1
|
Song WF, Wang RJ, Yao RX, Jiang QY, Feng J, Luo K, Di ZH, Ma CM, Xie L. Pulsatilla chinensis functions as a novel antihyperlipidemic agent by upregulating LDLR in an ERK-dependent manner. Chin Med 2024; 19:172. [PMID: 39696673 DOI: 10.1186/s13020-024-01044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Pulsatilla chinensis (PC) is a traditional Chinese medicine (TCM) known for its beneficial activities. It has been historically used to treat dysentery, vaginal trichomoniasis, bacterial infections, and malignant tumors. The therapeutic potential of PC in the management of hypercholesterolemia remains largely unexplored. METHODS A high-throughput screening based on high-throughput sequencing was conducted in HepG2 cells to construct gene expression profiles for several hundred TCMs. In vivo evaluation of the efficacy of PC was performed using rats with hypercholesterolemia. Transcriptome analysis was carried out on PC-treated rat livers and HepG2 cells to investigate the mechanism of action of PC in vitro. The findings were further validated using RT-qPCR and western blot techniques. RESULTS PC was identified as similar to Rhizoma Coptidis based on signature genes related to metabolism. Administration of PC via gavage in rats with hypercholesterolemia for 11 weeks resulted in substantially reduced serum total cholesterol and low-density lipoprotein (LDL) cholesterol and ameliorated fatty liver. Transcriptome analysis revealed that PC regulated various pathways associated with lipid metabolism. The LDL receptor (LDLR), a key player in cholesterol metabolism, was upregulated by PC both in vivo and in vitro. It was discovered that PC achieved this upregulation by activating extracellular regulated protein kinase (ERK) signaling in HepG2 cells. To uncover the major bioactive components responsible for the anti- hypercholesterolemia effect of PC, two major saponins, named Pulsatilla saponin D (PCD) and PC anemoside B4 (PCB4), were assessed. PCD, but not PCB4, was identified as the active ingredient responsible for the upregulation of LDLR by PC. CONCLUSION These findings demonstrated that PC acts as an antihypercholesterolemic agent by upregulating LDLR in an ERK-dependent manner and holds potential in the treatment of hypercholesterolemia.
Collapse
Affiliation(s)
- Wei-Fang Song
- Department of Pathophysiology, Fenyang College, Shanxi Medical University, Fenyang, 032200, China
| | - Rui-Jun Wang
- Department of Pathophysiology, Fenyang College, Shanxi Medical University, Fenyang, 032200, China
| | - Rui-Xin Yao
- Department of Pathophysiology, Fenyang College, Shanxi Medical University, Fenyang, 032200, China
| | - Qiu-Yan Jiang
- Department of Pathophysiology, Fenyang College, Shanxi Medical University, Fenyang, 032200, China
| | - Juan Feng
- Medical Systems Biology Research Center, Tsinghua University School of Medicine, Beijing, 100084, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| | - Kun Luo
- Medical Systems Biology Research Center, Tsinghua University School of Medicine, Beijing, 100084, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China
| | - Zheng-Han Di
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China
| | - Cheng-Mei Ma
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China
| | - Lan Xie
- Medical Systems Biology Research Center, Tsinghua University School of Medicine, Beijing, 100084, China.
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China.
| |
Collapse
|
2
|
Zhan XZ, Wei TH, Huang C, Yu H, Chen XL, Kong XT, Shang ZH, Sun SL, Lu MY, Ni HW. Modulating JAK2/STAT3 signaling by quercetin in Qiling Baitouweng Tang: a potential therapeutic approach for diffuse large B-cell lymphoma. Mol Divers 2024:10.1007/s11030-024-10999-2. [PMID: 39369170 DOI: 10.1007/s11030-024-10999-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
Qiling Baitouweng Tang (QLBTWT) is a traditional clinical formula for treating diffuse large B-cell lymphoma (DLBCL), but its molecular action is not fully understood. This research is utilized in silico analysis and liquid chromatography tandem mass spectrometry (LC‒MS/MS) to identify the active constituents of QLBTWT with anti-DLBCL properties and their targets. The study identified 14 compounds, including quercetin, naringenin, and astilbin, as potentially effective against DLBCL. Molecular modeling highlighted the favorable interaction of quercetin with the JAK2 protein. In vitro studies confirmed the ability of quercetin to inhibit DLBCL cell growth and migration while inducing apoptosis and causing G2/M phase cell cycle arrest. Molecular dynamics simulations revealed that quercetin binds to JAK2 as a type II inhibitor. In vivo studies in U2932 xenograft models demonstrated that QLBTWT inhibited tumor growth in a dose-dependent manner, which was associated with the JAK2/STAT3 signaling pathway. Overall, this study elucidates the therapeutic effect of QLBTWT on DLBCL through quercetin-mediated suppression of the JAK2/STAT3 pathway, offering novel therapeutic insights for DLBCL.
Collapse
Affiliation(s)
- Xin-Zhuo Zhan
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chen Huang
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Hui Yu
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Xiao-Li Chen
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Xiang-Tu Kong
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Zhi-Hao Shang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China.
| | - Meng-Yi Lu
- Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China.
| | - Hai-Wen Ni
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
3
|
Li Z, Song Y, Xu W, Chen J, Zhou R, Yang M, Zhu G, Luo X, Ai Z, Liu Y, Su D. Pulsatilla chinensis saponins improve SCFAs regulating GPR43-NLRP3 signaling pathway in the treatment of ulcerative colitis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116215. [PMID: 36806339 DOI: 10.1016/j.jep.2023.116215] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pulsatilla decoction has been extensively used to treat ulcerative colitis (UC) in recent years. Pulsatilla chinensis saponin (PRS), the active ingredient of its monarch medicine Pulsatilla chinensis (Bunge) Regel, plays a crucial role in the treatment of UC, but its specific mechanism of action has not been fully elucidated. AIM OF THE STUDY This study aims to investigate the protective effect and possible mechanism of PRS on DSS-induced ulcerative colitis in rats. MATERIALS AND METHODS In this study, the DSS-induced colitis model was used to explore the metabolism and absorption of PRS under UC, detect the content of short-chain fatty acids (SCFAs) in colon tissue, the expression of receptor G Protein-Coupled Receptor 43 (GPR43) protein and inflammasome NLRP3, and observe the expression level of IL-1β, IL-6 and TNF-α in colon tissue. The protective effect of the PRS was also observed. RESULTS It was found that in the UC group, the absorption rate and extent of drugs increased, and the elimination was accelerated. Compared with the control group, PRS increased the content of short-chain fatty acids (SCFAs) in colon tissue, promoted the expression of SCFAs receptor GPR43 protein, inhibited the activation of the NLRP3 inflammasome, and decreased the content of IL-1β, IL-6 and TNF-α. PRS protects the colon in DSS-induced inflammatory bowel disease by increasing the content of SCFAs, promoting the expression of GPR43 protein, inhibiting the activation of the NLRP3 inflammasome, and reversing the increase in IL-1β, IL-6 and TNF-α levels. CONCLUSIONS PRS can increase the content of colonic SCFAs, activate the GPR43-NLRP3 signaling pathway, and reduce the levels of pro-inflammatory cytokines, thereby improving the symptoms of DSS-induced colitis.
Collapse
Affiliation(s)
- Zexie Li
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Yonggui Song
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Weize Xu
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Jingbin Chen
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Rou Zhou
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Ming Yang
- Jiangxi Guxiang Jinyun Comprehensive Health Industry Co., Ltd., Nanchang, China
| | - Genhua Zhu
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Xiaoquan Luo
- SPF Exeriment mice and rats Production base in Jiangxi Province, China
| | - Zhifu Ai
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Yali Liu
- Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, 1688 Meiling Road, Nanchang, 330006, China; Key Laboratory of Pharmacodynamics and Quality Evaluation on anti-Inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine; Nanchang Medical College, 1688 Meiling Road, Nanchang, 330006, China.
| | - Dan Su
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China.
| |
Collapse
|
4
|
Su S, Xue G, Shang J, Yan P, Wang J, Yan C, Li J, Xiong X, Xu H. Computational method for rapid screening of the metabolites of Pulsatilla chinensis in rats using UHPLC-Q-TOF/MS combined with mass spectrum-based orthogonal projection. J Pharm Biomed Anal 2023; 229:115345. [PMID: 36958113 DOI: 10.1016/j.jpba.2023.115345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Screening metabolites in vivo can be challenging due to the complexity of traditional Chinese medicine (TCM) and the ambiguous intracorporal process. To resolve this problem, we established the mass spectrum-based orthogonal projection (MSOP) method to differentiate prototype compounds from metabolites in vivo and applied it to the study of metabolites of Pulsatilla chinensis (PC). Initially, the validity and feasibility of the MSOP method were verified by using the ultra- high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) data of reference solution. Then, the MSOP method was applied to screen the metabolites of PC. A total of 63 metabolites were identified in vivo (urine, feces, bile, and plasma samples) and in vitro (intestinal bacteria biological sample). The results indicated that the main metabolic pathways of pentacyclic triterpenoids were demethylation, oxidation, dehydration, sulfation, and glucuronidation reactions. This study contributes to developing an integrated strategy based on chemometrics to characterize and classify the metabolism feature of pentacyclic triterpenoids of PC. This will support the scientific and rational application of PC in the clinic. The MSOP method based on the orthogonality of MS signals was used to differentiate the prototype compounds from metabolites in vivo. The method provides scientific and reliable support for fully understanding the metabolic fate of TCM.
Collapse
Affiliation(s)
- Shanshan Su
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Guiren Xue
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jiawei Shang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Pengfei Yan
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jianxin Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Chengye Yan
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jiaxi Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xue Xiong
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Huijun Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China.
| |
Collapse
|
5
|
Liu CS, Hu YX, Luo ZY, Qiu CW, Deng XH, Chen FL. Xianglian pill modulates gut microbial production of succinate and induces regulatory T cells to alleviate ulcerative colitis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:116007. [PMID: 36473618 DOI: 10.1016/j.jep.2022.116007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xianglian pill (XLP), a traditional Chinese formula, is widely used as treatment for ulcerative colitis (UC) in China. However, the mechanism of its therapeutic effect is still unclear. AIM OF THE STUDY Our previous studies showed a low oral bioavailability and a predominant distribution of major XLP ingredients in the gut. In the present study, we aimed to explore the mechanism of action of XLP on UC with respect to the regulation of gut microecology. MATERIALS AND METHODS UC model rats established using 5% dextran sulfate sodium were treated with XLP. After the treatment period, bodyweight, colon length, histopathology, and inflammatory changes were evaluated. Further, changes in gut microbiota structure were detected via 16S rRNA sequencing, and microbial metabolites in feces were analyzed via a metabolomic assay. Antibiotic intervention and fecal microbiota transplantation were also employed to explore the involvement of gut microbiota, while the level of regulatory T cells (Tregs) in mesenteric lymph nodes was determined via flow cytometry. Transcriptome sequencing was also performed to determine colonic gene changes. RESULTS XLP alleviated colonic injury, inflammation, and gut microbial dysbiosis in UC model rats and also changed microbial metabolite levels. Particularly, it significantly decreased succinate level in the tyrosine pathway. We also observed that fecal microbiota derived from XLP-treated rats conferred resilience to UC model rats. However, this therapeutic effect of XLP on UC was inhibited by succinate. Moreover, XLP increased the level of anti-inflammatory cellular Tregs via gut microbiota. However, this beneficial effect was counteracted by succinate supplementation. Further, XLP induced the differentiation of Treg possibly by the regulation of the PHD2/HIF-1α pathway via decreasing microbial succinate production. CONCLUSIONS Our findings indicated that XLP exerts its therapeutic effects on UC mainly via the gut microbiota-succinate-Treg differentiation axis.
Collapse
Affiliation(s)
- Chang-Shun Liu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Southern Medical University, Guangzhou, 510515, PR China.
| | - Yin-Xia Hu
- General Hospital of Southern Theatre Command, People's Liberation Army of China, Guangzhou, 510010, PR China
| | - Zhen-Ye Luo
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Southern Medical University, Guangzhou, 510515, PR China
| | - Chuan-Wei Qiu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Southern Medical University, Guangzhou, 510515, PR China
| | - Xiang-Hua Deng
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Southern Medical University, Guangzhou, 510515, PR China
| | - Fei-Long Chen
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Southern Medical University, Guangzhou, 510515, PR China
| |
Collapse
|
6
|
Jie Y, Yang X, Chen W. Pulsatilla Decoction Combined with 5-Fluorouracil Triggers Immunogenic Cell Death in Colorectal Cancer Cells. Cancer Biother Radiopharm 2022; 37:945-954. [PMID: 34042519 DOI: 10.1089/cbr.2020.4369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Our research is designed to explore the role of 5-FU and Pulsatilla decoction (PD) through modulation of Immunogenic cell death (ICD) for the co-treatment of Colorectal cancer (CRC). Materials and Methods: Cell viability was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazol-3-ium bromide (MTT) assays. Cell apoptosis was assessed using flow cytometry. Phosphorylation of STAT3 and expression of Mcl-1 and Bcl-xl were measured by Western blot assays. The levels of ATP and HMGB1 in the supernatants of the culture medium were analyzed by ATP assays and the HMGB1 enzyme linked immunosorbent assay kit. The cell surface levels of CRT were measured by immunofluorescence assays. The tumor growth was analyzed in mice. Results: PD increased 5-FU-induced ICD in CRC cells, as demonstrated by the extracellular levels of adenosine triphosphate (ATP) and high-mobility group box 1 (HMGB1), and the surface levels of calreticulin (CRT). Our mechanism study showed that PD promoted 5-FU-induced ICD by inactivating signal transducer and activator of transcription 3 (STAT3). Furthermore, the co-treatment of 5-FU and PD further promoted 5-FU-induced CRT expression and T cell infiltration in vivo. Tumorigenicity analysis revealed that 5-FU combined with PD notably reduced tumor growth. Conclusion: This study indicated that PD enhances 5-FU-induced ICD and anti-tumor effect in CRC by inactivating STAT3. The combined application of 5-FU with PD may improve the anti-tumor activity of 5-FU in CRC.
Collapse
Affiliation(s)
- Yanghua Jie
- Radiotherapy Center, Affiliated Hospital of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, China
| | - Xiaobei Yang
- Department of Anorectal, Urumqi City Hospital of Traditional Chinese Medicine, Urumqi, China
| | - Weidong Chen
- Department of Anorectal, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Comprehensive characterization of the chemical composition of Lurong dabu decoction and its absorbed prototypes and metabolites in rat plasma using UHPLC–Q Exactive Orbitrap–HRMS. Food Res Int 2022; 161:111852. [DOI: 10.1016/j.foodres.2022.111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 11/23/2022]
|
8
|
Song Y, Su D, Yang Y, Zeng Q, Liao L, Chen C, Yang M, Zhu G, Zhang R, Ai Z, Li Y. Two Species Origins Comparison of Herba Patriniae based on Their Ingredients Profile by UPLC-QTOF/MS/MS and Orthogonal Partial Least Squares Discriminant Analysis. Chem Biodivers 2022; 19:e202100961. [PMID: 35979749 DOI: 10.1002/cbdv.202100961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 08/15/2022] [Indexed: 11/10/2022]
Abstract
Herba Patriniae (HP) is widely used as a medicinal and edible material in China. Besides food value, HP attracts more attention due to its medicinal potential. Patrinia villosa Juss. ( PV ) and Patrinia scabiosaefolia Fisch. ( PS ) are the two species origins of HP. These two of HP show different effects on cell proliferation, migration, angiogenesis and anti-diabetic. As we have previously reported, PV and PS show significant differences on their anti-inflammatory ability in the same experimental model. Comparing the ingredient profiles of two different sources will not only facilitate the understanding of their medicinal effects, but also help the development and research of new activities. However, still now, there is no systematic and detailed study to compare the components of PV and PS . In present study, ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was employed to achieve a high-throughput qualitative and thorough analysis of the chemical composition spectrum of HP. A total of 164 compounds were identified, among these compounds, 127 compounds were identified from PV , and 107 compounds were identified from PS . Most of the chemical components was discovered for the first time. Flavonoids, saponins, terpenoids and organic acids, as the main ingredients in PV and PS were 45.45%vs 28.46%, 12.61% vs 32.09%, 14.33% vs 22.38% and 14.58% vs 6.79%, respectively. Flavonoids are the main components of PV , while PS is rich in saponins. PV and PS were classified into two groups by principal component analysis (PCA) and screened out the main molecular differences responsible by orthogonal partial least squares discriminant analysis (OPLS-DA). All the results will be a guide for the quality control, functional activity research, or better clinic use based on the ingredients profile between these two species. Besides, this first study on ingredients profile of two species origins will be beneficial for potential and best resources utilization of both PV and PS .
Collapse
Affiliation(s)
- Yonggui Song
- Jiangxi University of Traditional Chinese Medicine, Laboratory Animal Science and Technology Center, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, 330000, Nanchang, CHINA
| | - Da Su
- Jiangxi University of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, Nanchang, CHINA
| | - Yanyan Yang
- Jiangxi University of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, Nanchang, CHINA
| | - Qiang Zeng
- Jiangxi University of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, Nanchang, CHINA
| | - Liangliang Liao
- Jiangxi University of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, Nanchang, CHINA
| | - Changlian Chen
- Jiangxi University of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, Nanchang, CHINA
| | - Ming Yang
- Jiangxi University of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, Nanchang, CHINA
| | - Genhua Zhu
- Jiangxi University of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, Nanchang, CHINA
| | - Ruowen Zhang
- Shenzhen Honsan Health Industry Group, Shenzhen Honsan Health Industry Group, 2028 Shenyan Road, Haishan street, Shenzhen, China, Shenzhen, CHINA
| | - Zhifu Ai
- Jiangxi University of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, Nanchang, CHINA
| | - Yanzhen Li
- Jiangxi University of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, Nanchang, CHINA
| |
Collapse
|
9
|
Zhang W, Cui Y, Zhang J. Multi metabolomics-based analysis of application of Astragalus membranaceus in the treatment of hyperuricemia. Front Pharmacol 2022; 13:948939. [PMID: 35935868 PMCID: PMC9355468 DOI: 10.3389/fphar.2022.948939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/29/2022] [Indexed: 11/15/2022] Open
Abstract
Hyperuricemia (HUA) is a common metabolic disease that is an independent risk factor for comorbidities such as hypertension, chronic kidney disease, and coronary artery disease. The prevalence of HUA has increased over the last several decades with improved living standards and increased lifespans. Metabolites are considered the most direct reflection of individual physiological and pathological conditions, and represent attractive candidates to provide deep insights into disease phenotypes. Metabolomics, a technique used to profile metabolites in biofluids and tissues, is a powerful tool for identification of novel biomarkers, and can be used to provide valuable insights into the etiopathogenesis of metabolic diseases and to evaluate the efficacy of drugs. In this study, multi metabolomics-based analysis of the blood, urine, and feces of rats with HUA showed that HUA significantly altered metabolite profiles. Astragalus membranaceus (AM) and benbromomalone significantly mitigated these changes in blood and feces, but not in urine. Some crucial metabolic pathways including lipid metabolism, lipid signaling, hormones synthesis, unsaturated fatty acid (UFAs) absorption, and tryptophan metabolism, were seriously disrupted in HUA rats. In addition, AM administration exerted better treatment effects on HUA than benbromomalone. Furthermore, additional supplementation with UFAs and tryptophan may also induce therapeutic effects against HUA.
Collapse
Affiliation(s)
- Wenwen Zhang
- The School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yifang Cui
- The School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiayu Zhang
- The School of Pharmacy, Binzhou Medical University, Yantai, China
- *Correspondence: Jiayu Zhang,
| |
Collapse
|
10
|
Wang Z, Li H, Yun Y, Wang H, Meng B, Mu Y, Gao S, Tao X, Chen W. A dynamic multiple reaction monitoring strategy to develop and optimize targeted metabolomics methods: Analyzing bile acids in capecitabine-induced diarrhea. J Pharm Biomed Anal 2022; 219:114938. [PMID: 35850015 DOI: 10.1016/j.jpba.2022.114938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE We sought to develop and optimize a targeted bile acids (BAs) metabolomics method based on a dynamic multiple reaction monitoring (dMRM) strategy and explored the dynamic alterations of BAs in diarrhea induced by capecitabine in a mouse model. METHOD The targeted metabolomics method was developed using an Agilent 6460A triple quadrupole mass spectrometer, and 41 types of BAs were monitored in negative ionization mode. The mass spectrometer detection was optimized using dMRM to enhance the responses, separation, and peak shape and to shorten the analysis time. A mouse model of diarrhea was established by multiple administration of capecitabine, and plasma samples were collected at baseline and the end of drug administration for subsequent BAs analysis. RESULTS The targeted BA metabolomics method achieved shorter chromatographic separation time (10 min) for 41 BAs, with good peak shapes and response increases of 3- to 10-fold after application of dMRM. The mouse model of capecitabine-induced diarrhea was established, and the three BAs 23-norcholic acid, isolithocholic acid, and isodeoxycholic acid in the baseline samples contributed the most to differentiating mice with diarrhea from those without diarrhea. For mice that ultimately developed diarrhea, apocholic acid, isodeoxycholic acid, and 7-ketodeoxycholic acid exhibited the largest change in concentrations compared with their baseline concentrations. CONCLUSION The dMRM strategy has obvious advantages compared with common MRM. The results in model mice showed that a differentiated profile of BAs in the baseline may indicate biomarkers of diarrhea induced by capecitabine, and disturbed homeostasis may explain the metabolomic mechanism of diarrhea occurrence.
Collapse
Affiliation(s)
- Zhipeng Wang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Hanglin Li
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; Chemistry and Biological Engineering College, Yichun University, Yichun 336000, China
| | - Yunlei Yun
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Hongsen Wang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; Chemistry and Biological Engineering College, Yichun University, Yichun 336000, China
| | - Bosu Meng
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Yuhui Mu
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Shouhong Gao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Xia Tao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Wansheng Chen
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
11
|
Li H, Wang L, Zhang X, Xia W, Zhou X, Sui H, Fu X. Pulsatilla chinensis (Bge.) Regel: A Systematic Review on Anticancer of Its Pharmacological Properties, Clinical Researches and Pharmacokinetic Studies. Front Oncol 2022; 12:888075. [PMID: 35814470 PMCID: PMC9259996 DOI: 10.3389/fonc.2022.888075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Pulsatilla chinensis (Bge.) Regel (PC) is one of the most commonly used Chinese medicines and has a history of thousands of years. This article reviews the research results of anti-cancer activity and its mechanism of action obtained from experimental, clinical, pharmacokinetic and bioinformatic studies in recent years. A large number of studies have shown that PC exerts had anti-cancer effects on different types of tumor cells by inhibiting cell proliferation, inducing apoptosis, inhibiting cell cycle and energy metabolism, inducing autophagy, and inhibiting angiogenesis. The literature has shown that PC can trigger the expression of autophagy-related molecules, activate the mitochondrial apoptotic pathway, inhibit the phosphorylation of PI3K downstream factors, down-regulate the expression of glycolysis-related proteins, and regulate a series of cancer-related signal pathways and proteins. The molecular mechanisms involved in PC include signal pathways such as Notch, PI3K/AKT/m TOR, AKT/mTOR, and MEK/ERK. The article also discusses the derivatives of the active ingredients in PC, which greatly improved the anti-cancer effect. In conclusion, this review provides a comprehensive overview of the biological effects and mechanisms of PC against cancer. The analysis of the literature shows that PC can be used as a potential drug candidate for the treatment of cancer.
Collapse
Affiliation(s)
- Hang Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Ningxia Minority Medicine Modernization Key Laboratory of Ministry of Education, Yinchuan, China
| | - Lilan Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xiaojing Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Wenxin Xia
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Ningxia Minority Medicine Modernization Key Laboratory of Ministry of Education, Yinchuan, China
| | - Xirong Zhou
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Ningxia Minority Medicine Modernization Key Laboratory of Ministry of Education, Yinchuan, China
| | - Hong Sui
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xueyan Fu
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Ningxia Minority Medicine Modernization Key Laboratory of Ministry of Education, Yinchuan, China
| |
Collapse
|
12
|
Yu J, Hu Q, Liu J, Luo J, Liu L, Peng X. Metabolites of gut microbiota fermenting Poria cocos polysaccharide alleviates chronic nonbacterial prostatitis in rats. Int J Biol Macromol 2022; 209:1593-1604. [PMID: 35398386 DOI: 10.1016/j.ijbiomac.2022.04.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 12/18/2022]
Abstract
Chronic nonbacterial prostatitis (CNP) is a common urology disease. Our previous research found Poria cocos polysaccharides (PPs) alleviated CNP and suggested the effect was related to gut bacteria. We investigated the crucial bacteria and their metabolites responsible for the anti-CNP effect to discover possible mechanisms. The results showed that after the fermentation of PPs by human fecal microbiota, Parabacteroides, Fusicatenibacter, and Parasutterella were significantly enriched. Haloperidol glucuronide and 7-ketodeoxycholic acid generated by these bacteria could be responsible for the increased expression of Alox15 and Pla2g2f and the reduced expression of Cyp1a1 and Hsd17b7 in colon epithelium. The ratio of dihydrotestosterone to estradiol in serum was regulated, and CNP was alleviated. Our results suggested that Parabacteroides, Fusicatenibacter, and Parasutterella could be the essential bacteria in CNP alleviation and their metabolites of PPs 7-ketodeoxycholic acid and haloperidol glucuronide could be the signal molecules of the "gut-prostate axis".
Collapse
Affiliation(s)
- Juntong Yu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Qing Hu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Junsheng Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jianming Luo
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Liu Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
13
|
Zhong J, Tan L, Chen M, He C. Pharmacological activities and molecular mechanisms of Pulsatilla saponins. Chin Med 2022; 17:59. [PMID: 35606807 PMCID: PMC9125917 DOI: 10.1186/s13020-022-00613-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/22/2022] [Indexed: 11/10/2022] Open
Abstract
Saponins are found in a variety of higher plants and display a wide range of pharmacological activities, including expectorant, anti-inflammatory, vasoprotective and antimicrobial properties. Pulsatilla chinensis (P. chinensis, Bai Tou Weng, ) has been used medically in China for thousands of years for the treatment of diseases caused by bacteria, and it is rich in triterpenoid saponins. In recent decades, anemoside B4 (Pulchinenoside C) is well studied since it has been used as a quality control marker for P. chinensis. At the same time, more and more other active compounds were found in the genus of Pulsatilla. In this review, we summarize the pharmacological activities of Pulsatilla saponins (PS) and discuss the cellular or molecular mechanisms that mediate their multiple activities, such as inducing cancer cell apoptosis, inhibiting tumor angiogenesis, and protecting organs via anti-inflammatory and antioxidant measures. We aim to provide comprehensive analysis and summary of research progress and future prospects in this field to facilitate further study and drug discovery of PS.
Collapse
Affiliation(s)
- Jinmiao Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macao SAR, China.,Department of Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macao SAR, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Taipa, 999078, Macao SAR, China
| | - Lihua Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macao SAR, China.,Department of Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macao SAR, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Taipa, 999078, Macao SAR, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macao SAR, China.,Department of Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macao SAR, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macao SAR, China. .,Department of Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macao SAR, China. .,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Taipa, 999078, Macao SAR, China.
| |
Collapse
|
14
|
Wang T, Song Y, Xu H, Liu Y, He H, Zhou M, Jin C, Yang M, Ai Z, Su D. Study on the mechanism of reducing biofilm toxicity and increasing antioxidant activity in vinegar processing phytomedicines containing pentacyclic triterpenoid saponins. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115112. [PMID: 35181486 DOI: 10.1016/j.jep.2022.115112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/29/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pentacyclic triterpenoid saponin (PTS) is a kind of particular chemicals with various pharmacological activities, as well as surface activity, mucosal irritation and hemolysis. PTS is closely related to the exertion of efficacy or adverse reactions in plant medicines rich in this component. For the better clinical application of natural resources, how to reduce toxicity and enhance curative efficacy is an important problem which needs to be solved at present. Till now, there has been few studies directly investigating the problem. AIM OF STUDY Through comparison study of Radix Bupleuri (Chai hu) and Pulsatilla chinensis (Bai tou weng), which are typical traditional Chinese medicines containing PTS, explore the potential change rule of material basis and the mechanism of detoxification and synergistic effect of vinegar processing. MATERIALS AND METHODS Composition change rule after vinegar processing was applied by UPLC-QTOF-MS/MS coupled with principal component analysis (PCA). Based on our previous research, this paper expounded the action mechanism from the perspective of reducing biofilm toxicity and increasing antioxidant activity. Direct toxicity reducing information was obtained at the cellular level including cellular morphology, MTT assays, western blots and RT-PCR in L02 cells with overload sphingomyelin (SM). The synergistic effect was investigated through histological examinations, mesenteric hemorheology, ELISA, flow cytometry and confocal microscopy. RESULTS It was found that the structure of PTS take place a series of chemical reactions in the process of vinegar processing which enabled the more toxic components transformed into less toxic components and components with clear efficacy, so as to achieve the purpose of detoxification and synergistic effect. The results indicated that the mechanism of detoxification in vinegar processing was that vinegar processing could act on SM, cause less balance disturbance to sphingomyelin/ceramide (SM/Cer), inhibit apoptosis and then alleviate toxicity. In addition, the pharmacodynamic results showed that the vinegar processing could have an obvious synergistic effect through anti-oxidant stress. CONCLUSIONS By changing the structures of the PTS, the SM/Cer disrupt was reduced and the antioxidant activity was enhanced, so as to decrease toxicity and increase efficiency in vinegar processing phytomedicines containing PTS.
Collapse
Affiliation(s)
- Tingting Wang
- Key Laboratory of Depression Animal Model based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, Jiangxi Province, China
| | - Yonggui Song
- Key Laboratory of Depression Animal Model based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, Jiangxi Province, China
| | - Huanhua Xu
- Key Laboratory of Depression Animal Model based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, Jiangxi Province, China; Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab of Innovation Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Yali Liu
- Key Laboratory of Depression Animal Model based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, Jiangxi Province, China
| | - Hongwei He
- Key Laboratory of Depression Animal Model based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, Jiangxi Province, China
| | - Mingyue Zhou
- Key Laboratory of Depression Animal Model based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, Jiangxi Province, China
| | - Chen Jin
- Key Laboratory of Depression Animal Model based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, Jiangxi Province, China; Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab of Innovation Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Ming Yang
- Key Laboratory of Depression Animal Model based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, Jiangxi Province, China; Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab of Innovation Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Zhifu Ai
- Key Laboratory of Depression Animal Model based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, Jiangxi Province, China.
| | - Dan Su
- Key Laboratory of Depression Animal Model based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
15
|
Zhang W, Cui Y, Liu Z, Wang S, Yang A, Li X, Zhang J. Astragalus membranaceus ultrafine powder alleviates hyperuricemia by regulating the gut microbiome and reversing bile acid and adrenal hormone biosynthesis dysregulation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
16
|
Shan B, Chen T, Huang B, Liu Y, Chen J. Untargeted metabolomics reveal the therapeutic effects of Ermiao wan categorized formulas on rats with hyperuricemia. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114545. [PMID: 34419610 DOI: 10.1016/j.jep.2021.114545] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ermiao wan (2 MW) is one of the most frequently prescription in traditional Chinese medicine (TCM) to treat hyperuricemia. Sanmiao wan (3 MW) and Simiao wan (4 MW), two modified Ermiao wan, also show good clinical effects in the treatment of gout and hyperuricemia. However, their uric acid lowering effects and potential action mechanism still need to be systematically investigated. AIM OF THE STUDY The aim of present study was to analyze and compare the uric acid-lowering effects of 2 MW, 3 MW and 4 MW in rat with high fructose combined with potassium oxonate (HFCPO)-induced hyperuricemia and their possible mechanisms through plasma metabolomics methods. MATERIALS AND METHODS HFCPO-induced hyperuricemia rat model was established to evaluate the therapeutic effects of Ermiao wan categorized formulas (ECFs, including 2 MW, 3 MW and 4 MW). Body weight, blood uric acid, creatinine, urine uric acid and urine creatinine levels and histopathological parameters of rats were assessed. Plasma untargeted metabolomics based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) was established to collect the metabolic profiles of rats and explore the metabolic changes that occurred after each ECFs treatment. RESULTS Oral administration of ECFs could decrease the level of blood uric acid, creatinine and increase the level of urine uric acid and urine creatinine in varying degrees, and alleviated hepatocyte steatosis and atrophy and degeneration of glomerulus, vacuolar degeneration of renal tubular epithelial cells in HFCPO-induced hyperuricemia rats. Plasma untargeted metabolomics analysis showed that significant alterations were observed in metabolic signatures between the HFCPO-induced hyperuricemia group and control group. Thirty five potential biomarkers in rat plasma were identified in the screening by principal component analysis (PCA), partial least squares discrimination analysis (PLS-DA) and orthogonal partial least squares discrimination analysis (OPLS-DA). Differential metabolites related to hyperuricemia, including acylcarnitines and amino acid related metabolites, were further used to indicate relevant pathways in hyperuricemia rats, including tryptophan metabolism, arginine biosynthesis, purine metabolism, arginine and proline metabolism, beta-alanine metabolism, citrate cycle (TCA cycle), glycerophospholipid metabolism and linoleic acid metabolism. 2 MW, 3 MW and 4 MW could invert the pathological process of hyperuricemia to varying degrees through in part regulating the perturbed lipid metabolic pathway. 4 MW were better than 2 MW and 3 MW in the intervention of the disordered tricarboxylic acid metabolism and purine metabolism caused by hyperuricemia. CONCLUSION In summary, ECFs treatment could effectively alleviate symptoms of hyperuricemia and regulate metabolic disorders in HFCPO-induced hyperuricemia rats.
Collapse
Affiliation(s)
- Baixi Shan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ting Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Bixia Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jun Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
17
|
Liu Y, Zhou M, Yang M, Jin C, Song Y, Chen J, Gao M, Ai Z, Su D. Pulsatilla chinensis Saponins Ameliorate Inflammation and DSS-Induced Ulcerative Colitis in Rats by Regulating the Composition and Diversity of Intestinal Flora. Front Cell Infect Microbiol 2021; 11:728929. [PMID: 34804990 PMCID: PMC8602866 DOI: 10.3389/fcimb.2021.728929] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/01/2021] [Indexed: 12/19/2022] Open
Abstract
Pulsatilla chinensis (Bunge) Regel is a commonly used Chinese medicine for clearing away heat and detoxification, cooling blood, stopping dysentery, and anti-inflammatory effects. Pulsatilla chinensis saponins (PRS) have been identified to be responsible for producing these pharmacological activities. Studies have shown that Pulsatilla decoction has a good therapeutic effect on ulcerative colitis (UC), however, the therapeutic effect of PRS on UC has not been reported. Therefore, the purpose of this study was to investigate the possible anti-UC activity of PRS using a dextran sulfate sodium (DSS)-induced rat model, and further study the mechanism of PRS in the treatment of UC. The fecal and colon samples were collected from rats to monitor the changes in the composition and diversity of the intestinal flora, and pathological colon sections were also made to examine the mesenteric hemorheological characteristics. The results showed that PRS significantly reduced the mesenteric blood flow in UC rats and significantly alleviated the inflammatory response, which indicates that saponins are involved in the anti-UC effects of PRS. At the same time, it is also suggested that the regulation of intestinal flora by Pulsatilla chinensis saponins is an important pathway for its anti-UC activity, which may be ascribed to the increase in beneficial bacteria like norank_F_Muribaculaceae and norank_F_norank_O_Clostridia_UCG-014, and decrease in the harmful Bacteroides.
Collapse
Affiliation(s)
- Yali Liu
- Key Laboratory of Depression Animal Model Based on Traditional Chinese Medicine (TCM) Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, Nanchang, China.,Department of Pharmacy, Nanchang Medical College, Nanchang, China
| | - Mingyue Zhou
- Key Laboratory of Depression Animal Model Based on Traditional Chinese Medicine (TCM) Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab of Innovation Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Chen Jin
- Key Laboratory of Depression Animal Model Based on Traditional Chinese Medicine (TCM) Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yonggui Song
- Key Laboratory of Depression Animal Model Based on Traditional Chinese Medicine (TCM) Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jingbin Chen
- Key Laboratory of Depression Animal Model Based on Traditional Chinese Medicine (TCM) Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Meng Gao
- Key Laboratory of Depression Animal Model Based on Traditional Chinese Medicine (TCM) Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zhifu Ai
- Key Laboratory of Depression Animal Model Based on Traditional Chinese Medicine (TCM) Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Dan Su
- Key Laboratory of Depression Animal Model Based on Traditional Chinese Medicine (TCM) Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
18
|
Zhao Z, Nian M, Qiao H, Li B, Zheng X. Pulsatilla chinensis: A review of traditional uses, phytochemistry and pharmacology research progress. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
19
|
Meng K, Mei F, Zhu L, Xiang Q, Quan Z, Pan F, Xia G, Shen X, Yun Y, Zhang C, Zhong Q, Chen H. Arecanut (Areca catechu L.) seed polyphenol improves osteoporosis via gut-serotonin mediated Wnt/β-catenin pathway in ovariectomized rats. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104598] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
20
|
Su D, Wang T, Jin C, Liu Y, Naeem A, Liao Z, Zhou M, Chen C, Song Y, Ai Z. Pulchinenosides: Correlation of surface activity-cytotoxicity and hepatocyte apoptosis mechanism study. Bioorg Med Chem Lett 2021; 43:128080. [PMID: 33964439 DOI: 10.1016/j.bmcl.2021.128080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
Saponin is an active component of many phytomedicine, which has extensive pharmacology effects. Meanwhile, it is reported that cytotoxicity, especially hemolysis and hepatotoxicity, in pentacyclic triterpenoid saponin (PTS) hindered their further development and application. Surface activity, a unique physical property of saponins, is believed to be related to membrane toxicity. However, the correlation between the surface activity and cytotoxicity of saponins is still unexplained. In this paper, our aim was to explore the relationship between surface activity-cytotoxicity of pulchinenosides and the hepatotoxicity mechanism of PTS in vitro. The surface activity of different saponins was investigated by contact angle, surface free energy (SFE), and oil/water partition coefficient (log Papp). In the cytotoxicity study, the hemolysis and hepatotoxicity activity of different saponins was compared by HD50 of erythrocyte and MTT, flow cytometry and LDH assay in LO2 cells respectively. And in the hepatotoxicity mechanism study, western blot was used for observing the expression of proteins related to apoptosis and exploring the liver injury mechanism of PTS. The results suggested that the influences of surface activity on hepatocytes and erythrocytes were different, indicating that the correlation of surface activity-cytotoxicity could provide more information for development of PTS. And the result of hepatotoxicity mechanism study of saponins suggested that endogenous and exogenous apoptotic pathways could be the potential targets of PTS, which could not only provide basis for clinical monitoring and treatment of the toxicity in saponins, but also provide more reference for the clinical application of PTS and phytomedicine containing PTS.
Collapse
Affiliation(s)
- Dan Su
- Key Laboratory of Animal Model of TCM Syndromes of Depression, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China; Laboratory Animal Science and Technology Center, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Tingting Wang
- Key Laboratory of Animal Model of TCM Syndromes of Depression, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China; Laboratory Animal Science and Technology Center, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Chen Jin
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Yali Liu
- Key Laboratory of Animal Model of TCM Syndromes of Depression, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Zhou Liao
- Key Laboratory of Animal Model of TCM Syndromes of Depression, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China; Laboratory Animal Science and Technology Center, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Mingyue Zhou
- Key Laboratory of Animal Model of TCM Syndromes of Depression, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China; Laboratory Animal Science and Technology Center, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Changlian Chen
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Yonggui Song
- Key Laboratory of Animal Model of TCM Syndromes of Depression, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China; Laboratory Animal Science and Technology Center, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China.
| | - Zhifu Ai
- Key Laboratory of Animal Model of TCM Syndromes of Depression, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China; Laboratory Animal Science and Technology Center, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China.
| |
Collapse
|
21
|
Dong J, Cheng M, Xue R, Deng C, Liu H, Zhang T, Lu T, Mao C, Xiao S, Li L, Pi W. Comparative pharmacokinetic and bioavailability study of lobetyolin in rats after administration of lobetyolin and Codonopsis pilosula extract by ultra-performance LC-tandem mass spectrometry. Biomed Chromatogr 2021; 35:e5125. [PMID: 33783828 DOI: 10.1002/bmc.5125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/23/2021] [Accepted: 03/22/2021] [Indexed: 11/10/2022]
Abstract
Codonopsis pilosula (CP) is a traditional Chinese medicine used to invigorate spleen, replenish lung, nourish blood and engender fluid. A rapid, selective and sensitive ultra-performance LC-tandem mass spectrometry method was developed and validated to determine lobetyolin in rat plasma. The calibration curve showed good linearity over a concentration range of 0.46-1000 ng/mL for lobetyolin. The extraction recovery ranged from 72.5% to 89.1% with matrix effects of 81.6%-107.8%. The intra- and inter-batch precision and accuracy were 0.02-14.4% and -13.9% to -1.36%, respectively. The method was successfully applied for the bioavailability study of lobetyolin in rats after oral administration of pure lobetyolin and CP extract. Results showed that the elimination half-time (t1/2 ) and the area under the concentration-time curve from zero to infinity of lobetyolin in CP extract were statistically different from those of the pure monomer (P < 0.05). However, the time to reach the maximum plasma concentration (Tmax ) and the maximum concentration (Cmax ) showed no significant differences between the two treatments. Furthermore, the bioavailability of lobetyolin in the experimental group was only 3.90%, significantly lower than that of the CP extract group (6.97%). The low bioavailability indicated that this component may be absorbed poorly or metabolized extensively in rats. Our results will provide useful information for further preclinical studies and formulation preparation of lobetyolin.
Collapse
Affiliation(s)
- Jiajia Dong
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Research Laboratory of Chinese Medicine Processing of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ming Cheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rong Xue
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chang Deng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huanhuan Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ting Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tulin Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Research Laboratory of Chinese Medicine Processing of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunqin Mao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuxian Xiao
- Shanxi Zhendong Pharmaceutical Co., Ltd, Changzhi, China
| | - Lin Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenxia Pi
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
22
|
Song Y, Shan B, Zeng S, Zhang J, Jin C, Liao Z, Wang T, Zeng Q, He H, Wei F, Ai Z, Su D. Raw and wine processed Schisandra chinensis attenuate anxiety like behavior via modulating gut microbiota and lipid metabolism pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113426. [PMID: 33007392 DOI: 10.1016/j.jep.2020.113426] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine, the fruit of Schisandra chinensis (Turcz.) Baill (SC) is used to treat various nervous system diseases, such as dysphoria, anxiety, insomnia and many dreams. It is worthy to be noted that wine processed Schisandra chinensis (WSC) has been applied in clinic for thousands of years. AIM OF STUDY This study aimed to investigate the possible mechanism and related metabolism of SC and WSC ameliorating anxiety behavior through modulating gut microbiota. MATERIALS AND METHODS The ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) was used for the quality control of chemical components in SC and WSC. Chronic unpredictable stress procedure (CUSP)-induced anxiety rats were administrated with SC and WSC via gavage for five weeks. An untargeted UPLC/LTQ-Orbitrap MS metabolomic analysis of plasma was conducted to understand the effects of long-term intake of WSC and SC extracts on anxious rats. 16S rRNA microbial sequencing technology was applied to investigate gut microbiota structure. Expression of GPR81, TNF-α, S1PR2 as well as molecules in cAMP pathway was assayed by immunohistochemistry staining, RT-qPCR, or Western blot, respectively. RESULTS 12 compounds were identified using UPLC-QTOF-MS technology, all of which are lignans. Results demonstrate that the amounts of 6-O-Benzoylgomisin O, Schisandrin, Gomisin D, Schizandrin A, Gomisin T, Schizandrin B, Schisandrin C were higher in wine-processed samples than in raw samples. Furthermore, both SC and WSC significantly ameliorated anxiety- and depression-like behavior and lipid metabolism dysfunction and attenuated hippocampal neuritis in anxiety rats. After WSC treatment, the structure and composition of gut microbiota in anxiety rats changed significantly, and gut microbiota derivatives lactate level was significantly lower in the plasma and feces. WSC treatment help restore gut microbial ecosystem dysbiosis and reverse the changes in Lachnospiraceae, Lactobacillus, Alloprevotella, and Bacteroidales in anxiety rat. In addition, the expression of liver GPR81 was decreased, and the molecules in cAMP pathway were increased in SC and WSC-treated anxiety rat. CONCLUSION Raw and wine processed Schisandra chinensis treatment improved anxiety- and depression-like behavior through modulating gut microbiota derivatives in association with GPR81 receptor-mediated lipid metabolism pathway. And WSC has more exhibition than SC.
Collapse
Affiliation(s)
- Yonggui Song
- Laboratory Animal Science and Technology Center, College of Pharmacy, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China
| | - Baixi Shan
- Laboratory Animal Science and Technology Center, College of Pharmacy, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China; State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Sufen Zeng
- Laboratory Animal Science and Technology Center, College of Pharmacy, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China
| | - Jie Zhang
- Laboratory Animal Science and Technology Center, College of Pharmacy, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China
| | - Chen Jin
- Laboratory Animal Science and Technology Center, College of Pharmacy, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China
| | - Zhou Liao
- Laboratory Animal Science and Technology Center, College of Pharmacy, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China
| | - Tingting Wang
- Laboratory Animal Science and Technology Center, College of Pharmacy, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China
| | - Qiang Zeng
- Laboratory Animal Science and Technology Center, College of Pharmacy, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China
| | - Hongwei He
- Laboratory Animal Science and Technology Center, College of Pharmacy, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China
| | - Fengqin Wei
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital Group, 1 Jiaozhou Road, Qingdao, 266011, PR China
| | - Zhifu Ai
- Laboratory Animal Science and Technology Center, College of Pharmacy, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China.
| | - Dan Su
- Laboratory Animal Science and Technology Center, College of Pharmacy, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China.
| |
Collapse
|
23
|
Cao H, Yan W, Guo S, Deng C, Xue R, Zhang K, Lu T, Mao C. Discrimination Between Fructus Gardeniae (ZZ) and Fructus Gardeniae Grandiflorae (SZZ) Based on Fingerprint Coupled with Chemometrics and Quantitative Analysis. J Chromatogr Sci 2021; 59:847-855. [PMID: 33558885 DOI: 10.1093/chromsci/bmab006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 11/12/2022]
Abstract
Fructus Gardeniae, known as Zhi-zi in China, has been used as Chinese herbal medicine and functional health food for thousands of years. Fructus Gardeniae Grandiflorae, named as Shui-zhizi, is a counterfeit herb of Fructus Gardeniae. In order to discriminate these two varieties, based on ultra-high-performance liquid chromatography, an analysis method of fingerprints of Fructus Gardeniae and Fructus Gardeniae Grandiflorae was established. With hierarchical clustering analysis and principal component analysis, they were separated into two groups. Analyzed with partial least squares discriminant analysis, there were differences in chemical compositions between Fructus Gardeniae and Fructus Gardeniae Grandiflorae. Six compounds, crocin I, genipin-1-β-D-gentiobioside and four other unknown compositions were identified as differential marker compositions between them. Furthermore, seven active substances in them were determined simultaneously. Thus, an integral method of ultra-high-performance liquid chromatography fingerprint combined with chemometrics analysis and quantitative assessment was established. It could be utilized in characterization, quality evaluation of Fructus Gardeniae and could be applied for discriminating Fructus Gardeniae from Fructus Gardeniae Grandiflorae.
Collapse
Affiliation(s)
- Honghong Cao
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
| | - Weihua Yan
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
| | - Shuang Guo
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
| | - Chang Deng
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
| | - Rong Xue
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
| | - Kewei Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
| | - Tulin Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
| | - Chunqin Mao
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
| |
Collapse
|
24
|
Zhang J, Ji Y, Wang R, Zhong Y, Yan J, Song Q, Chenjin, Song Y, Chen H. Three-dimensional Porous Carbon Materials from Waste of Botanical Drugs as an Efficient Biosensing Platform for Pesticides Sensing. INT J ELECTROCHEM SC 2021; 16:210256. [DOI: 10.20964/2021.02.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
|
25
|
Sang Q, Jia Q, Zhang H, Lin C, Zhao X, Zhang M, Wang Y, Hu P. Chemical profiling and quality evaluation of Zhishi-Xiebai-Guizhi Decoction by UPLC-Q-TOF-MS and UPLC fingerprint. J Pharm Biomed Anal 2020; 194:113771. [PMID: 33280997 DOI: 10.1016/j.jpba.2020.113771] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 11/19/2022]
Abstract
Zhishi-Xiebai-Guizhi Decoction (ZSXBGZD), a traditional Chinese medicine (TCM) formula, has been used for treatment of coronary heart disease and myocardial infarction for nearly two thousand years. However, the chemical composition of ZSXBGZD is still unclear. In order to obtain the chemical profile of ZSXBGZD, an ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS) method was utilized for the identification of its multi-constituents. As a result, a total of 148 compounds were identified based on their retention times, accurate masses and MS/MS data. In addition, an optimized UPLC fingerprint analysis, combined with chemometrics such as similarity analysis (SA), hierarchical cluster analysis (HCA), principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) was developed for quality assessment of ZSXBGZD. Multivariate data analysis revealed that samples could be classified correctly according to their geographic origins, and four compounds neohesperidin, naringin, guanosine and adenosine contributed the most to classification. The established UPLC method with multi-wavelength detection was further validated and implemented for simultaneous quantification of 12 representative ingredients in the prescription, including guanosine, adenosine, 2'-deoxyadenoside, syringin, magnoloside A, forsythoside A, naringin, hesperidin, cinnamaldehyde, neohesperidin, honokiol and magnolol. This is the first report on the comprehensive profiling of major chemical components in ZSXBGZD. The results of the study could help to uncover the chemical basis of ZSXBGZD and possess potential value for quality evaluation purpose.
Collapse
Affiliation(s)
- Qingni Sang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qiangqiang Jia
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Hongyang Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Chuhui Lin
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaodan Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Min Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuerong Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ping Hu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
26
|
Su L, Mao C, Wang X, Li L, Tong H, Mao J, Ji D, Lu T, Hao M, Huang Z, Fei C, Zhang K, Yan G. The Anti-colitis Effect of Schisandra chinensis Polysaccharide Is Associated With the Regulation of the Composition and Metabolism of Gut Microbiota. Front Cell Infect Microbiol 2020; 10:519479. [PMID: 33194780 PMCID: PMC7609416 DOI: 10.3389/fcimb.2020.519479] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/28/2020] [Indexed: 01/30/2023] Open
Abstract
Background: The pathogenesis of inflammatory bowel disease (IBD) is linked to an intricate association of environmental, microbial, and host-related factors. Polysaccharide affects host immunity by regulating the composition and metabolism of gut microbiota is the common mechanism of disease resistance. However, the efficacy and mechanism of Schisandra chinensis polysaccharide (SCP) in the treatment of inflammatory bowel disease have not been studied. Objective: To explore the effect and mechanism of SCP on dextran sodium sulfate (DSS) - induced ulcerative colitis (UC) in mice. Materials/Methods: In this study, we established a mouse model of UC, and used SCP for treatment intervention. The biochemical indexes related to inflammation were determined by ELISA kit, and the therapeutic effect of SCP on UC was clarified. Then, 16S rDNA sequencing was used to study the effect of SCP on the composition and diversity of gut microbiota. At the same time, GC-MS was used to determine the content of short chain fatty acids in intestinal contents. Finally, the relationship among gut microbiota, short chain fatty acids and inflammatory factors was analyzed, and to comprehensively explain the effect and mechanism of SCP on UC. Results: The results showed that SCP could significantly improve the physiological state of UC mice and regulate the level of inflammatory factors to normal levels. Meanwhile, SCP could significantly regulate the imbalance of gut microbiota and increase the content of SCFAs. In addition, the results of the correlation between gut microbiota and SCFAs showed that butyric acid, isobutyric acid and valeric acid had the highest correlation with gut microbiota. Conclusion: In conclusion, this research showed that SCP can inhibit inflammatory bowel disease by regulating the composition and metabolism of gut microbiota, and indicating that SCP may be used as adjuvant therapy for IBD patients.
Collapse
Affiliation(s)
- Lianlin Su
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunqin Mao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiachang Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lin Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,The Key Laboratory of Chinese Herbal Medicine Processing of Jiangsu Province, Nanjing, China
| | - Huangjin Tong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jing Mao
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - De Ji
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tulin Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,The Key Laboratory of Chinese Herbal Medicine Processing of Jiangsu Province, Nanjing, China
| | - Min Hao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziyan Huang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenghao Fei
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kewei Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guojun Yan
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
27
|
Liu Y, Zhou M, Jin C, Zeng J, Huang C, Song Q, Song Y. Preparation of a Sensor Based on Biomass Porous Carbon/Covalent-Organic Frame Composites for Pesticide Residues Detection. Front Chem 2020; 8:643. [PMID: 33005599 PMCID: PMC7485226 DOI: 10.3389/fchem.2020.00643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/22/2020] [Indexed: 11/28/2022] Open
Abstract
In this work, a covalent-organic framework with high carbon and nitrogen content microstructures (named COF-LZU1), assisted by 3D nitrogen-containing kenaf stem composites (represented as COF-LZU1/3D-KSCs), was constructed. Moreover, it was utilized for immobilizing acetylcholinesterase (AChE) for identifying trichlorfon, a commonly applied organophosphorus (OP) pesticide. The development of COF-LZU1/3D-KSC was affirmed by SEM, PXRD, and EDXS. The findings confirmed that COF-LZU1 microstructures were uniformly developed on 3D-KSC holes using a one-step synthesis approach, which can substantially enhance the effective surface area. Also, the COF-LZU1/3D-KSC composite contains not only the nitrogen element in COF-LZU1 but also the nitrogen element in 3D-KSC, which will greatly improve the biocompatibility of the material. The AChE/COF-LZU1/3D-KSC integrated electrode was fabricated by directly fixing a large amount of AChE on the composite. At the same time, the integrated electrode had good detection efficiency for trichlorfon. Improved stabilization, a wide-linear-range (0.2–19 ng/mL), and a lower detection limit (0.067 ng/mL) have been displayed by the sensor. Therefore, this sensor can be used as an important platform for the on-site detection of OP residue.
Collapse
Affiliation(s)
- Yali Liu
- Laboratory Animal Science and Technology Center, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Mingyue Zhou
- Laboratory Animal Science and Technology Center, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Chen Jin
- Laboratory Animal Science and Technology Center, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jinxiang Zeng
- Laboratory Animal Science and Technology Center, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Chao Huang
- Laboratory Animal Science and Technology Center, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qiuye Song
- Pharmacy Department of Zhangjiagang, First People's Hospital, Suzhou, China
| | - Yonggui Song
- Laboratory Animal Science and Technology Center, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
28
|
Xue R, Deng C, Cao H, Zhang K, Lu T, Mao C. Quality assessment of raw and baked Aucklandia lappa Decne. by color measurement and fingerprint analysis. J Sep Sci 2020; 43:3017-3026. [PMID: 32459392 DOI: 10.1002/jssc.202000308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/17/2022]
Abstract
Aucklandia lappa Decne. has been used as a traditional Chinese herb for thousands of years in treating various kinds of disorders. According to the Chinese Pharmacopoeia, there are two kinds of processed products, raw and baked Aucklandia lappa Decne., which have different therapeutic effect in clinical application. In this study, based on color measurement and fingerprint analysis, the method to assess the quality of these two processed products was established. In color measurement, the reference ranges of color parameters (L* , a* , and b* ), standard color difference values, and mathematical prediction functions of these two processed products were obtain after the color was measured by a spectrophotometer. Meanwhile, high-performance liquid chromatography fingerprints of these two processed products were established, where there were 12 peaks recognized as the common peaks in both processed products, in which two peaks were identified as costunolide and dehydrocostus lactone, and these two processed products were classified with chemometrics analysis subsequently. Furthermore, the correlation between color parameters and sample compositions was explored and the contents of costunolide and dehydrocostus lactone were determined simultaneously by high-performance liquid chromatography. Consequently, an integral method including color measurement, high-performance liquid chromatography fingerprint with chemometrics analysis, and quantitative determination was established.
Collapse
Affiliation(s)
- Rong Xue
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Chang Deng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Honghong Cao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Kewei Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Tulin Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Chunqin Mao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| |
Collapse
|
29
|
Gao X, Li Y, Meng M, Wang P, Feng Y, Jia J, Qin X. Exploration of chemical composition and absorption characteristics of Chaigui granules based on UHPLC-Q-orbitrap-MS/MS. J Pharm Biomed Anal 2020; 187:113293. [DOI: 10.1016/j.jpba.2020.113293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/22/2020] [Accepted: 03/28/2020] [Indexed: 11/27/2022]
|
30
|
He J, Yuan R, Cui X, Cui Y, Han S, Wang QQ, Chen Y, Huang L, Yang S, Xu Q, Zhao Y, Gao H. Anemoside B4 protects against Klebsiella pneumoniae- and influenza virus FM1-induced pneumonia via the TLR4/Myd88 signaling pathway in mice. Chin Med 2020; 15:68. [PMID: 32625244 PMCID: PMC7330533 DOI: 10.1186/s13020-020-00350-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
Background Pneumonia refers to the inflammation of the terminal airway, alveoli and pulmonary interstitium, which can be caused by pathogenic microorganisms, physical and chemical factors, immune damage, and drugs. Anemoside B4, the major ingredient of Pulsatilla chinensis (Bunge) Regel, exhibited anti-inflammatory activity. However, the therapeutic effect of anemoside B4 on pneumonia has not been unraveled. This study aims to investigate that anemoside B4 attenuates the inflammatory responses in Klebsiella pneumonia (KP)- and influenza virus FM1 (FM1)-induced pneumonia mice model. Methods The network pharmacology and molecular docking assays were employed to predict the targets of anemoside B4’s treatment of pneumonia. Two models (bacterial KP-infected mice and virus FM1-infected mice) were employed in our study. BALB/c mice were divided into six groups: control, model group (KP-induced pneumonia or FM1-induced pneumonia), anemoside B4 (B4)-treated group (2.5, 5, 10 mg/kg), and positive drug group (ribavirin or ceftriaxone sodium injection). Blood samples were collected for hematology analysis. The effects of B4 on inflammation-associated mediators were investigated by Enzyme-linked immunosorbent assay (ELISA) and hematoxylin and eosin staining (HE) staining. Proteins expression was quantified by western blotting. Results The network results indicated that many pro-inflammatory cytokines such as tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) participated in anemoside B4’s anti-inflammatory activity. The counts of neutrophil (NEU) and white blood cell (WBC), the level of myeloperoxidase (MPO), and the release of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 increased by KP or FM1 infection, which were reversed by anemoside B4. In addition, anemoside B4 significantly suppressed the FM1-induced expression of toll-like receptor 4 (TLR4), myeloid differential protein-88 (MyD88), and myeloid differentiation protein-2 (MD-2), which were further validated by molecular docking data that anemoside B4 bound to bioactive sites of TLR4. Therefore, anemoside B4 exhibited a significant therapeutic effect on pneumonia via the TLR4/MyD88 pathway. Conclusion Our findings demonstrated that anemoside B4 attenuates pneumonia via the TLR4/Myd88 signaling pathway, suggesting that anemoside B4 is a promising therapeutic candidate for bacterial-infected or viral-infected pneumonia.
Collapse
Affiliation(s)
- Jia He
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020 China
| | - Renyikun Yuan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004 China
| | - Xiaolan Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Yushun Cui
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004 China
| | - Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020 China
| | - Qin-Qin Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020 China
| | - Yangling Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020 China
| | - Liting Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020 China
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020 China
| | - Qiongming Xu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,College of Pharmaceutical Science, Soochow University, Suzhou, 215123 China
| | - Yonghui Zhao
- Qingdao Central Hospital, The Second Affiliated Hospital of Qingdao University, Qingdao, 266109 China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020 China
| |
Collapse
|
31
|
Shan B, Ai Z, Zeng S, Song Y, Song J, Zeng Q, Liao Z, Wang T, Huang C, Su D. Gut microbiome-derived lactate promotes to anxiety-like behaviors through GPR81 receptor-mediated lipid metabolism pathway. Psychoneuroendocrinology 2020; 117:104699. [PMID: 32402927 DOI: 10.1016/j.psyneuen.2020.104699] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 01/06/2023]
Abstract
Accumulating evidence suggests that chronic stress could perturb the composition of the gut microbiota and induce host anxiety- and depression-like behaviors. In particular, microorganism-derived products that can directly or indirectly signal to the nervous system. This study sought to investigate whether high levels of Lactobacillus and lactate in the gut of rats under chronic unpredictable stress (CUS) were the factors leading to anxiety behavior. We collected faeces and blood samples in a sterile laboratory bench to study the microbiome and plasma metabolome from adult male rats age and environment matched healthy individuals. We sequenced the V3 and V4 regions of the 16S rRNA gene from faeces samples. UPLC-MS metabolomics were used to examine plasma samples. Search for potential biomarkers by combining the different data types. Finally, we found a regulated signaling pathway through the relative expression of protein and mRNA. Both lactate feeding and fecal microbiota transplantation caused behavioral abnormalities such as psychomotor malaise, impaired learning and memory in the recipient animals. These rats also showed inhibition of the adenylate cyclase (AC)-protein kinase A (PKA) pathway of lipolysis after activation of G protein-coupled receptor 81 (GPR81) by lactate in the liver, as well as increased tumor necrosis factor α (TNF-α), compared with healthy controls. Furthermore, we showed that sphingosine-1-phosphate receptor 2 (S1PR2) protein expression in hippocampus was reduced in chronic unpredictable stress compared to control group and its expression negatively correlates with symptom severity. Our study suggest that the gut microbiome-derived lactate promotes to anxiety-like behaviors through GPR81 receptor-mediated lipid metabolism pathway.
Collapse
Affiliation(s)
- Baixi Shan
- Laboratory Animal Science and Technology Center, College of Pharmacy, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, China
| | - Zhifu Ai
- Laboratory Animal Science and Technology Center, College of Pharmacy, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, China
| | - Sufen Zeng
- Laboratory Animal Science and Technology Center, College of Pharmacy, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, China
| | - Yonggui Song
- Laboratory Animal Science and Technology Center, College of Pharmacy, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, China.
| | - Jiagui Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Qiang Zeng
- Laboratory Animal Science and Technology Center, College of Pharmacy, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, China
| | - Zhou Liao
- Laboratory Animal Science and Technology Center, College of Pharmacy, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, China
| | - Tingting Wang
- Laboratory Animal Science and Technology Center, College of Pharmacy, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, China
| | - Chao Huang
- Laboratory Animal Science and Technology Center, College of Pharmacy, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, China
| | - Dan Su
- Laboratory Animal Science and Technology Center, College of Pharmacy, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, China.
| |
Collapse
|
32
|
Su D, Liao Z, Feng B, Wang T, Shan B, Zeng Q, Song J, Song Y. Pulsatilla chinensis saponins cause liver injury through interfering ceramide/sphingomyelin balance that promotes lipid metabolism dysregulation and apoptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 76:153265. [PMID: 32575028 DOI: 10.1016/j.phymed.2020.153265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 05/24/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND P. chinensis saponins (PRS) are pentacyclic triterpenoid bioactive constituents from Pulsatilla chinensis (Bunge) Regel. In our previous study, PRS caused chronic liver injury (CLI) with the significant changes of lipid metabolites including sphingomyelin (SM) in serum after long-term administration. The SM in the hepatocytes membrane plays an indispensable role in maintaining cell membrane stability and regulating the extracellular and intracellular signal transduction. However, it is still unknown the pathway related to SM and the mechanism of CLI on hepatocyte. PURPOSE The purpose of this study was to explore the hepatotoxicity mechanism of PRS in vivo and in vitro, to reveal the action of mechanism of SM and the pathway related to liver injury. METHODS SD rats were orally administered with PRS for 240 days and liver injury was evaluated by histological examinations. Metabolomics analysis was used to explore the liver metabolic pathway affected by PRS, and the expressions of related proteins were evaluated by western blots. To discover and elucidate the underlying mechanisms of metabolites changes induced by PRS at the cellular level, cellular morphology, MTT assays, western blots and cell membrane potential measurements were carried out using LO2 cells. Furthermore, the roles of SM and cholesterol (Chol) in hepatocyte injury were investigated individually in overload Chol and SM groups. Sphingolipid metabolic pathway related with ceramide/sphingomyelin (Cer/SM) balance was explored using cellular lipidomics and RT-PCR. RESULTS PRS gradually damaged the rat's liver in a time-dependent manner. The analysis of liver metabolism profiles showed that lipids metabolites were changed, including sphingolipid, bile acid, linoleic acid and fatty acid. We found that PRS induced apoptosis by interfering with bile acid-mediated sphingolipid metabolic pathway and Cer/SM balance in CLI. In in vitro experiments, PRS led to the increase of LDH leakage, depolarized cell membrane potential and caused cell membrane toxicity. Furthermore, PRS inducedG0/G1 phase cell cycle arrest in LO2 cells, simultaneously activated cellular extrinsic and intrinsic apoptosis pathways. PRS acted on SM and interfered with Cer/SM balance, which promote lipid metabolism dysregulation and apoptosis. CONCLUSION PRS acted on SM to interfere Cer/SM balance on LO2 cell. Both in vivo and in vitro, PRS induced Cer/SM imbalance which promoted lipid metabolism disorder and apoptosis. Apoptosis and lipids changes gradually damaged the rats liver, and ultimately developed into CLI.
Collapse
Affiliation(s)
- Dan Su
- College of Pharmacy, Laboratory Animal Science and Technology Center, Jiangxi University ofTraditional Chinese Medicine, 1688 Meiling Road, Nanchang330006, China.
| | - Zhou Liao
- College of Pharmacy, Laboratory Animal Science and Technology Center, Jiangxi University ofTraditional Chinese Medicine, 1688 Meiling Road, Nanchang330006, China
| | - Binwei Feng
- College of Pharmacy, Laboratory Animal Science and Technology Center, Jiangxi University ofTraditional Chinese Medicine, 1688 Meiling Road, Nanchang330006, China
| | - Tingting Wang
- College of Pharmacy, Laboratory Animal Science and Technology Center, Jiangxi University ofTraditional Chinese Medicine, 1688 Meiling Road, Nanchang330006, China
| | - Baixi Shan
- College of Pharmacy, Laboratory Animal Science and Technology Center, Jiangxi University ofTraditional Chinese Medicine, 1688 Meiling Road, Nanchang330006, China
| | - Qiang Zeng
- College of Pharmacy, Laboratory Animal Science and Technology Center, Jiangxi University ofTraditional Chinese Medicine, 1688 Meiling Road, Nanchang330006, China
| | - Jiagui Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing100191, China
| | - Yonggui Song
- College of Pharmacy, Laboratory Animal Science and Technology Center, Jiangxi University ofTraditional Chinese Medicine, 1688 Meiling Road, Nanchang330006, China
| |
Collapse
|
33
|
Zhang L, Miao X, Li Y, Dai H, Shang X, Hu F, Fan Q. Toxic and active material basis of Aconitum sinomontanum Nakai based on biological activity guidance and UPLC-Q/TOF-MS technology. J Pharm Biomed Anal 2020; 188:113374. [PMID: 32563055 DOI: 10.1016/j.jpba.2020.113374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND As a folk medicine, Aconitum sinomontanum Nakai (Ranunculaceae, Gaowutou, in Chinese) is used by traditional healers to treat many disorders, including pain and inflammatory diseases, but it exhibits the toxic side effects. This study aimed to obtain toxic extract parts from A. sinomontanum roots and to further evaluate the antinociceptive and anti-inflammatory effects of toxic extract parts on mice. This work also aimed to identify various chemical compositions of the toxic and active extract parts and evaluate the safety profile of this plant. METHODS Experimental drugs (petroleum ether, chloroform, ethyl acetate, n-butanol, alcohol and water extracts) were obtained through systematic solvent extraction from 95 % ethanol extract from A. sinomontanum roots. An acute toxicity test was conducted to compare the toxicity of different extracts administered at the maximum dose to screen a highly toxic extract. In pharmacodynamic activity analysis, the antinociceptive activity of the A. sinomontanum toxic extract was assessed using an acetic acid-induced abdominal writhing model and a hot plate test. Anti-inflammatory activity was assessed in terms of xylene-induced inflammation. Ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) was performed to establish a chromatographic fingerprint and to identify various chemical components of the toxic and active extract. RESULTS Chloroform, water and n-butanol extracts elicited significant toxic effects and had LD50 of 89.65, 1805.40 and 24409.41 mg/kg, respectively. Antinociceptive and anti-inflammatory activities indicated that the chloroform extract significantly alleviated (p < 0.01) the pain induced by acetic acid with an inhibition rate of 44.7 % (5.9 mg/kg) and 50.4 % (17.7 mg/kg). The chloroform extract also significantly (p < 0.01) increased the latency time during the hot plate test. The latency time at 5.9 and 17.7 mg/kg increased from 15.6 ± 4.1 s to 47.3 ± 6.4 s and from 16.3 ± 3.8 s to 49.8 ± 7.6 s (p < 0.01), respectively, 2 h after treatment. In the inflammatory test, the chloroform extract significantly reduced (p < 0.01) the xylene-induced mouse ear oedema with an inhibition rate of 45.48 % (5.9 mg/kg) and 51.46 % (17.7 mg/kg), respectively. This result indicated that A. sinomontanum chloroform extract was also the active extract part of A. sinomontanum. Phytochemical analysis revealed the presence of alkaloids in the chloroform extract. A total of 30 compounds were detected, and 23 compounds, including lappaconine, ranaconidine, 8-O-acetylexcelsine, sinomontanine H, finaconitine, lappacontine, N-dacetyllappaconitine, ranaconitine and isolappaconitine, were identified. CONCLUSIONS A. sinomontanum chloroform extract possesses antinociceptive and anti-inflammatory activities and exhibits significant toxic effects. Phytochemical analysis indicated that some alkaloids may be the main bioactive ingredient responsible for the toxicity and efficacy of A. sinomontanum. This work contributes to the determination of the safety of the medicinal use of A. sinomontanum roots.
Collapse
Affiliation(s)
- Lijun Zhang
- College of Pharmacy, Gansu University of Traditional Chinese Medicine (TCM), Lanzhou 730000, PR China; Ankang Inspection and Detection Center of Food and Drug Control, Ankang 725000, PR China
| | - Xiaolou Miao
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China.
| | - Yun Li
- College of Pharmacy, Gansu University of Traditional Chinese Medicine (TCM), Lanzhou 730000, PR China.
| | - Hairong Dai
- College of Pharmacy, Gansu University of Traditional Chinese Medicine (TCM), Lanzhou 730000, PR China
| | - Xiaofei Shang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Fangdi Hu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Qin Fan
- College of Pharmacy, Gansu University of Traditional Chinese Medicine (TCM), Lanzhou 730000, PR China
| |
Collapse
|
34
|
Metabolite Profile Changes in Different Regions of Rat Brain Affected by Ephedra sinica. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8358039. [PMID: 32419830 PMCID: PMC7201840 DOI: 10.1155/2020/8358039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/12/2020] [Accepted: 04/02/2020] [Indexed: 11/18/2022]
Abstract
Ephedra sinica Stapf (EP) has a long medication history dating back centuries in the world. There were some reports of adverse effects in the central nervous system (CNS) resulting from administration of a drug containing EP or ephedrine. Compared with alkaloid monomer compounds, the effects of EP on the CNS are usually neglected. It is necessary to explore CNS affection which is helpful to use EP rationally. However, the affection and the changes of substances by EP in the brain are still unknown because the effects of drug on the brain also exhibit different tendency and distribution and usually lead to diversity of metabolite alteration in different regions. In this study, metabolomics based on different brain regions was used to investigate the affection mechanism of EP in the CNS. The metabolites in 6 brain regions from a rat that underwent oral administration with EP for 14 days were determined by UPLC/Q-TOF-MS. Brain histological examinations showed that there were no obvious lesions in EP administration groups. Partial least square-discriminant analysis (PLS-DA) displayed that there were significant separations between control and EP administration groups. 7 CNS biomarkers were found and identified in different regions. 3 metabolic pathways were disturbed by EP, including amino acid metabolism, phospholipid metabolism, and amino sugar metabolism. Furthermore, all biomarkers were significantly changed in the cortex after administration. This study may be helpful to understand the affection mechanism of EP in the CNS and improve cognition of brain regional characteristics.
Collapse
|
35
|
PPTS Inhibits the TGF- β1-Induced Epithelial-Mesenchymal Transition in Human Colorectal Cancer SW480 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2683534. [PMID: 31662772 PMCID: PMC6778905 DOI: 10.1155/2019/2683534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/11/2019] [Accepted: 08/26/2019] [Indexed: 12/11/2022]
Abstract
The current study investigates the inhibitory effects of Pulsatilla pentacyclic triterpenoid saponins extract (PPTS) on epithelial-mesenchymal transition (EMT) triggered by the transforming growth factor-β1 (TGF-β1) in human colorectal cancer SW480 cell line, further illustrates the possible mechanism of PPTS inhibition of growth and invasion from the perspective of EMT, and provides new theoretical support for the treatment of tumor by Chinese medicine. The SW480 cells were treated in groups: blank control, TGF-β1 (10 ng/mL), and varying concentrations of PPTS cotreated with TGF-β1-induced (10 ng/mL) groups. CCK8 was used to detect cell viability; transwell was applied to detect invasion ability, cell migration ability was also determined, ELISA and RT-qPCR were utilized for the determination of CYP3A, CYP2C9, CYP2C19, N-cadherin, and MMP-9 expression. Flow cytometry detection was applied to detect cell cycle and apoptosis. The results obtained have shown that PPTS can significantly inhibit the invasion and migration of tumors in SW480 cells and can also block the S phase in the cell cycle but may produce cytotoxicity in higher doses. The present research work provides substantial evidence that PPTS has a significant inhibitory effect on TGF-β1-induced EMT in SW480 cells and it also promotes apoptosis.
Collapse
|
36
|
Shan B, Ji Y, Zhong Y, Chen L, Li S, Zhang J, Chen L, Liu X, Chen Y, Yan N, Song Y. Nitrogen-containing three-dimensional biomass porous carbon materials as an efficient enzymatic biosensing platform for glucose sensing. RSC Adv 2019; 9:25647-25654. [PMID: 35530096 PMCID: PMC9070086 DOI: 10.1039/c9ra04008k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/02/2019] [Indexed: 02/01/2023] Open
Abstract
Schematic illustration of the fabrication and structure of the 3D-CVS/GOD electrode.
Collapse
|