1
|
Li G, Du S, Yan S, Wang Y, Bu R, Cheng M, Zhang Y, Chen Q, Wu Y, Zhang X, Wang D, Wang T. Mechanism of Biqi capsules in the treatment of gout based on network pharmacology and experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118817. [PMID: 39284427 DOI: 10.1016/j.jep.2024.118817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 11/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gout is a crystal-related arthropathy caused by monosodium urate (MSU) deposition, resulting from purine metabolism disorders and hyperuricemia (HUA). Gout belongs to the traditional medicine category of Bi syndrome. Biqi capsules (BQ) is a traditional Chinese medicine formula used to treat Bi syndrome. The BQ prescription is derived from the ancient prescription of Hua Tuo, a famous physician in the Han Dynasty. AIM OF THE STUDY To study the effect and mechanism of BQ in treating acute gouty arthritis (AGA) and HUA. MATERIALS AND METHODS Analyzing BQ's signaling pathways for gout treatment via network pharmacology. The HUA model was induced orally with adenine and potassium oxonate. The rat AGA model was established by MSU injection. In vitro, MH7A and RAW 246.7 cells were treated with LPS and MSU. Serum uric acid, creatinine, and urea nitrogen levels were evaluated. Kidney and ankle joint pathology was observed via HE staining. Inflammatory signaling pathway proteins, epithelial-mesenchymal transition (EMT) pathway proteins, and uric acid metabolism-related proteins were detected by Western blot. RESULTS 1780 potential targets for gout treatment were identified, and 1039 target proteins corresponding to BQ's active ingredients were obtained. Pathway enrichment analysis revealed BQ improved gout mainly through inflammatory pathways. Experimental results showed BQ could reduce serum uric acid level and increase uric acid clearance rate by regulating the expression of adenosine deaminase (ADA), and organic anion transporter 1 (OAT1) and glucose transporter 9 (GLUT9) in HUA mice. BQ could improve renal function and injury by inhibiting the NLRP3 pathway in HUA mice' kidneys. Additionally, BQ could alleviate ankle joint swelling and synovial injury, inhibit the TLR4/NLRP3 pathway, and reduce levels of inflammatory factors including interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor necrosis factor-alpha (TNF-α) in AGA rats. The main component of BQ, brucine, could inhibit the activation of NLRP3/NF-κB pathway induced by MSU and reduce the expression level of inflammatory factors (IL-6, IL-1β, and TNF-α) in macrophages. Brucine could inhibit the activation of the EMT pathway and reduce the expression level of inflammatory factors (IL-6, TNF-α) in human fibroblast-like synoviocytes (MH7A cells) induced by MSU. CONCLUSIONS BQ effectively reduced serum uric acid levels, improved kidney and joint damage, and ameliorated the inflammatory response caused by MSU. Its main component, brucine, effectively improved the inflammatory response and reduced the invasive ability of synoviocytes induced by MSU.
Collapse
Affiliation(s)
- Ge Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jinghai District, Tianjin, 301617, China
| | - Simiao Du
- Tianjin Darentang Jingwanhong Pharmaceutical Co., Ltd., 20 Daming Road, Xiqing District, Tianjin, 300112, China
| | - Siya Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jinghai District, Tianjin, 301617, China
| | - Yang Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jinghai District, Tianjin, 301617, China
| | - Ruizhen Bu
- Tianjin Darentang Jingwanhong Pharmaceutical Co., Ltd., 20 Daming Road, Xiqing District, Tianjin, 300112, China
| | - Meifang Cheng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jinghai District, Tianjin, 301617, China
| | - Yi Zhang
- Haihe Laboratory of Modern Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China
| | - Qian Chen
- Haihe Laboratory of Modern Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China
| | - Yuzheng Wu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jinghai District, Tianjin, 301617, China
| | - Xiangqi Zhang
- Tianjin Darentang Jingwanhong Pharmaceutical Co., Ltd., 20 Daming Road, Xiqing District, Tianjin, 300112, China.
| | - Dan Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jinghai District, Tianjin, 301617, China.
| | - Tao Wang
- Haihe Laboratory of Modern Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
2
|
Meng J, Zhang Z, Wang Y, Long L, Luo A, Luo Z, Cai K, Chen X, Nie H. The exploration of active components of 701 Dieda Zhentong patch and analgesic properties on chronic constriction injury rats. Purinergic Signal 2024:10.1007/s11302-024-10056-5. [PMID: 39495437 DOI: 10.1007/s11302-024-10056-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
An increasing number of traditional Chinese medicine(TCM) have been confirmed to possess analgesic bioactivity. 701 Dieda Zhentong patch(701-DZP) which includes 14 kinds of TCMs exhibited excellent efficacy in alleviating back or leg pain after a soft-tissue injury. In this study, UPLC/MS was used to construct the fingerprint of 701-DZP and excavate the potential bioactive ingredients of it. 21 compounds were detected and identified in the fingerprint including 12 compounds that pass through the skin and 6 compounds observed in the plasma. Then, the role of 701-DZP in neuropathic pain(NPP) was assessed by network pharmacology and CCI rats. 701-DZP inhibited pain sensitization(MWT and TWL) and the release of inflammation mediators(IL-1β and IL-6) in CCI rats which were in keeping with the core targets of the PPI network. The results of IHC and Western blot showed that the expression of the P2X3 receptor in the DRG and SC of CCI rats was significantly reduced after the treatment with 701-DZP. Moreover, the 701-DZP down-regulated the level of phosphorylation of ERK1/2 MAPK instead of P38 MAPK in the DRG of CCI rats. In conclusion, this study has clarified 6 potential analgesic active compounds of 701-DZP and explored the analgesic properties, which may inhibit the expression of the P2X3 receptor to reduce the release of inflammatory mediators based on the ERK1/2 MAPK pathway to alleviate the NPP.
Collapse
Affiliation(s)
- Jun Meng
- Guangzhou Baiyunshan Pharmaceutical Holdings Co., Ltd. Baiyunshan Hejigong Pharmaceutical Factory, NO. 52 Xiaogang Dama Road, Xinshi Street, Baiyun District, Guangzhou, 510410, China
| | - Zhenglang Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Yujie Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Lina Long
- Guangzhou Baiyunshan Pharmaceutical Holdings Co., Ltd. Baiyunshan Hejigong Pharmaceutical Factory, NO. 52 Xiaogang Dama Road, Xinshi Street, Baiyun District, Guangzhou, 510410, China
| | - Anqi Luo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Zhenhui Luo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Kexin Cai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Xi Chen
- Guangzhou Baiyunshan Pharmaceutical Holdings Co., Ltd. Baiyunshan Hejigong Pharmaceutical Factory, NO. 52 Xiaogang Dama Road, Xinshi Street, Baiyun District, Guangzhou, 510410, China.
| | - Hong Nie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
| |
Collapse
|
3
|
Qiu C, Zhang L, Li J. Grilled nux vomica alleviates myasthenia gravis by inhibiting the JAK2/STAT3 signaling pathway: a study in a mice model. Eur J Med Res 2024; 29:507. [PMID: 39434147 PMCID: PMC11492534 DOI: 10.1186/s40001-024-02100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Grilled Nux Vomica (GNV) is a promising traditional Chinese medicine to treat myasthenia gravis (MG), but its effects and mechanisms need further exploration. METHODS Experimental autoimmune MG (EAMG) model was established by muscle-specific kinase (MuSK) induction on C57BL/6 J mice. Mice were treated with GNV and/or ruxolitinib (JAK2 inhibitor) or AG490 (STAT3 inhibitor) for 30 days via gavage after modeling and randomized into 7 groups: control, model, low-dose GNV, middle-dose GNV, high-dose GNV, GNV + ruxolitinib, GNV + AG490. Body weight, muscle strength, clinical score, MuSK level, neuromuscular junction integrity (agrin and acetylcholine receptor [AChR] levels), inflammatory factors (IL-2 and IL-6), and the activation of the JAK2/STAT3 pathway were measured and compared between groups. RESULTS GNV significantly improved body weight and muscle strength, as well as reduced clinical scores, MuSK levels, and inflammatory markers (IL-2 and IL-6) levels compared with untreated EAMG mice. GNV also protected the neuromuscular junction and increased agrin and AChR co-expression in a dose-dependent manner. In addition, GNV attenuated the levels of p-JAK2 and p-STAT3, which are aberrantly upregulated in EAMG mice. After co-treatment with ruxolitinib or AG490, the effect of GNV on body weight, muscle strength, clinical score, MuSK level, neuromuscular junction integrity, levels of inflammatory factors, and JAK2/STAT3 pathway was further amplified in EAMG mice. CONCLUSIONS GNV improves MG by inhibiting the JAK2/STAT3 pathway, which might be an effective therapeutic strategy for MG.
Collapse
Affiliation(s)
- Chao Qiu
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.54 Youdian Road, Hangzhou, 310006, Zhejiang Province, China
| | - Liping Zhang
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.54 Youdian Road, Hangzhou, 310006, Zhejiang Province, China
| | - Jingya Li
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.54 Youdian Road, Hangzhou, 310006, Zhejiang Province, China.
| |
Collapse
|
4
|
Hu N, Liu J, Luo Y, Li Y. A comprehensive review of traditional Chinese medicine in treating neuropathic pain. Heliyon 2024; 10:e37350. [PMID: 39296122 PMCID: PMC11407996 DOI: 10.1016/j.heliyon.2024.e37350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Neuropathic pain (NP) is a common, intractable chronic pain caused by nerve dysfunction and primary lesion of the nervous system. The etiology and pathogenesis of NP have not yet been clarified, so there is a lack of precise and effective clinical treatments. In recent years, traditional Chinese medicine (TCM) has shown increasing advantages in alleviating NP. Our review aimed to define the therapeutic effect of TCM (including TCM prescriptions, TCM extracts and natural products from TCM) on NP and reveal the underlying mechanisms. Literature from 2018 to 2024 was collected from databases including Web of Science, PubMed, ScienceDirect, Google academic and CNKI databases. Herbal medicine, Traditional Chinese medicines (TCM), neuropathic pain, neuralgia and peripheral neuropathy were used as the search terms. The anti-NP activity of TCM is clarified to propose strategies for discovering active compounds against NP, and provide reference to screen anti-NP drugs from TCM. We concluded that TCM has the characteristics of multi-level, multi-component, multi-target and multi-pathway, which can alleviate NP through various pathways such as anti-inflammation, anti-oxidant, anti-apoptotic pathway, regulating autophagy, regulating intestinal flora, and influencing ion channels. Based on the experimental study and anti-NP mechanism of TCM, this paper can offer analytical evidence to support the effectiveness in treating NP. These references will be helpful to the research and development of innovative TCM with multiple levels and multiple targets. TCM can be an effective treatment for NP and can serve as a treasure house for new drug development.
Collapse
Affiliation(s)
- Naihua Hu
- Deyang Hospital of Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No. 159, Section 2, Tianshan South Road, Deyang, 618000, Sichuan, China
| | - Jie Liu
- Deyang Hospital of Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No. 159, Section 2, Tianshan South Road, Deyang, 618000, Sichuan, China
| | - Yong Luo
- Deyang Hospital of Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No. 159, Section 2, Tianshan South Road, Deyang, 618000, Sichuan, China
| | - Yunxia Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
5
|
Hasriadi H, Wasana PWD, Thongphichai W, Sukrong S, Towiwat P. Exploring the safety of lycorine in the central nervous system and its impact on pain-like behaviors in mice. Sci Rep 2024; 14:16856. [PMID: 39039158 PMCID: PMC11263358 DOI: 10.1038/s41598-024-64410-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/08/2024] [Indexed: 07/24/2024] Open
Abstract
Alkaloid analgesics have been associated with adverse effects on the central nervous system (CNS). Therefore, it is crucial to characterize the effects of alkaloid analgesics. Plants rich in lycorine, an alkaloid, have shown promise as analgesics. However, the exploration of their CNS side effects, and analgesic effectiveness remains incomplete. The aim of the present study was to investigate the CNS safety profiles of lycorine and its potential analgesic efficacy. Lycorine (3, 10, and 30 mg/kg, intraperitoneal) did not affect motor coordination, and doses of 3 and 10 mg/kg of lycorine did not lead to any impairment in spontaneous locomotor activity. However, the highest dose (30 mg/kg) demonstrated a significant impairment in rearing behavior and an increase in immobility. The safety doses were subsequently used to assess the analgesic efficacy of lycorine in a mouse model of inflammatory pain. Lycorine (1, 3, and 10 mg/kg, intraperitoneal) demonstrated a dose-dependent reduction in pain-like behaviors in formalin-induced mice. In the in vitro study, lycorine regulated immune cells, suggesting its involvement as a cellular mechanism underlying the suppression of pain-like behaviors observed in the formalin model. Overall, our findings delineate the CNS safety range of lycorine in mice and suggest its potential use as an analgesic.
Collapse
Affiliation(s)
- Hasriadi Hasriadi
- Animal Models of Chronic Inflammation-Associated Diseases for Drug Discovery Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Herb Guardian Co., Ltd., Bangkok, 10330, Thailand
| | - Peththa Wadu Dasuni Wasana
- Department of Pharmacy, Faculty of Allied Health Sciences, University of Ruhuna, Galle, 80000, Sri Lanka
| | - Wisuwat Thongphichai
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Suchada Sukrong
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pasarapa Towiwat
- Animal Models of Chronic Inflammation-Associated Diseases for Drug Discovery Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
6
|
Shan Q, Yu W, Xu Q, Liu R, Ying S, Dong J, Bao Y, Lyu Q, Shi C, Xia J, Tang J, Kuang H, Wang K, Tian G, Cao G. Detoxification and underlying mechanisms towards toxic alkaloids by Traditional Chinese Medicine processing: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155623. [PMID: 38703661 DOI: 10.1016/j.phymed.2024.155623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Alkaloids have attracted enduring interest worldwide due to their remarkable therapeutic effects, including analgesic, anti-inflammatory, and anti-tumor properties, thus offering a rich source for lead compound design and new drug discovery. However, some of these alkaloids possess intrinsic toxicity. Processing (Paozhi) is a pre-treatment step before the application of herbal medicines in traditional Chinese medicine (TCM) clinics, which has been employed for centuries to mitigate the toxicity of alkaloid-rich TCMs. PURPOSE To explore the toxicity phenotypes, chemical basis, mode of action, detoxification processing methods, and underlying mechanisms, we can gain crucial insights into the safe and rational use of these toxic alkaloid-rich herbs. Such insights have the great potential to offer new strategies for drug discovery and development, ultimately improving the quality of life for millions of people. METHODS Literatures published or early accessed until December 31, 2023, were retrieved from databases including PubMed, Web of Science, and CNKI. The following keywords, such as "toxicity", "alkaloid", "detoxification", "processing", "traditional Chinese medicine", "medicinal plant", and "plant", were used in combination or separately for screening. RESULTS Toxicity of alkaloids in TCM includes hepatotoxicity, nephrotoxicity, neurotoxicity, cardiotoxicity, and other forms of toxicity, primarily induced by pyrrolizidines, quinolizidines, isoquinolines, indoles, pyridines, terpenoids, and amines. Factors such as whether the toxic-alkaloid enriched part is limited or heat-sensitive, and whether toxic alkaloids are also therapeutic components, are critical for choosing appropriate detoxification processing methods. Mechanisms of alkaloid detoxification includes physical removal, chemical decomposition or transformation, as well as biological modifications. CONCLUSION Through this exploration, we review toxic alkaloids and the mechanisms underlying their toxicity, discuss methods to reduce toxicity, and unravel the intricate mechanisms behind detoxification. These offers insights into the quality control of herbs containing toxic alkaloids, safe and rational use of alkaloid-rich TCMs in clinics, new strategies for drug discovery and development, and ultimately helping improve the quality of life for millions of people.
Collapse
Affiliation(s)
- Qiyuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Wei Yu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Qiongfang Xu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ruina Liu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shuye Ying
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jie Dong
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yini Bao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiang Lyu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Changcheng Shi
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Junjie Xia
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jing Tang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haodan Kuang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Gang Tian
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
7
|
Guo W, Zhang J, Feng Y. Treatment of neuropathic pain by traditional Chinese medicine: An updated review on their effect and putative mechanisms of action. Phytother Res 2024; 38:2962-2992. [PMID: 38600617 DOI: 10.1002/ptr.8180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 04/12/2024]
Abstract
Neuropathic pain (NP) is a common chronic pain with heterogeneous clinical features, and consequent lowering of quality of life. Currently, although conventional chemical drugs can effectively manage NP symptoms in the short term, their long-term efficacy is limited, and they come with significant side effects. In this regard, traditional Chinese medicine (TCM) provides a promising avenue for treating NP. Numerous pharmacological and clinical studies have substantiated the effectiveness of TCM with multiple targets and mechanisms. We aimed to outline the characteristics of TCM, including compound prescriptions, single Chinese herbs, active ingredients, and TCM physical therapy, for NP treatment and discussed their efficacy by analyzing the pathogenesis of NP. Various databases, such as PubMed, Web of Science, China National Knowledge Infrastructure, and Wanfang database, were searched. We focused on recent research progress in NP treatment by TCM. Finally, we proposed the future challenges and emerging trends in the treatment of NP. TCM demonstrates significant clinical efficacy in NP treatment, employing multi-mechanisms. Drawing from the theory of syndrome differentiation, four types of dialectical treatments for NP by compound TCM prescriptions were introduced: promoting blood circulation and removing blood stasis; promoting blood circulation and promote Qi flow; warming Yang and benefiting Qi; soothing the liver and regulating Qi. Meanwhile, 33 single Chinese herbs and 25 active ingredients were included. In addition, TCM physical therapy (e.g., acupuncture, massage, acupoint injection, and fumigation) also showed good efficacy in NP treatment. TCM, particularly through the use of compound prescriptions and acupuncture, holds bright prospects in treating NP owing to its diverse holistic effects. Nonetheless, the multi-targets of TCM may result in possible disadvantages to NP treatment, and the pharmacological mechanisms of TCM need further evaluation. Here, we provide an overview of NP treatment via TCM, based on the pathogenesis and the potential therapeutic mechanisms, thus providing a reference for further studies.
Collapse
Affiliation(s)
- Wenjing Guo
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jiquan Zhang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Ju Y, Wang CM, Yu JJ, Li X, Qi MX, Ren J, Wang Y, Liu P, Zhou Y, Ma YX, Yu G. Higenamine inhibits acute and chronic inflammatory pain through modulation of TRPV4 channels. Eur J Pharmacol 2024; 964:176295. [PMID: 38154768 DOI: 10.1016/j.ejphar.2023.176295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Pain is the cardinal symptom of many debilitating diseases and results in heavy health and economic burdens worldwide. Asarum (Asarum sieboldii Miq.) is a commonly used analgesic in Chinese medicine. However, the analgesic components and mechanisms of asarum in acute and chronic pain mice model remain unknown. In this study, we first generated asarum water extract and confirmed strong analgesic properties in mice in both the acute thermal and mechanical pain models, as well as in the complete Freund's adjuvant (CFA) induced chronic inflammatory pain model. Second, we identified higenamine as a major component of asarum and found that higenamine significantly inhibited thermal and mechanical induced acute pain and CFA induced chronic inflammatory pain. Then, using Trpv4-/- mice, we found that TRPV4 is necessary for CFA induced thermal and mechanical allodynia, and demonstrated that higenamine analgesia in the CFA model is partly through TRPV4 channel inhibition. Finally, we found that GSK1016790A, a TRPV4 agonist, induced calcium response was significantly inhibited by higenamine in both cultured DRG neurons and TRPV4 transfected HEK293 cells. Consistent with calcium imaging results, higenamine pretreatment also dose-dependently inhibited GSK1016790A induced acute pain. Taken together, our behavior and calcium imaging results demonstrate that the asarum component higenamine inhibits acute and chronic inflammatory pain by modulation of TRPV4 channels.
Collapse
Affiliation(s)
- Ying Ju
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chang-Ming Wang
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Juan-Juan Yu
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xue Li
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ming-Xin Qi
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiahui Ren
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ying Wang
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Pei Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuan Zhou
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu-Xiang Ma
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Guang Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
9
|
Liu W, Tang X, Fan C, He G, Wang X, Liang X, Bao X. Chemical constituents, pharmacological action, antitumor application, and toxicity of Strychnine Semen from Strychnons pierriana A.W.Hill.: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116748. [PMID: 37348797 DOI: 10.1016/j.jep.2023.116748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried and mature seeds of Strychnons pierriana A.W.Hill. have been called Strychnine Semen(S. Semen). It have been used in traditional Chinese medicine for nearly 400 years. In recent decades, scholars at home and abroad have widely used S. Semen in the treatment of tumor diseases, showing good anti-tumor effects. In this paper, the modern research achievements of S. Semen are reviewed, including traditional uses, phytochemistry, pharmacology, and toxicology. AIM OF THE STUDY In recent years, the research on S. Semen has increased gradually, especially the research on its anti-tumor. This paper not only reviewed the traditional uses, chemical constituents and pharmacological activities of S. Semen, but also comprehensively listed the mechanisms of Strychnos in the treatment of different tumors, providing a review for further research and development of Strychnos resources. MATERIALS AND METHODS A systematic review of the literature on Fuzi was performed using several resources, namely classic books on Chinese herbal medicine and various scientific databases, such as PubMed, the Web of Science, and the China Knowledge Resource Integrated databases. RESULTS The main constituents of S. Semen include alkaloids, terpenoids, steroids, and their glycosides. Modern studies have proved that S. Semen has a wide range of pharmacological effects, including anti-inflammatory and analgesic, anti-thrombotic, myocardial cell protection, immune regulation, nerve excitation, and anti-tumor effects. Among them, the anti-tumor effect has been the focus of research in recent years. S. Semen have a certain therapeutic effect on many kinds of tumors, such as liver cancer, colon cancer, and stomach cancer in the digestive system, breast, cervical, and ovarian cancer in the reproductive system, myeloma and leukemia in the blood system, and those in the nervous system and the immune system. CONCLUSION Strychnine has an inhibitory effect on a variety of tumors. However, modern studies of strychnine are incomplete, and more in-depth studies are needed on its stronger bioactive constituents and potential pharmacological effects. The antitumor effect of Strychnine is worth further exploration.
Collapse
Affiliation(s)
- Weiran Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xintian Tang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chengyu Fan
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guannan He
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoxin Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaodong Liang
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Xia Bao
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
10
|
Wu M, Hu Y, Xu M, Fu L, Li C, Wu J, Sun X, Wang W, Wang S, Wang T, Ding W, Li P. Transdermal delivery of brucine-encapsulated liposomes significantly enhances anti-tumor outcomes in treating triple-negative breast cancer. BIOMATERIALS ADVANCES 2023; 153:213566. [PMID: 37536027 DOI: 10.1016/j.bioadv.2023.213566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/11/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023]
Abstract
Triple-negative breast cancer (TNBC) is always the most challenging breast cancer subtype. Herein, brucine, encapsulated in peptide-modified liposomes, was proposed for treating TNBC by transdermal delivery. For the TD peptide-modified brucine-loaded liposome (Bru-TD-Lip) we developed, it presents high encapsulation efficiency of brucine and stability. In vitro, Bru-TD-Lip shows the enhanced percutaneous permeability of brucine, is able to readily enter TNBC cells, and significantly inhibits the proliferation, migration, and invasion of these cells. In vivo, through transdermal delivery, Bru-TD-Lip presents good biosafety and anti-tumor efficacy. The transdermal delivery of Bru-TD-Lip effectively targets and inhibits subcutaneous mammary carcinogenesis in female nude mice. Compared with oral administration, the transdermal delivery significantly reduces the damage of brucine to major organs and enhances the antitumor outcomes of brucine in treating TNBC. This study provides a new therapeutic strategy for treating triple-negative breast cancer by brucine.
Collapse
Affiliation(s)
- Min Wu
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, Anhui 230022, China
| | - Yi Hu
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230022, China
| | - Mengran Xu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, China
| | - Lijuan Fu
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, Anhui 230022, China
| | - Chengpan Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jingjing Wu
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, Anhui 230022, China
| | - Xin Sun
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, Anhui 230022, China
| | - Wenshen Wang
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230022, China
| | - Shaozhen Wang
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230022, China
| | - Ting Wang
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, Anhui 230022, China.
| | - Weiping Ding
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, China; School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Ping Li
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, Anhui 230022, China.
| |
Collapse
|
11
|
Zhang S, Chen S, Zhu F, Wang A, Xia B, Wang J, Huang J, Liu Y, Luo P. Rapid determination of five common toxic alkaloids in blood by UPLC-MRM-IDA-EPI: Application to poisoning case. Leg Med (Tokyo) 2023; 63:102267. [PMID: 37201269 DOI: 10.1016/j.legalmed.2023.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/12/2023] [Accepted: 04/29/2023] [Indexed: 05/20/2023]
Abstract
Toxic alkaloids are typically found in herbal medicines and have strong pharmacological effects and a broad therapeutic spectrum. On the other hand, toxic alkaloids exert toxicological activities in vivo; as such they have a narrow therapeutic window and can induce poisoning due to incorrect dose or misuse. In this view, there is an urgent need to develop a rapid and sensitive assay to detect these toxic alkaloids. This study developed a method for determining five common toxic alkaloids in blood, including brucine, strychnine, aconitine, mesaconitine, and hypaconitine using ultra-high liquid chromatography-tandem quadrupole/linear ion trap mass spectrometry (QTRAP UPLC-MS/MS). The analytes in this investigation were extracted with ether and detected using multiple reaction monitoring (MRM)-information-dependent acquisition (IDA)-enhanced product ion (EPI) scanning modes. SKF525A served as the internal standard (IS). The approach demonstrated excellent linearity, with a correlation coefficient (R) > 0.9964, and satisfactory sensitivity, with the limit of detection (LOD) of 0.31 ∼ 3.26 ng/mL and a limit of quantification (LOQ) of 1.13 ∼ 11.52 ng/mL. The extraction recovery (ER) was 78.8 ∼ 116.2%, the matrix effect (ME) was -12.3 ∼ 21.2%, and the method accuracy was 0.8 ∼ 12.8%. In addition, the intra-day precision and the inter-day precision (RSD) were 0.7% ∼ 7.4% and 0.4% ∼ 13.5%, respectively. The developed approach is sensitive and efficient, and offer significant application prospect in clinical monitoring and forensic detection of poisoning.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Shunqin Chen
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Faze Zhu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Aimin Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Bing Xia
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Jie Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Yubo Liu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, PR China.
| | - Peng Luo
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, PR China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang 550004, PR China.
| |
Collapse
|
12
|
Gao Y, Guo L, Han Y, Zhang J, Dai Z, Ma S. A Combination of In Silico ADMET Prediction, In Vivo Toxicity Evaluation, and Potential Mechanism Exploration of Brucine and Brucine N-oxide-A Comparative Study. Molecules 2023; 28:molecules28031341. [PMID: 36771007 PMCID: PMC9919335 DOI: 10.3390/molecules28031341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
Brucine (BRU) and brucine N-oxide (BNO) are prominent, bioactive, and toxic alkaloids in crude and processed Semen Strychni. Studies have demonstrated that BRU and BNO possess comprehensive pharmacological activities, such as anti-inflammatory and analgesic. In this context, a comparative study of BRU and BNO was performed by combination analysis of in silico ADMET prediction, in vivo toxicity evaluation, and potential action mechanism exploration. ADMET prediction showed that BRU and BNO might induce liver injury, and BRU may have a stronger hepatoxic effect. The prediction was experimentally verified using the zebrafish model. The BRU-induced hepatotoxicity of zebrafish larvae had a dose-response relationship. The mechanism of BRU-induced hepatotoxicity might relate to phosphorylation, kinase activity, and signal transduction. By comparison, signal transduction and gap junctions might involve BNO-induced hepatotoxicity. Our results provided a better understanding of BRU- and BNO-induced hepatotoxicity. We also built a foundation to elucidate the material base of the hepatotoxicity of traditional Chinese medicine Semen Strychni.
Collapse
Affiliation(s)
- Yan Gao
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Lin Guo
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Ying Han
- Department of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jingpu Zhang
- Department of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhong Dai
- National Institutes for Food and Drug Control, Beijing 100050, China
- Correspondence: (Z.D.); (S.M.)
| | - Shuangcheng Ma
- National Institutes for Food and Drug Control, Beijing 100050, China
- Correspondence: (Z.D.); (S.M.)
| |
Collapse
|
13
|
Goyal S, Goyal S, Goins AE, Alles SR. Plant-derived natural products targeting ion channels for pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100128. [PMID: 37151956 PMCID: PMC10160805 DOI: 10.1016/j.ynpai.2023.100128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
Chronic pain affects approximately one-fifth of people worldwide and reduces quality of life and in some cases, working ability. Ion channels expressed along nociceptive pathways affect neuronal excitability and as a result modulate pain experience. Several ion channels have been identified and investigated as potential targets for new medicines for the treatment of a variety of human diseases, including chronic pain. Voltage-gated channels Na+ and Ca2+ channels, K+ channels, transient receptor potential channels (TRP), purinergic (P2X) channels and acid-sensing ion channels (ASICs) are some examples of ion channels exhibiting altered function or expression in different chronic pain states. Pharmacological approaches are being developed to mitigate dysregulation of these channels as potential treatment options. Since natural compounds of plant origin exert promising biological and pharmacological properties and are believed to possess less adverse effects compared to synthetic drugs, they have been widely studied as treatments for chronic pain for their ability to alter the functional activity of ion channels. A literature review was conducted using Medline, Google Scholar and PubMed, resulted in listing 79 natural compounds/extracts that are reported to interact with ion channels as part of their analgesic mechanism of action. Most in vitro studies utilized electrophysiological techniques to study the effect of natural compounds on ion channels using primary cultures of dorsal root ganglia (DRG) neurons. In vivo studies concentrated on different pain models and were conducted mainly in mice and rats. Proceeding into clinical trials will require further study to develop new, potent and specific ion channel modulators of plant origin.
Collapse
Affiliation(s)
- Sachin Goyal
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
| | - Shivali Goyal
- School of Pharmacy, Abhilashi University, Chail Chowk, Mandi, HP 175045, India
| | - Aleyah E. Goins
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
| | - Sascha R.A. Alles
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
- Corresponding author.
| |
Collapse
|
14
|
Cahyaningsih U, Sa’diah S, Syafii W, Sari RK, Maring AJ, Nugraha AB. Antimalarial Efficacy of Aqueous Extract of Strychnos ligustrina and Its Combination with Dihydroartemisinin and Piperaquine Phosphate (DHP) against Plasmodium berghei Infection. THE KOREAN JOURNAL OF PARASITOLOGY 2022; 60:339-344. [DOI: 10.3347/kjp.2022.60.5.339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/01/2022] [Indexed: 11/05/2022]
Abstract
The development of drug resistance is one of the most severe concerns of malaria control because it increases the risk of malaria morbidity and death. A new candidate drug with antiplasmodial activity is urgently needed. This study evaluated the efficacy of different dosages of aqueous extract of <i>Strychnos ligustrina</i> combined with dihydroartemisinin and piperaquine phosphate (DHP) against murine <i>Plasmodium berghei</i> infection. The BALB/c mice aged 6-8 weeks were divided into 6 groups, each consisting of 10 mice. The growth inhibition of compounds against <i>P. berghei</i> was monitored by calculating the percentage of parasitemia. The results showed that the mice receiving aqueous extract and combination treatment showed growth inhibition of <i>P. berghei</i> in 74% and 94%, respectively. <i>S. ligustrina</i> extract, which consisted of brucine and strychnine, effectively inhibited the multiplication of <i>P. berghei</i>. The treated mice showed improved hematology profiles, body weight, and temperature, as compared to control mice. Co-treatment with <i>S. ligustrina</i> extract and DHP revealed significant antimalarial and antipyretic effects. Our results provide prospects for further discovery of antimalarial drugs that may show more successful chemotherapeutic treatment.
Collapse
|
15
|
Screening an In-House Isoquinoline Alkaloids Library for New Blockers of Voltage-Gated Na+ Channels Using Voltage Sensor Fluorescent Probes: Hits and Biases. Molecules 2022; 27:molecules27134133. [PMID: 35807390 PMCID: PMC9268414 DOI: 10.3390/molecules27134133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
Voltage-gated Na+ (NaV) channels are significant therapeutic targets for the treatment of cardiac and neurological disorders, thus promoting the search for novel NaV channel ligands. With the objective of discovering new blockers of NaV channel ligands, we screened an In-House vegetal alkaloid library using fluorescence cell-based assays. We screened 62 isoquinoline alkaloids (IA) for their ability to decrease the FRET signal of voltage sensor probes (VSP), which were induced by the activation of NaV channels with batrachotoxin (BTX) in GH3b6 cells. This led to the selection of five IA: liriodenine, oxostephanine, thalmiculine, protopine, and bebeerine, inhibiting the BTX-induced VSP signal with micromolar IC50. These five alkaloids were then assayed using the Na+ fluorescent probe ANG-2 and the patch-clamp technique. Only oxostephanine and liriodenine were able to inhibit the BTX-induced ANG-2 signal in HEK293-hNaV1.3 cells. Indeed, liriodenine and oxostephanine decreased the effects of BTX on Na+ currents elicited by the hNaV1.3 channel, suggesting that conformation change induced by BTX binding could induce a bias in fluorescent assays. However, among the five IA selected in the VSP assay, only bebeerine exhibited strong inhibitory effects against Na+ currents elicited by the hNav1.2 and hNav1.6 channels, with IC50 values below 10 µM. So far, bebeerine is the first BBIQ to have been reported to block NaV channels, with promising therapeutical applications.
Collapse
|
16
|
Jiang W, Tang M, Yang L, Zhao X, Gao J, Jiao Y, Li T, Tie C, Gao T, Han Y, Jiang JD. Analgesic Alkaloids Derived From Traditional Chinese Medicine in Pain Management. Front Pharmacol 2022; 13:851508. [PMID: 35620295 PMCID: PMC9127080 DOI: 10.3389/fphar.2022.851508] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic pain is one of the most prevalent health problems. The establishment of chronic pain is complex. Current medication for chronic pain mainly dependent on anticonvulsants, tricyclic antidepressants and opioidergic drugs. However, they have limited therapeutic efficacy, and some even with severe side effects. We turned our interest into alkaloids separated from traditional Chinese medicine (TCM), that usually act on multiple drug targets. In this article, we introduced the best-studied analgesic alkaloids derived from TCM, including tetrahydropalmatine, aloperine, oxysophocarpine, matrine, sinomenine, ligustrazine, evodiamine, brucine, tetrandrine, Stopholidine, and lappaconitine, focusing on their mechanisms and potential clinical applications. To better describe the mechanism of these alkaloids, we adopted the concept of drug-cloud (dCloud) theory. dCloud illustrated the full therapeutic spectrum of multitarget analgesics with two dimensions, which are “direct efficacy”, including inhibition of ion channels, activating γ-Aminobutyric Acid/opioid receptors, to suppress pain signal directly; and “background efficacy”, including reducing neuronal inflammation/oxidative stress, inhibition of glial cell activation, restoring the balance between excitatory and inhibitory neurotransmission, to cure the root causes of chronic pain. Empirical evidence showed drug combination is beneficial to 30–50% chronic pain patients. To promote the discovery of effective analgesic combinations, we introduced an ancient Chinese therapeutic regimen that combines herbal drugs with “Jun”, “Chen”, “Zuo”, and “Shi” properties. In dCloud, “Jun” drug acts directly on the major symptom of the disease; “Chen” drug generates major background effects; “Zuo” drug has salutary and supportive functions; and “Shi” drug facilitates drug delivery to the targeted tissue. Subsequently, using this concept, we interpreted the therapeutic effect of established analgesic compositions containing TCM derived analgesic alkaloids, which may contribute to the establishment of an alternative drug discovery model.
Collapse
Affiliation(s)
- Wei Jiang
- Zhejiang Zhenyuan Pharmaceutical Co., Ltd., Shaoxing, China
| | - Mingze Tang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Limin Yang
- Zhejiang Zhenyuan Pharmaceutical Co., Ltd., Shaoxing, China
| | - Xu Zhao
- First Clinical Division, Peking University Hospital of Stomatology, Beijing, China
| | - Jun Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medicine Sciences & Peking Union Medical College, Beijing, China
| | - Yue Jiao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cai Tie
- State Key Laboratory of Coal Resources and Safety Mining, China University of Mining and Technology, Beijing, China.,School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, China
| | - Tianle Gao
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanxing Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Paradis C, Dondia D, Nardon A, Blanc-Brisset I, Courtois A, Vaucel JA, Labadie M. Strychnine, old still actual poison: description of poisoning cases reported to French Poison Control Centers over the past thirteen years. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1983843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Camille Paradis
- Centre Antipoison et de Toxicovigilance de Nouvelle-Aquitaine, Centre Hospitalier Universitaire de Pellegrin, Bordeaux, France
| | - Denis Dondia
- Centre Antipoison et de Toxicovigilance de Nouvelle-Aquitaine, Centre Hospitalier Universitaire de Pellegrin, Bordeaux, France
| | - Audrey Nardon
- Centre Antipoison et de Toxicovigilance de Nouvelle-Aquitaine, Centre Hospitalier Universitaire de Pellegrin, Bordeaux, France
| | - Ingrid Blanc-Brisset
- Centre Antipoison et de Toxicovigilance de Nouvelle-Aquitaine, Centre Hospitalier Universitaire de Pellegrin, Bordeaux, France
| | - Arnaud Courtois
- Centre Antipoison et de Toxicovigilance de Nouvelle-Aquitaine, Centre Hospitalier Universitaire de Pellegrin, Bordeaux, France
- Unité de recherche OEnologie; EA 4577; USC 1366 INRA; Institut des Sciences de la Vigne et du Vin, Université de Bordeaux, Villenave d’Ornon, France
| | - Jules-Antoine Vaucel
- Centre Antipoison et de Toxicovigilance de Nouvelle-Aquitaine, Centre Hospitalier Universitaire de Pellegrin, Bordeaux, France
| | - Magali Labadie
- Centre Antipoison et de Toxicovigilance de Nouvelle-Aquitaine, Centre Hospitalier Universitaire de Pellegrin, Bordeaux, France
| | | |
Collapse
|
18
|
Mishra P, Mittal AK, Rajput SK, Sinha JK. Cognition and memory impairment attenuation via reduction of oxidative stress in acute and chronic mice models of epilepsy using antiepileptogenic Nux vomica. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113509. [PMID: 33141053 DOI: 10.1016/j.jep.2020.113509] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/03/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
UNLABELLED Ethnopharmacological relevance Processed Nux vomica seed extracts and homeopathic medicinal preparations (HMPs) are widely used in traditional Indian and Chinese medicine for respiratory, digestive, neurological and behavioral disorders. Antioxidant property of Nux vomica is well known and recent investigation has highlighted the anticonvulsant potential of its homeopathic formulation. AIM OF THE STUDY To explore the anticonvulsant and antiepileptogenic potential of Nux vomica HMPs (6CH, 12CH and 30CH potency) in pentylenetetrazole (PTZ) induced acute and chronic experimental seizure models in mice and investigate their effects on cognition, memory, motor activity and oxidative stress markers in kindled animals. MATERIALS AND METHODS Acute seizures were induced in the animals through 70 mg/kg (i.p.) administration of PTZ followed by the evaluation of latency and duration of Generalized tonic-clonic seizures (GTCS). Subconvulsive PTZ doses (35 mg/kg, i.p.) induced kindling in 29 days, which was followed by assessment of cognition, memory and motor impairment through validated behavioral techniques. The status of oxidative stress was estimated through measurement of MDA, GSH and SOD. RESULTS HMPs delayed the latency and reduced the duration of GTCS in acute model signifying possible regulation of GABAergic neurotransmission. Kindling was significantly hindered by the HMPs that justified the ameliorated cognition, memory and motor activity impairment. The HMPs attenuated lipid peroxidation by reducing MDA level and strengthened the antioxidant mechanism by enhancing the GSH and SOD levels in the kindled animals. CONCLUSIONS Nux vomica HMPs showed anticonvulsant and antiepileptogenic potency in acute and chronic models of epilepsy. The test drugs attenuated behavioral impairment and reduced the oxidative stress against PTZ induced kindling owing to which they can be further explored for their cellular and molecular mechanism(s).
Collapse
Affiliation(s)
- Priya Mishra
- Amity Institute of Neuropsychology and Neurosciences (AINN), Amity University, Noida, Uttar Pradesh, 201303, India
| | - Amit Kumar Mittal
- Amity Institute of Indian System of Medicine (AIISM), Amity University, Noida, Uttar Pradesh, 201303, India
| | - Satyendra Kumar Rajput
- Amity Institute of Indian System of Medicine (AIISM), Amity University, Noida, Uttar Pradesh, 201303, India; Department of Pharmaceutical Sciences, Gurukul Kangri (deemed to be University), Haridwar, Uttrakhand, 249404, India.
| | - Jitendra Kumar Sinha
- Amity Institute of Neuropsychology and Neurosciences (AINN), Amity University, Noida, Uttar Pradesh, 201303, India.
| |
Collapse
|
19
|
Zhao J, Feng Z, Meng S, Zhou X, Ma X, Zhao Z. Isolation and anticancer effect of brucine in human colon adenocarcinoma cells HT-29. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_95_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
20
|
Li RL, Zhang Q, Liu J, He LY, Huang QW, Peng W, Wu CJ. Processing methods and mechanisms for alkaloid-rich Chinese herbal medicines: A review. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 19:89-103. [PMID: 33349610 DOI: 10.1016/j.joim.2020.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/11/2020] [Indexed: 12/17/2022]
Abstract
The processing of Chinese herbal medicine is a form of pharmaceutical technology developed over thousands of years, in order to increase efficiency and decrease toxicity of herbs in traditional Chinese medicine (TCM). Herbal processing is essential for safe and effective application of TCM in clinical practice, as it alters the active chemical components and therefore the functions of herbal medicines. Alkaloid-rich herbal medicines in TCM are commonly processed by cleansing, cutting, processing by dry stir-frying, stir-frying with liquid adjuvants, and processing by water decoction. In addition, commonly used adjuvants for processing alkaloid-rich herbal medicines are river sand, wine, vinegar, brine, honey and herbal juice. For alkaloid-rich herbal medicines, the main chemical reactions that occur during processing include hydrolysis, oxidation, replacement, decomposition and condensation. This paper aimed to summarize the processing methods and mechanisms for alkaloid-rich Chinese herbal medicines, and provide much-needed theoretical support and scientific evidence for understanding those mechanisms and effects. Information on processing methods for alkaloid-rich herbal medicines was collected from classic books of herbal medicine, PhD and MSc dissertations, online scientific databases including PubMed, SciFinder, Scopus, Web of Science, Baidu Scholar and Google Scholar. This paper should help to advance our knowledge of the processing mechanisms and aid in the development of processing methods for alkaloid-rich Chinese herbal medicines.
Collapse
Affiliation(s)
- Ruo-Lan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Li-Ying He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Qin-Wan Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China.
| | - Chun-Jie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China.
| |
Collapse
|
21
|
Zhu C, Liu N, Tian M, Ma L, Yang J, Lan X, Ma H, Niu J, Yu J. Effects of alkaloids on peripheral neuropathic pain: a review. Chin Med 2020; 15:106. [PMID: 33024448 PMCID: PMC7532100 DOI: 10.1186/s13020-020-00387-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/20/2020] [Indexed: 12/16/2022] Open
Abstract
Neuropathic pain is a debilitating pathological pain condition with a great therapeutic challenge in clinical practice. Currently used analgesics produce deleterious side effects. Therefore, it is necessary to investigate alternative medicines for neuropathic pain. Chinese herbal medicines have been widely used in treating intractable pain. Compelling evidence revealed that the bioactive alkaloids of Chinese herbal medicines stand out in developing novel drugs for neuropathic pain due to multiple targets and satisfactory efficacy. In this review, we summarize the recent progress in the research of analgesic effects of 20 alkaloids components for peripheral neuropathic pain and highlight the potential underlying molecular mechanisms. We also point out the opportunities and challenges of the current studies and shed light on further in-depth pharmacological and toxicological studies of these bioactive alkaloids. In conclusion, the alkaloids hold broad prospects and have the potentials to be novel drugs for treating neuropathic pain. This review provides a theoretical basis for further applying some alkaloids in clinical trials and developing new drugs of neuropathic pain.
Collapse
Affiliation(s)
- Chunhao Zhu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Ning Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Miaomiao Tian
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Lin Ma
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Jiamei Yang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Xiaobing Lan
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Hanxiang Ma
- Department of Anesthesiology, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Yinchuan, Ningxia Hui Autonomous Region, 750004 Ningxia China
| | - Jianguo Niu
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Jianqiang Yu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| |
Collapse
|
22
|
Lu L, Huang R, Wu Y, Jin JM, Chen HZ, Zhang LJ, Luan X. Brucine: A Review of Phytochemistry, Pharmacology, and Toxicology. Front Pharmacol 2020; 11:377. [PMID: 32308621 PMCID: PMC7145893 DOI: 10.3389/fphar.2020.00377] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
Brucine, a weak alkaline indole alkaloid, is one of the main bioactive and toxic constituents of Nux-vomica. Modern pharmacology studies and clinical practice demonstrate that brucine possesses wide pharmacological activities, such as anti-tumor, anti-inflammatory, analgesic, and the effects on cardiovascular system and nervous system, etc. However, its central nervous system toxicity severely limits its clinical application. Herein, the physicochemical properties, pharmacological activities, and toxicity of brucine were reviewed, and the novel strategies to address the toxicity issues were discussed, aiming to bring new insights into further research and application of this active component.
Collapse
Affiliation(s)
- Lu Lu
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Huang
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ye Wu
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jin-Mei Jin
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Zhuan Chen
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Jun Zhang
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Li-Jun Zhang, ; Xin Luan,
| | - Xin Luan
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Li-Jun Zhang, ; Xin Luan,
| |
Collapse
|
23
|
Liu C, Yang S, Wang K, Bao X, Liu Y, Zhou S, Liu H, Qiu Y, Wang T, Yu H. Alkaloids from Traditional Chinese Medicine against hepatocellular carcinoma. Biomed Pharmacother 2019; 120:109543. [PMID: 31655311 DOI: 10.1016/j.biopha.2019.109543] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has become one of the major diseases that are threatening human health in the 21st century. Currently there are many approaches to treat liver cancer, but each has its own advantages and disadvantages. Among various methods of treating liver cancer, natural medicine treatment has achieved promising results because of their superiorities of high efficiency and availability, as well as low side effects. Alkaloids, as a class of natural ingredients derived from traditional Chinese medicines, have previously been shown to exert prominent anti-hepatocarcinogenic effects, through various mechanisms including inhibition of proliferation, metastasis and angiogenesis, changing cell morphology, promoting apoptosis and autophagy, triggering cell cycle arrest, regulating various cancer-related genes as well as pathways and so on. As a consequence, alkaloids suppress the development and progression of liver cancer. In this study, the mechanisms of representative alkaloids against hepatocarcinoma in each class are described systematically according to the structure classification, which mainly divides alkaloids into piperidine alkaloids, isoquinoline alkaloids, indole alkaloids, terpenoids alkaloids, steroidal alkaloids and other alkaloids. Besides using them alone, synergistic effects created together with other chemotherapy drugs and some special preparation methods also have been demonstrated. In this review, we have summarized the potential roles of several common alkaloids in the prevention and treatment of HCC, by revising the preclinical studies, highlighting the potential applications of alkaloids when they function as a therapeutic choice for HCC treatment, and integrating them into clinical practices.
Collapse
Affiliation(s)
- Caiyan Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Shenshen Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Kailong Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xiaomei Bao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yiman Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Shiyue Zhou
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Hongwei Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Tao Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Haiyang Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
24
|
Bai Q, Shao J, Cao J, Ren X, Cai W, Su S, George S, Tan Z, Zang W, Dong T. Protein kinase C-α upregulates sodium channel Nav1.9 in nociceptive dorsal root ganglion neurons in an inflammatory arthritis pain model of rat. J Cell Biochem 2019; 121:768-778. [PMID: 31385361 DOI: 10.1002/jcb.29322] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 07/15/2019] [Indexed: 12/31/2022]
Abstract
Previous studies have found that increased expression of Nav1.9 and protein kinase C (PKC) contributes to pain hypersensitivity in a couple of inflammatory pain models. Here we want to observe if PKC can regulate the expression of Nav1.9 in dorsal root ganglion (DRG) in rheumatoid arthritis (RA) pain model. A chronic knee joint inflammation model was produced by intra-articular injection of the complete Freund's adjuvant (CFA) in rats. Nociceptive behaviors including mechanical, cold, and heat hyperalgesia were examined. The expression of Nav1.9 and PKCα in DRG was detected by a quantitative polymerase chain reaction, Western blot, and immunofluorescence. The in vitro and in vivo effects of a PKC activator (phorbol 12-myristate 13-acetate [PMA]) and a PKC inhibitor (GF-109203X) on the expression of Nav1.9 were examined. Moreover, the effects of PKC modulators on nociceptive behaviors were studied. Increased mechanical, heat, and cold sensitivity was observed 3 to 14 days after CFA injection. Parallel increases in messenger RNA and protein expression of Nav1.9 and PKCα were found. Immunofluorescence experiments found that Nav1.9 was preferentially colocalized with IB4+DRG neurons in RA rats. In cultured DRG neurons, PMA increased Nav1.9 expression while GF-109203X prevented the effect of PMA. PMA increased Nav1.9 expression in naïve rats while GF-109203X decreased Nav1.9 expression in RA rats. In naïve rats, PMA caused mechanical and cold hyperalgesia. On the other hand, GF-109203X attenuated mechanical and cold hyperalgesia in RA-pain model. Nav1.9 might be upregulated by PKCα in DRG, which contributes to pain hypersensitivity in CFA-induced chronic knee joint inflammation model of RA pain.
Collapse
Affiliation(s)
- Qian Bai
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Henan, China
| | - Jinping Shao
- Department of Human Anatomy, School of Basic Medicine, Zhengzhou University, Henan, China
| | - Jing Cao
- Department of Human Anatomy, School of Basic Medicine, Zhengzhou University, Henan, China
| | - Xiuhua Ren
- Department of Human Anatomy, School of Basic Medicine, Zhengzhou University, Henan, China
| | - Weihua Cai
- Department of Human Anatomy, School of Basic Medicine, Zhengzhou University, Henan, China
| | - Songxue Su
- Department of Human Anatomy, School of Basic Medicine, Zhengzhou University, Henan, China
| | - Sanjeeth George
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas
| | - Zhiyong Tan
- Department of Pharmacology and Toxicology and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Weidong Zang
- Department of Human Anatomy, School of Basic Medicine, Zhengzhou University, Henan, China
| | - Tieli Dong
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Henan, China
| |
Collapse
|