. BIOFOULING 2023; 39:867-878. [PMID: 37968931 DOI: 10.1080/08927014.2023.2279998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/25/2023] [Indexed: 11/17/2023]
Abstract
Aeromonas hydrophila is an opportunistic pathogen that can cause a number of infectious diseases in fish and is widely distributed in aquatic environments. Antibiotics are the main approach against A. hydrophila infections, while the emergence of resistant bacteria limits the application of antibiotics. Here, quorum-sensing (QS) was defined as the target and the inhibitory effects of neem oil against QS of A. hydrophila was studied. The results showed that neem oil could dose-dependently reduce aerolysin, protease, lipase, acyl-homoserine lactones (AHLs), biofilm and swarming motility at sub-inhibitory concentrations. Results of real-time PCR demonstrated that neem oil could down-regulate the transcription of aerA, ahyI and ahyR. Moreover, neem oil showed significant protections to A549 cells and a fish infection model. Taken together, these results indicated that neem oil could be chosen as a promising candidate for the treatment of A. hydrophila infections.
Collapse
Affiliation(s)
- Shengping Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Bo Cheng
- Key Laboratory of Aquatic Product Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Jing Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
6
|
Jadimurthy R, Jagadish S, Nayak SC, Kumar S, Mohan CD, Rangappa KS. Phytochemicals as Invaluable Sources of Potent Antimicrobial Agents to Combat Antibiotic Resistance. Life (Basel) 2023; 13:948. [PMID: 37109477 PMCID: PMC10145550 DOI: 10.3390/life13040948] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/04/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Plants have been used for therapeutic purposes against various human ailments for several centuries. Plant-derived natural compounds have been implemented in clinics against microbial diseases. Unfortunately, the emergence of antimicrobial resistance has significantly reduced the efficacy of existing standard antimicrobials. The World Health Organization (WHO) has declared antimicrobial resistance as one of the top 10 global public health threats facing humanity. Therefore, it is the need of the hour to discover new antimicrobial agents against drug-resistant pathogens. In the present article, we have discussed the importance of plant metabolites in the context of their medicinal applications and elaborated on their mechanism of antimicrobial action against human pathogens. The WHO has categorized some drug-resistant bacteria and fungi as critical and high priority based on the need to develope new drugs, and we have considered the plant metabolites that target these bacteria and fungi. We have also emphasized the role of phytochemicals that target deadly viruses such as COVID-19, Ebola, and dengue. Additionally, we have also elaborated on the synergetic effect of plant-derived compounds with standard antimicrobials against clinically important microbes. Overall, this article provides an overview of the importance of considering phytogenous compounds in the development of antimicrobial compounds as therapeutic agents against drug-resistant microbes.
Collapse
Affiliation(s)
- Ragi Jadimurthy
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore 570006, India; (R.J.); (S.J.)
| | - Swamy Jagadish
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore 570006, India; (R.J.); (S.J.)
| | - Siddaiah Chandra Nayak
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, India;
| | - Sumana Kumar
- Department of Microbiology, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysore 570015, India
| | - Chakrabhavi Dhananjaya Mohan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore 570006, India; (R.J.); (S.J.)
| | | |
Collapse
|
7
|
Rinaldi F, Hanieh PN, Maurizi L, Longhi C, Uccelletti D, Schifano E, Del Favero E, Cantù L, Ricci C, Ammendolia MG, Paolino D, Froiio F, Marianecci C, Carafa M. Neem Oil or Almond Oil Nanoemulsions for Vitamin E Delivery: From Structural Evaluation to in vivo Assessment of Antioxidant and Anti-Inflammatory Activity. Int J Nanomedicine 2022; 17:6447-6465. [PMID: 36573206 PMCID: PMC9789705 DOI: 10.2147/ijn.s376750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 11/12/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Vitamin E (VitE) may be classified in "the first line of defense" against the formation of reactive oxygen species. Its inclusion in nanoemulsions (NEs) is a promising alternative to increase its bioavailability. The aim of this study was to compare O/W NEs including VitE based on Almond or Neem oil, showing themselves antioxidant properties. The potential synergy of the antioxidant activities of oils and vitamin E, co-formulated in NEs, was explored. Patients and Methods NEs have been prepared by sonication and deeply characterized evaluating size, ζ-potential, morphology (TEM and SAXS analyses), oil nanodroplet feature, and stability. Antioxidant activity has been evaluated in vitro, in non-tumorigenic HaCaT keratinocytes, and in vivo through fluorescence analysis of C. elegans transgenic strain. Moreover, on healthy human volunteers, skin tolerability and anti-inflammatory activity were evaluated by measuring the reduction of the skin erythema induced by the application of a skin chemical irritant (methyl-nicotinate). Results Results confirm that Vitamin E can be formulated in highly stable NEs showing good antioxidant activity on keratinocyte and on C. elegans. Interestingly, only Neem oil NEs showed some anti-inflammatory activity on healthy volunteers. Conclusion From the obtained results, Neem over Almond oil is a more appropriate candidate for further studies on this application.
Collapse
Affiliation(s)
- Federica Rinaldi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - Patrizia Nadia Hanieh
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - Linda Maurizi
- Dipartimento di Sanità pubblica e Malattie infettive, Sapienza Università di Roma, Rome, Italy
| | - Catia Longhi
- Dipartimento di Sanità pubblica e Malattie infettive, Sapienza Università di Roma, Rome, Italy
| | - Daniela Uccelletti
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Sapienza Università di Roma, Rome, Italy
| | - Emily Schifano
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Sapienza Università di Roma, Rome, Italy
| | - Elena Del Favero
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, Milan, Italy
| | - Laura Cantù
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, Milan, Italy
| | - Caterina Ricci
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, Milan, Italy
| | - Maria Grazia Ammendolia
- Centro Nazionale Tecnologie Innovative in Sanità Pubblica, Istituto Superiore di Sanità, Rome, Italy
| | - Donatella Paolino
- Dipartimento di Medicina Sperimentale e Clinica, Università Magna Graecia di Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Francesca Froiio
- Dipartimento di Medicina Sperimentale e Clinica, Università Magna Graecia di Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Carlotta Marianecci
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - Maria Carafa
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy,Correspondence: Maria Carafa; Carlotta Marianecci, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, Roma, 00185, Italy, Tel +390649913603; +390649913970, Fax +39064913133, Email ;
| |
Collapse
|
8
|
Wylie MR, Merrell DS. The Antimicrobial Potential of the Neem Tree Azadirachta indica. Front Pharmacol 2022; 13:891535. [PMID: 35712721 PMCID: PMC9195866 DOI: 10.3389/fphar.2022.891535] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/09/2022] [Indexed: 12/24/2022] Open
Abstract
Azadirachta indica (A. Juss), also known as the neem tree, has been used for millennia as a traditional remedy for a multitude of human ailments. Also recognized around the world as a broad-spectrum pesticide and fertilizer, neem has applications in agriculture and beyond. Currently, the extensive antimicrobial activities of A. indica are being explored through research in the fields of dentistry, food safety, bacteriology, mycology, virology, and parasitology. Herein, some of the most recent studies that demonstrate the potential of neem as a previously untapped source of novel therapeutics are summarized as they relate to the aforementioned research topics. Additionally, the capacity of neem extracts and compounds to act against drug-resistant and biofilm-forming organisms, both of which represent large groups of pathogens for which there are limited treatment options, are highlighted. Updated information on the phytochemistry and safety of neem-derived products are discussed as well. Although there is a growing body of exciting evidence that supports the use of A. indica as an antimicrobial, additional studies are clearly needed to determine the specific mechanisms of action, clinical efficacy, and in vivo safety of neem as a treatment for human pathogens of interest. Moreover, the various ongoing studies and the diverse properties of neem discussed herein may serve as a guide for the discovery of new antimicrobials that may exist in other herbal panaceas across the globe.
Collapse
Affiliation(s)
- Marina R Wylie
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - D Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
9
|
Nemati S, Mohammad Rahimi H, Hesari Z, Sharifdini M, Jalilzadeh Aghdam N, Mirjalali H, Zali MR. Formulation of Neem oil-loaded solid lipid nanoparticles and evaluation of its anti-Toxoplasma activity. BMC Complement Med Ther 2022; 22:122. [PMID: 35509076 PMCID: PMC9066750 DOI: 10.1186/s12906-022-03607-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Toxoplasmosis is caused by an intracellular zoonotic protozoan, Toxoplasma gondii, which could be lethal in immunocompromised patients. This study aimed to synthesize Neem oil-loaded solid lipid nanoparticles (NeO-SLNs) and to evaluate the anti-Toxoplasma activity of this component. METHODS The NeO-SLNs were constructed using double emulsification method, and their shape and size distribution were evaluated using transmission electron microscope (TEM) and dynamic light scattering (DLS), respectively. An MTT assay was employed to evaluate the cell toxicity of the component. The anti-Toxoplasma activity of NeO-SLNs was investigated using vital (trypan-blue) staining. Anti-intracellular Toxoplasma activity of NeO-SLNs was evaluated in T. gondii-infected Vero cells. RESULTS The TEM analysis represented round shape NeO-SLNs with clear and stable margins. DLS analysis showed a mean particle size 337.6 nm for SLNs, and most of nanoparticles were in range 30 to 120 nm. The cell toxicity of NeO-SLNs was directly correlated with the concentration of the component (P-value = 0.0013). The concentration of NeO-SLNs, which was toxic for at least 50% of alive T. gondii (cytotoxic concentration (CC50)), was > 10 mg/mL. The ability of NeO-SLNs to kill Toxoplasma was concentration-dependent (P-value < 0.0001), and all concentrations killed at least 70% of alive tachyzoites. Furthermore, the viability of T. gondii- infected Vero cells was inversely correlated with NeO-SLNs concentrations (P-value = 0.0317), and in the concentration 100 μg/mL at least 75% of T. gondii- infected Vero cells remained alive. CONCLUSIONS Overall, our findings demonstrated that the NeO-SLNs was able to kill T. gondii tachyzoites in concentration 100 μg/mL with a cell toxicity lower than 20%. Such results suggest that employing SLNs as carrier for NeO can effectively kill T. gondii tachyzoites with acceptable cell toxicity. Our findings also showed that SLNs capsulation of the NeO can lead to prolonged release of the extract, suggesting that NeO-SLNs could be also employed to clear cyst stages, which should be further investigated in animal models.
Collapse
Affiliation(s)
- Sara Nemati
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Mohammad Rahimi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Hesari
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Meysam Sharifdini
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Safety and Efficacy of Medicinal Plants Used to Manufacture Herbal Products with Regulatory Approval in Uganda: A Cross-Sectional Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1304839. [PMID: 35463071 PMCID: PMC9020950 DOI: 10.1155/2022/1304839] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 12/27/2022]
Abstract
Introduction The Uganda National Drug Authority requires phytochemical screening, freedom from microbial contamination, and evidence of safety and efficacy of the constituent plants to register herbal products. Since Uganda has no pharmacopeia, safety, efficacy, and plant processing information are not readily available. We documented the plant materials used to manufacture products in Uganda and established evidence of their safety and efficacy and availability of monographs. Methods The NDA register of herbal products was reviewed, and a product list was extracted. The herbal products were purchased from local pharmacies, and their labels were studied to identify plant ingredients and drug use. Literature was reviewed to document evidence of the safety and efficacy of the plant materials concerning manufacturer's claims. Also, the WHO and available African Pharmacopeia were searched to establish the availability of the plant monographs. Results Of the 84 NDA-registered local products, only 18 were obtained from the market; 82% were indicated for respiratory tract disorders. Thirty-three plant materials were listed with Eucalyptus globulus Labill, being the commonest. Several in vitro and in vivo studies demonstrate efficacy, thus supporting the use of the selected plant species for empirical treatment as stated on the product label. While most plants were safe, some species such as Albizia coriaria Oliv. had dose-dependent toxicities that cannot be predicted in combinations. The WHO, African Pharmacopoeia, and West African Herbal Pharmacopoeia had only 16 plant monographs of the 33 plants of interest. Nevertheless, Aloe vera (L.) Burm.f., Azadirachta indica A.Juss., Zingiber officinale Roscoe, and Allium sativum L. monographs were published by all three pharmacopoeias. Conclusions Preclinical evidence of safety and efficacy exists in the literature for most of the plants used to manufacture registered herbal products in Uganda. More specific bioassays and clinical trials are required for the products to provide conclusive evidence of safety and toxicity. Monographs are urgently needed for the Ugandan plants.
Collapse
|
11
|
Wylie MR, Windham IH, Blum FC, Wu H, Merrell DS. In vitro antibacterial activity of nimbolide against Helicobacter pylori. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114828. [PMID: 34763046 PMCID: PMC8714693 DOI: 10.1016/j.jep.2021.114828] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 05/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nimbolide is one of hundreds of phytochemicals that have been identified within the neem tree (Azadirachta indica A. Juss). As an evergreen tree native to the Indian subcontinent, components of the neem tree have been used for millennia in traditional medicine to treat dental, gastrointestinal, urinary tract, and blood-related ailments, ulcers, headaches, heartburn, and diabetes. In modern times, natural oils and extracts from the neem tree have been found to have activities against a variety of microorganisms, including human pathogens. AIM OF THE STUDY Helicobacter pylori, a prevalent gastric pathogen, shows increasing levels of antibiotic resistance. Thus, there is an increasing demand for novel therapeutics to treat chronic infections. The in vitro activity of neem oil extract against H. pylori was previously characterized and found to be bactericidal. Given the numerous phytochemicals found in neem oil extract, the present study was designed to define and characterize specific compounds showing bactericidal activity against H. pylori. MATERIALS AND METHODS Azadirachtin, gedunin, and nimbolide, which are all common in neem extracts, were tested for antimicrobial activity; the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined for nine strains of H. pylori. The specific properties of nimbolide were further characterized against H. pylori strain G27. Bactericidal kinetics, reversibility, effectiveness at low pH, and activity under bacteriostatic conditions were examined. The hemolytic activity of nimbolide was also measured. Finally, neem oil extract and nimbolide effectiveness against H. pylori biofilms were examined in comparison to common antibiotics used to treat H. pylori infection. RESULTS Nimbolide, but not azadirachtin or gedunin, was effective against H. pylori; MICs and MBCs against the nine tested strains ranged between 1.25-5 μg/mL and 2.5-10 μg/mL, respectively. Additionally, neem oil extract and nimbolide were both effective against H. pylori biofilms. Nimbolide exhibited no significant hemolytic activity at biologically relevant concentrations. The bactericidal activity of nimbolide was time- and dose-dependent, independent of active H. pylori growth, and synergistic with low pH. Furthermore, nimbolide-mediated H. pylori cell death was irreversible after exposure to high nimbolide concentrations (80 μg/mL, after 2 h of exposure time and 40 μg/mL after 8 h of exposure). CONCLUSIONS Nimbolide has significant bactericidal activity against H. pylori, killing both free living bacterial cells as well as cells within a biofilm. Furthermore, the lack of hemolytic activity, synergistic activity at low pH and bactericidal properties even against bacteria in a state of growth arrest are all ideal pharmacological and biologically relevant properties for a potential new agent. This study underscores the potential of neem oil extract or nimbolide to be used as a future treatment for H. pylori infection.
Collapse
Affiliation(s)
- Marina R Wylie
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, United States
| | - Ian H Windham
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, United States
| | - Faith C Blum
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, United States
| | - Hannah Wu
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, United States
| | - D Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, United States.
| |
Collapse
|
12
|
Subbuvel M, Kavan P. Development and investigation of antibacterial and antioxidant characteristics of poly lactic acid films blended with neem oil and curcumin. J Appl Polym Sci 2021. [DOI: 10.1002/app.51891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mohan Subbuvel
- Department of Production Engineering National Institute of Technology Tiruchirappalli Tiruchirappalli India
| | - Panneerselvam Kavan
- Department of Production Engineering National Institute of Technology Tiruchirappalli Tiruchirappalli India
| |
Collapse
|
13
|
Lu SY, Guo S, Chai SB, Yang JQ, Yue Y, Li H, Sun PM, Zhang T, Sun HW, Zhou JL, Yang JW, Yang HM, Li ZP, Cui Y. Autophagy in Gastric Mucosa: The Dual Role and Potential Therapeutic Target. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2648065. [PMID: 34195260 PMCID: PMC8214476 DOI: 10.1155/2021/2648065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/01/2021] [Indexed: 12/22/2022]
Abstract
The incidence of stomach diseases is very high, which has a significant impact on human health. Damaged gastric mucosa is more vulnerable to injury, leading to bleeding and perforation, which eventually aggravates the primary disease. Therefore, the protection of gastric mucosa is crucial. However, existing drugs that protect gastric mucosa can cause nonnegligible side effects, such as hepatic inflammation, nephritis, hypoacidity, impotence, osteoporotic bone fracture, and hypergastrinemia. Autophagy, as a major intracellular lysosome-dependent degradation process, plays a key role in maintaining intracellular homeostasis and resisting environmental pressure, which may be a potential therapeutic target for protecting gastric mucosa. Recent studies have demonstrated that autophagy played a dual role when gastric mucosa exposed to biological and chemical factors. More indepth studies are needed on the protective effect of autophagy in gastric mucosa. In this review, we focus on the mechanisms and the dual role of various biological and chemical factors regulating autophagy, such as Helicobacter pylori, virus, and nonsteroidal anti-inflammatory drugs. And we summarize the pathophysiological properties and pharmacological strategies for the protection of gastric mucosa through autophagy.
Collapse
Affiliation(s)
- Sheng-Yu Lu
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Song Guo
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Shao-Bin Chai
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jia-Qi Yang
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Yuan Yue
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hao Li
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Pei-Ming Sun
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Tao Zhang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hong-Wei Sun
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jin-Lian Zhou
- Department of Pathology, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jian-Wu Yang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - He-Ming Yang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Zheng-Peng Li
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yan Cui
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| |
Collapse
|
14
|
Irais CM, Claudia BR, David PE, Ashutosh S, Rubén GG, Agustina RM, Del Carmen VMM, Mario-Alberto RG, Luis-Benjamín SG. Leaf and Fruit Methanolic Extracts of Azadirachta indica Exhibit Antifertility Activity on Rats' Sperm Quality and Testicular Histology. Curr Pharm Biotechnol 2021; 22:400-407. [PMID: 32744965 DOI: 10.2174/1389201021666200730145621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/02/2020] [Accepted: 06/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The world's population is still growing, having an impact on the environment and the economic growth of developing countries; so that, there is a particular interest in the development of new fertility control methods, focused on male contraception. OBJECTIVE The objective of this study was to evaluate the effect of methanolic extracts of leaf and fruit of Azadirachta indica on sperm quality and testicular histology of Long Evans rats. METHODS Antifertility effects of a methanolic leaf and fruit extracts of A. indica on 24 male rats were investigated. The animals were randomly divided into two control groups and four treatment groups (n=4). Doses of the leaf and fruit extract were given at concentrations of 100 and 200 μg mL-1. RESULTS A significant decrease in the viability of sperm cells was observed. The leaf extract at a concentration of 200 μg mL-1 inhibited cell viability compared to the negative control (p< 0.001). The percentage of abnormal cells in leaf extract was shown in 100 and 200 μg mL-1, the conditions at which a higher percentage of morphological irregularities of observed (15% and 16% respectively). The results show that there was cellular detachment in the seminiferous epithelium in the experimental groups treated with methanolic extracts. Sperm death was observed without decreasing the number of sperm. CONCLUSION The methanolic extracts of Azadirachta indica have a modulating effect on the spermatogenesis of experimental rats through sperm morphological alterations.
Collapse
Affiliation(s)
- Castillo-Maldonado Irais
- Department of Biochemistry, Biomedical Research Centre, Faculty of Medicine, Universidad Autonoma de Coahuila Unidad Torreon, Torreon, Mexico
| | - Borjón-Ríos Claudia
- Department of Biochemistry, Biomedical Research Centre, Faculty of Medicine, Universidad Autonoma de Coahuila Unidad Torreon, Torreon, Mexico
| | - Pedroza-Escobar David
- Department of Biochemistry, Biomedical Research Centre, Faculty of Medicine, Universidad Autonoma de Coahuila Unidad Torreon, Torreon, Mexico
| | - Sharma Ashutosh
- Department of Bioengineering, School of Engineering and Sciences, Tecnologico de Monterrey, Centre of Bioengineering, Campus Queretaro, Queretaro, Mexico
| | - García-Garza Rubén
- Department of Histology, Faculty of Medicine, Universidad Autonoma de Coahuila Unidad Torreon, Torreon, Mexico
| | - Ramírez-Moreno Agustina
- Faculty of Biological Sciences, Universidad Autonoma de Coahuila Unidad Torreon, Torreon, Mexico
| | | | - Rivera-Guillén Mario-Alberto
- Department of Biochemistry, Biomedical Research Centre, Faculty of Medicine, Universidad Autonoma de Coahuila Unidad Torreon, Torreon, Mexico
| | - Serrano-Gallardo Luis-Benjamín
- Department of Biochemistry, Biomedical Research Centre, Faculty of Medicine, Universidad Autonoma de Coahuila Unidad Torreon, Torreon, Mexico
| |
Collapse
|
15
|
Nanotechnology for Natural Medicine: Formulation of Neem Oil Loaded Phospholipid Vesicles Modified with Argan Oil as a Strategy to Protect the Skin from Oxidative Stress and Promote Wound Healing. Antioxidants (Basel) 2021; 10:antiox10050670. [PMID: 33923127 PMCID: PMC8146128 DOI: 10.3390/antiox10050670] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 01/03/2023] Open
Abstract
Neem oil, a plant-derived product rich in bioactives, has been incorporated in liposomes and hyalurosomes modified by adding argan oil and so called argan-liposomes and argan-hyalurosomes. Argan oil has also been added to the vesicles because of its regenerative and protective effects on skin. In the light of this, vesicles were specifically tailored to protect the skin from oxidative stress and treat lesions. Argan-liposomes were the smallest vesicles (~113 nm); the addition of sodium hyaluronate led to an increase in vesicle size (~143 nm) but it significantly improved vesicle stability during storage. In vitro studies confirmed the free radical scavenging activity of formulations, irrespective of their composition. Moreover, rheological investigation confirmed the higher viscosity of argan-hyalurosomes, which avoid formulation leakage after application. In vitro studies performed by using the most representative cells of the skin (i.e., keratinocytes and fibroblasts) underlined the ability of vesicles, especially argan-liposomes and argan-hyalurosomes, to counteract oxidative stress induced in these cells by using hydrogen peroxide and to improve the proliferation and migration of cells ensuring the more rapid and even complete closure of the wound (scratch assay).
Collapse
|
16
|
Chartier LC, Fujino J, Howarth GS, Freysdottir J, Hardardottir I, Mashtoub S. Emu Oil and Saireito in combination reduce tumour development and clinical indicators of disease in a mouse model of colitis-associated colorectal cancer. Biomed Pharmacother 2021; 138:111478. [PMID: 33756155 DOI: 10.1016/j.biopha.2021.111478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/24/2021] [Accepted: 03/06/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Emu Oil (EO) previously demonstrated therapeutic potential in a mouse model of colitis-associated CRC (CA-CRC). Saireito, a traditional Japanese medicine, has not been investigated in CA-CRC. AIM To determine whether EO and Saireito could be therapeutic in an azoxymethane (AOM)/dextran sulphate sodium (DSS) model of CA-CRC. METHODS Female C57BL/6 mice were assigned to groups (n = 10/group); 1) saline control, 2) saline+Saireito, 3) saline+EO, 4) saline+EO/Saireito, 5) AOM/DSS control, 6) AOM/DSS+Saireito, 7) AOM/DSS+EO and 8) AOM/DSS+EO/Saireito. Mice were intraperitoneally injected with saline or AOM (7.4 mg/kg) on day 0 and underwent three DSS/water cycles (2%w/v DSS for 7 days, 14 days water). Mice were orally-gavaged with either water (80 µL), Saireito (80 µL), EO (80 µL) or EO/Saireito (160 µL; 80 µL EO + 80 µL Saireito) thrice weekly. Daily bodyweight and disease activity index (DAI) were recorded and colonoscopies performed on days 20, 41 and 62. Mice were euthanized on day 63. p < 0.05 was considered statistically significant. RESULTS AOM/DSS induced significant bodyweight loss throughout the trial (max -36%), which was attenuated by Saireito (max +7%), EO (max +5%) and EO/Saireito (max +14%; p < 0.05). AOM/DSS increased DAI compared to saline controls (p < 0.05), which was reduced by Saireito, EO and EO/Saireito (p < 0.05). All treatments reduced colonoscopically-assessed colitis severity (days 20 and 41; p < 0.05). EO/Saireito further decreased colitis severity compared to Saireito and EO alone (day 20; p < 0.05). Finally, EO and EO/Saireito resulted in fewer colonic tumours compared to AOM/DSS controls (p < 0.05). CONCLUSION Combined EO and Saireito reduced disease and tumour development in AOM/DSS mice, suggesting therapeutic potential in CA-CRC.
Collapse
Affiliation(s)
- Lauren C Chartier
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; Gastroenterology Department, Women's and Children's Hospital, North Adelaide, South Australia, Australia.
| | - Junko Fujino
- Department of Paediatric Surgery, Saitama Medical Centre, Dokkyo Medical University, Saitama, Japan.
| | - Gordon S Howarth
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; Gastroenterology Department, Women's and Children's Hospital, North Adelaide, South Australia, Australia; School of Animal & Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia.
| | - Jona Freysdottir
- Faculty of Medicine, Biomedical Centre, University of Iceland and Landspitali-the National University Hospital of Iceland, Reykjavik, Iceland.
| | - Ingibjorg Hardardottir
- Faculty of Medicine, Biomedical Centre, University of Iceland and Landspitali-the National University Hospital of Iceland, Reykjavik, Iceland.
| | - Suzanne Mashtoub
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; Gastroenterology Department, Women's and Children's Hospital, North Adelaide, South Australia, Australia; School of Medicine, The University of Western Australia, Murdoch, Western Australia, Australia.
| |
Collapse
|
17
|
Li H, Xia XJ, Zhang LF, Chi JS, Liu P, Wu H, Xie XR, Tian DL, Kun KX, Gong RJ, Liu XM, Xu CX. Comparative study of allicin-containing quadruple therapy vs. bismuth-containing quadruple therapy for the treatment of Helicobacter pylori infection: a prospective randomized study. Eur J Gastroenterol Hepatol 2021; 32:194-200. [PMID: 32804837 DOI: 10.1097/meg.0000000000001896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Bismuth has antimicrobial activity and can improve the efficacy of triple Helicobacter pylori (H. pylori) therapy. Allicin added to conventional therapy for H. pylori infection also improves H. pylori eradication rates. Thus, this study aims to evaluate and compare the efficacy, safety and tolerability of allicin-containing quadruple therapy and bismuth-containing quadruple therapy and to investigate the factors that affect the eradication rates. METHODS Two hundred twenty H. pylori-infected patients were included and randomly (1:1) assigned to 14-day quadruple therapy: ilaprazole (5 mg bid), doxycycline (100 mg bid), and furazolidone (100 mg bid) with an allicin soft capsule (40 mg of DATS tid) (IDFA) or colloidal bismuth tartrate (220 mg of elemental bismuth bid) (IDFB). Eradication was confirmed by urea breath tests. Symptom improvement, adverse events, and adherence were assessed by a questionnaire. RESULTS In the intention-to-treat and per-protocol analysis, the eradication rates for IDFA and IDFB groups were 87.5% (70/80) vs. 86.3% (69/80, P = 0.815) and 91.9% (68/74) vs. 91.8% (67/73, P = 0.980) as first-line therapies; 83.3% (25/30) vs. 83.3% (25/30, P = 1) and 89.3% (25/28) vs. 88.9% (24/27, P = 1) as second-line therapies. Symptom improvement rates were 96.1% and 97.0% for IDFA and IDFB (P = 1). The adverse event rates were 10.9% in IDFA and 14.5% in IDFB groups (P = 0.418). Nausea occurred frequently in IDFB than IDFA (1.8% vs. 8.2%, P = 0.030). Smoking and sharing utensils significantly affected the efficacy. CONCLUSION Allicin-containing quadruple therapy might be regarded as a promising alternative to bismuth-containing quadruple therapy in H. pylori eradication.
Collapse
Affiliation(s)
- Huan Li
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha, Hunan Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kayira TM, Nakano H. Antibacterial effects of plant extracts with hurdle technology against Vibrio cholerae. FEMS Microbiol Lett 2020; 367:5872481. [PMID: 32672823 DOI: 10.1093/femsle/fnaa119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/14/2020] [Indexed: 12/29/2022] Open
Abstract
Vibrio cholerae is an etiological cause of cholera implicated in several pandemics. Antibacterial activity of plant extracts has been established. However, these extracts exhibit activity at a concentration that may alter organoleptic attributes of water and food, hence limiting their application. In this light, there is need to device ways of reducing plant extracts' effective levels in order to widen their application. Thus, this study was conducted to improve activities of plant ethanolic extracts through combination with other generally recognized as safe antimicrobials. Combination of plant extracts with sodium acetate (NaOAc) 0.4% at pH 7.0 reduced minimum inhibitory concentrations (MICs) of clove, lemon eucalyptus, rosemary and sage from 0.2 to 0.025%. At pH 6.4, combinations were more effective reducing MICs of clove, lemon eucalyptus, rosemary and sage from 0.2 to 0.0125% with NaOAc at 0.2%. At pH 7.0, the combination resulted in additive effect. Nevertheless, at pH 6.4, synergic effect was established. No interactive effect was observed with combinations involving glycine. Combination of plant extracts with NaOAc at mildly acidic pH creates a hurdle effect that may have potential application to control the growth of V. cholerae.
Collapse
Affiliation(s)
- Tabitha Mlowoka Kayira
- Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Japan 739-8528.,The Polytechnic, Physics and Biochemical Sciences Department, University of Malawi, P/bag, 303, Chichiri Blantyre 3, Malawi
| | - Hiroyuki Nakano
- Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Japan 739-8528
| |
Collapse
|