1
|
Walz A, Lehmann U, Duthaler U, Mäser P, Wittlin S. In vivo antimalarial efficacy of Artemisia afra powder suspensions. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155644. [PMID: 38761524 DOI: 10.1016/j.phymed.2024.155644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND A global death toll of 608,000 in 2022 and emerging parasite resistance to artemisinin, the mainstay of antimalarial chemotherapy derived from the Chinese herb Artemisia annua, urge the development of novel antimalarials. A clinical trial has found high antimalarial potency for aqueous extracts of A. annua as well as its African counterpart Artemisia afra, which contains only trace amounts of artemisinin. The artemisinin-independent antimalarial activity of A. afra points to the existence of other antimalarials present in the plant. However, the publication was retracted due to ethical and methodological concerns in the trial, so the only evidence for antimalarial activity of A. afra is built on in vitro studies reporting efficacy only in the microgram per milliliter range. HYPOTHESIS Our study aims to shed more light on the controversy around the antimalarial activity of A. afra by assessing its efficacy in mice. In particular, we are testing the hypothesis that A. afra contains a pro-drug that is inactive in vitro but active in vivo after metabolization by the mammalian host. METHODS Plasmodium berghei-infected mice were treated once or thrice (on three consecutive days) with various doses of A. afra, A. annua, or pure artemisinin. RESULTS Aqueous powder suspensions of A. annua but not A. afra showed antimalarial activity in mice. CONCLUSION Our experiments conducted in mice do not support the pro-drug hypothesis.
Collapse
Affiliation(s)
- Annabelle Walz
- Parasite Chemotherapy Unit, Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland; University of Basel, 4001 Basel, Switzerland
| | - Ursula Lehmann
- Parasite Chemotherapy Unit, Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland; University of Basel, 4001 Basel, Switzerland
| | - Urs Duthaler
- Parasite Chemotherapy Unit, Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland; Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Pascal Mäser
- Parasite Chemotherapy Unit, Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland; University of Basel, 4001 Basel, Switzerland
| | - Sergio Wittlin
- Parasite Chemotherapy Unit, Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland; University of Basel, 4001 Basel, Switzerland.
| |
Collapse
|
2
|
Villamizar-Monsalve MA, López-Abán J, Vicente B, Peláez R, Muro A. Current drug strategies for the treatment and control of schistosomiasis. Expert Opin Pharmacother 2024; 25:409-420. [PMID: 38511392 DOI: 10.1080/14656566.2024.2333372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Schistosomiasis, one of the current Neglected Tropical Diseases (NTDs) affects over 230 million people globally, with nearly 700 million at risk in more than 74 countries. Praziquantel (PZQ) has served as the primary treatment for the past four decades; however, its effectiveness is limited as it solely eliminates adult worms. In regions where infections are frequent, PZQ exhibits only temporary efficacy and has restricted potential to disrupt the prolonged transmission of the disease. AREAS COVERED A comprehensive exploration using the PubMed database was conducted to review current pharmacotherapy approaches for schistosomiasis. This review also encompasses recent research findings related to potential novel therapeutics and the repurposing of existing drugs. EXPERT OPINION Current schistosoma treatment strategies, primarily relying on PZQ, face challenges like temporary effectiveness and limited impact on disease transmission. Drug repurposing, due to economic constraints, is decisive for NTDs. Despite PZQ's efficacy, its failure to prevent reinfection highlights the need for complementary strategies, especially in regions with persistent environmental foci. Integrating therapies against diverse schistosome stages boosts efficacy and impedes resistance. Uncovering novel agents is essential to address resistance concerns in tackling this neglected tropical disease. Integrated strategies present a comprehensive approach to navigate the complex challenges.
Collapse
Affiliation(s)
- María Alejandra Villamizar-Monsalve
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Salamanca, Spain
| | - Julio López-Abán
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Salamanca, Spain
| | - Belén Vicente
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Salamanca, Spain
| | - Rafael Peláez
- Organic and Pharmaceutical Chemistry Department, Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Salamanca, Spain
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Salamanca, Spain
| |
Collapse
|
3
|
Moiketsi BN, Makale KPP, Rantong G, Rahube TO, Makhzoum A. Potential of Selected African Medicinal Plants as Alternative Therapeutics against Multi-Drug-Resistant Bacteria. Biomedicines 2023; 11:2605. [PMID: 37892979 PMCID: PMC10604549 DOI: 10.3390/biomedicines11102605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/04/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
Antimicrobial resistance is considered a "One-Health" problem, impacting humans, animals, and the environment. The problem of the rapid development and spread of bacteria resistant to multiple antibiotics is a rising global health threat affecting both rich and poor nations. Low- and middle-income countries are at highest risk, in part due to the lack of innovative research on the surveillance and discovery of novel therapeutic options. Fast and effective drug discovery is crucial towards combatting antimicrobial resistance and reducing the burden of infectious diseases. African medicinal plants have been used for millennia in folk medicine to cure many diseases and ailments. Over 10% of the Southern African vegetation is applied in traditional medicine, with over 15 species being partially or fully commercialized. These include the genera Euclea, Ficus, Aloe, Lippia. And Artemisia, amongst many others. Bioactive compounds from indigenous medicinal plants, alone or in combination with existing antimicrobials, offer promising solutions towards overcoming multi-drug resistance. Secondary metabolites have different mechanisms and modes of action against bacteria, such as the inhibition and disruption of cell wall synthesis; inhibition of DNA replication and ATP synthesis; inhibition of quorum sensing; inhibition of AHL or oligopeptide signal generation, broadcasting, and reception; inhibition of the formation of biofilm; disruption of pathogenicity activities; and generation of reactive oxygen species. The aim of this review is to highlight some promising traditional medicinal plants found in Africa and provide insights into their secondary metabolites as alternative options in antibiotic therapy against multi-drug-resistant bacteria. Additionally, synergism between plant secondary metabolites and antibiotics has been discussed.
Collapse
Affiliation(s)
| | | | | | - Teddie O. Rahube
- Department of Biological Sciences and Biotechnology, Faculty of Science, Botswana International University of Science and Technology (BIUST), Private Bag 16, Palapye, Botswana; (B.N.M.); (K.P.P.M.); (G.R.)
| | - Abdullah Makhzoum
- Department of Biological Sciences and Biotechnology, Faculty of Science, Botswana International University of Science and Technology (BIUST), Private Bag 16, Palapye, Botswana; (B.N.M.); (K.P.P.M.); (G.R.)
| |
Collapse
|
4
|
Weathers PJ. Artemisinin as a therapeutic vs. its more complex Artemisia source material. Nat Prod Rep 2023; 40:1158-1169. [PMID: 36541391 DOI: 10.1039/d2np00072e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Covering: up to 2017-2022Many small molecule drugs are first discovered in nature, commonly the result of long ethnopharmacological use by people, and then characterized and purified from their biological sources. Traditional medicines are often more sustainable, but issues related to source consistency and efficacy present challenges. Modern medicine has focused solely on purified molecules, but evidence is mounting to support some of the more traditional uses of medicinal biologics. When is a more traditional delivery of a therapeutic appropriate and warranted? What studies are required to establish validity of a traditional medicine approach? Artemisia annua and A. afra are two related but unique medicinal plant species with long histories of ethnopharmacological use. A. annua produces the sesquiterpene lactone antimalarial drug, artemisinin, while A. afra produces at most, trace amounts of the compound. Both species also have an increasing repertoire of modern scientific and pharmacological data that make them ideal candidates for a case study. Here accumulated recent data on A. annua and A. afra are reviewed as a basis for establishing a decision tree for querying their therapeutic use, as well as that of other medicinal plant species.
Collapse
Affiliation(s)
- Pamela J Weathers
- Department of Biology and Biotechnology, 100 Institute Rd, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| |
Collapse
|
5
|
Suh Nchang A, Shinyuy LM, Noukimi SF, Njong S, Bambara S, Kalimba EM, Kamga J, Ghogomu SM, Frederich M, Talom JLL, Souopgui J, Robert A. Knowledge about Asymptomatic Malaria and Acceptability of Using Artemisia afra Tea among Health Care Workers (HCWs) in Yaoundé, Cameroon: A Cross-Sectional Survey. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6309. [PMID: 37444156 PMCID: PMC10341543 DOI: 10.3390/ijerph20136309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
Malaria is the most widespread endemic disease in Cameroon, and asymptomatic Plasmodium (gametocyte) carriers (APCs) constitute more than 95% of infectious human reservoirs in malaria endemic settings. This study assesses the knowledge of asymptomatic malaria (ASM) among health care workers (HCWs) in health facilities (HFs) in the Centre Region of Cameroon and the acceptability of using Artemisia afra tea to treat APCs. A cross-sectional descriptive survey was conducted among 100 HCWs, in four randomly selected HFs in the Centre Region, in the period of 1-20 April 2022, using semi-structured self-administered questionnaires. Logistic regression analyses were performed to determine factors associated with knowledge. More than seven in eight (88%) respondents were aware of the existence of ASM, 83% defined ASM correctly, 75% knew how it was diagnosed, 70% prescribe ACTs for APCs, and 51.1% were informed about ASM transmission. The professional category of HCWs was significantly associated with their knowledge of the existence and transmission of ASM, and longevity of service was associated with knowledge of transmission (p < 0.05). Two-thirds (67%) of respondents knew about Artemisia afra tea, 53.7% believed that it was effective in treating ASM, and 79% were willing to prescribe it if authorized. There was a fair level of knowledge of ASM among HCWs in the study settings.
Collapse
Affiliation(s)
- Abenwie Suh Nchang
- Department of Epidemiology and Biostatistics (EPID), Institute de Recherche Expérimentale et Clinique (IREC), Public Health School, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (S.N.); (S.B.); (A.R.)
| | - Lahngong Methodius Shinyuy
- Laboratory of Pharmacognosy, Department of Pharmacy, Center of Interdisciplinary Research on Medicine (CIRM), University of Liege, 4000 Liège, Belgium; (L.M.S.); (M.F.)
| | - Sandra Fankem Noukimi
- Embriology and Biotechnology Laboratory, IBMM-ULB, 6041 Gosselies, Belgium; (S.F.N.); (J.S.)
| | - Sylvia Njong
- Department of Epidemiology and Biostatistics (EPID), Institute de Recherche Expérimentale et Clinique (IREC), Public Health School, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (S.N.); (S.B.); (A.R.)
| | - Sylvie Bambara
- Department of Epidemiology and Biostatistics (EPID), Institute de Recherche Expérimentale et Clinique (IREC), Public Health School, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (S.N.); (S.B.); (A.R.)
| | | | - Joseph Kamga
- Biotechnology Unit, University of Buea, Buea P.O. Box 63, Cameroon; (J.K.); (S.M.G.)
| | | | - Michel Frederich
- Laboratory of Pharmacognosy, Department of Pharmacy, Center of Interdisciplinary Research on Medicine (CIRM), University of Liege, 4000 Liège, Belgium; (L.M.S.); (M.F.)
| | | | - Jacob Souopgui
- Embriology and Biotechnology Laboratory, IBMM-ULB, 6041 Gosselies, Belgium; (S.F.N.); (J.S.)
| | - Annie Robert
- Department of Epidemiology and Biostatistics (EPID), Institute de Recherche Expérimentale et Clinique (IREC), Public Health School, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (S.N.); (S.B.); (A.R.)
| |
Collapse
|
6
|
Maciuk A, Mazier D, Duval R. Future antimalarials from Artemisia? A rationale for natural product mining against drug-refractory Plasmodium stages. Nat Prod Rep 2023; 40:1130-1144. [PMID: 37021639 DOI: 10.1039/d3np00001j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Covering: up to 2023Infusions of the plants Artemisia annua and A. afra are gaining broad popularity to prevent or treat malaria. There is an urgent need to address this controversial public health question by providing solid scientific evidence in relation to these uses. Infusions of either species were shown to inhibit the asexual blood stages, the liver stages including the hypnozoites, but also the sexual stages, the gametocytes, of Plasmodium parasites. Elimination of hypnozoites and sterilization of mature gametocytes remain pivotal elements of the radical cure of P. vivax, and the blockage of P. vivax and P. falciparum transmission, respectively. Drugs active against these stages are restricted to the 8-aminoquinolines primaquine and tafenoquine, a paucity worsened by their double dependence on the host genetic to elicit clinical activity without severe toxicity. Besides artemisinin, these Artemisia spp. contain many natural products effective against Plasmodium asexual blood stages, but their activity against hypnozoites and gametocytes was never investigated. In the context of important therapeutic issues, we provide a review addressing (i) the role of artemisinin in the bioactivity of these Artemisia infusions against specific parasite stages, i.e., alone or in association with other phytochemicals; (ii) the mechanisms of action and biological targets in Plasmodium of ca. 60 infusion-specific Artemisia phytochemicals, with an emphasis on drug-refractory parasite stages (i.e., hypnozoites and gametocytes). Our objective is to guide the strategic prospecting of antiplasmodial natural products from these Artemisia spp., paving the way toward novel antimalarial "hit" compounds either naturally occurring or Artemisia-inspired.
Collapse
Affiliation(s)
| | - Dominique Mazier
- CIMI, CNRS, Inserm, Faculté de Médecine Sorbonne Université, 75013 Paris, France
| | - Romain Duval
- MERIT, IRD, Université Paris Cité, 75006 Paris, France.
| |
Collapse
|
7
|
Shinyuy LM, Loe GE, Jansen O, Mamede L, Ledoux A, Noukimi SF, Abenwie SN, Ghogomu SM, Souopgui J, Robert A, Demeyer K, Frederich M. Secondary Metabolites Isolated from Artemisia afra and Artemisia annua and Their Anti-Malarial, Anti-Inflammatory and Immunomodulating Properties-Pharmacokinetics and Pharmacodynamics: A Review. Metabolites 2023; 13:metabo13050613. [PMID: 37233654 DOI: 10.3390/metabo13050613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
There are over 500 species of the genus Artemisia in the Asteraceae family distributed over the globe, with varying potentials to treat different ailments. Following the isolation of artemisinin (a potent anti-malarial compound with a sesquiterpene backbone) from Artemisia annua, the phytochemical composition of this species has been of interest over recent decades. Additionally, the number of phytochemical investigations of other species, including those of Artemisia afra in a search for new molecules with pharmacological potentials, has increased in recent years. This has led to the isolation of several compounds from both species, including a majority of monoterpenes, sesquiterpenes, and polyphenols with varying pharmacological activities. This review aims to discuss the most important compounds present in both plant species with anti-malarial properties, anti-inflammatory potentials, and immunomodulating properties, with an emphasis on their pharmacokinetics and pharmacodynamics properties. Additionally, the toxicity of both plants and their anti-malaria properties, including those of other species in the genus Artemisia, is discussed. As such, data were collected via a thorough literature search in web databases, such as ResearchGate, ScienceDirect, Google scholar, PubMed, Phytochemical and Ethnobotanical databases, up to 2022. A distinction was made between compounds involved in a direct anti-plasmodial activity and those expressing anti-inflammatory and immunomodulating activities or anti-fever properties. For pharmacokinetics activities, a distinction was made between compounds influencing bioavailability (CYP effect or P-Glycoprotein effect) and those affecting the stability of pharmacodynamic active components.
Collapse
Affiliation(s)
- Lahngong Methodius Shinyuy
- Laboratory of Pharmacognosy, Department of Pharmacy, Center of Interdisciplinary Research on Medicine (CIRM), University of Liege, 4000 Liège, Belgium
- Laboratory of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Department of Analytical, Applied Chemometrics and Molecular Modeling (FABI), Faculty of Medicine and Pharmacy, Vrije Universiteit of Brussel, 1050 Ixelles, Belgium
- Laboratory of Pharmacochemical and Natural Pharmaceutical Substances, Doctoral Training Unit in Health Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala P.O. Box 2701, Cameroon
| | - Gisèle E Loe
- Laboratory of Pharmacochemical and Natural Pharmaceutical Substances, Doctoral Training Unit in Health Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala P.O. Box 2701, Cameroon
| | - Olivia Jansen
- Laboratory of Pharmacognosy, Department of Pharmacy, Center of Interdisciplinary Research on Medicine (CIRM), University of Liege, 4000 Liège, Belgium
| | - Lúcia Mamede
- Laboratory of Pharmacognosy, Department of Pharmacy, Center of Interdisciplinary Research on Medicine (CIRM), University of Liege, 4000 Liège, Belgium
| | - Allison Ledoux
- Laboratory of Pharmacognosy, Department of Pharmacy, Center of Interdisciplinary Research on Medicine (CIRM), University of Liege, 4000 Liège, Belgium
| | - Sandra Fankem Noukimi
- Molecular and Cell Biology Laboratory (MCBL), Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon
- Embryology and Biotechnology Laboratory, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Suh Nchang Abenwie
- Epidemiology and Biostatistics Unit (EPiD), Institute of Clinical and Experimental Research (IREC), UCLouvain, 1200 Brussel, Belgium
| | - Stephen Mbigha Ghogomu
- Molecular and Cell Biology Laboratory (MCBL), Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon
| | - Jacob Souopgui
- Embryology and Biotechnology Laboratory, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Annie Robert
- Epidemiology and Biostatistics Unit (EPiD), Institute of Clinical and Experimental Research (IREC), UCLouvain, 1200 Brussel, Belgium
| | - Kristiaan Demeyer
- Laboratory of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Department of Analytical, Applied Chemometrics and Molecular Modeling (FABI), Faculty of Medicine and Pharmacy, Vrije Universiteit of Brussel, 1050 Ixelles, Belgium
| | - Michel Frederich
- Laboratory of Pharmacognosy, Department of Pharmacy, Center of Interdisciplinary Research on Medicine (CIRM), University of Liege, 4000 Liège, Belgium
| |
Collapse
|
8
|
Olivier D, van der Kooy F, Gerber M. Geographical and seasonal phytochemical variation of Artemisia afra Jacq. ex Willd. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:175-185. [PMID: 36464634 DOI: 10.1002/pca.3191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Artemisia afra Jacq. ex. Willd. (Asteraceae) is a popular traditional medicine in South Africa, mainly used in the form of an infusion, for the treatment of respiratory ailments. Quality control methods are limited and phytochemical variation for the infusion is not well known. OBJECTIVE To develop a sensitive quality control method for A. afra infusions by validating a liquid chromatography electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS) method and quantitatively comparing six marker compounds in A. afra samples collected from different locations and over a 12-month period. MATERIAL AND METHODS There was a multiple reaction monitoring method optimised and validated, according to ICH and FDA guidelines, to quantify the chemical markers present in infusions. RESULTS The chemistry differed significantly and interestingly, with an interchangeable trend between chlorogenic acid (CGA) and 4,5-dicaffeoylquinic acid (DCQA) observed in the samples collected monthly, elevated levels of CGA during winter and elevated levels of DCQA during summer. The remaining four markers showed a steady decrease as winter approached and a steady increase as summer approached. The ranges of the six markers were the following: CGA (0.68-14.68 μg/mg), DCQA (0.005-8.110 μg/mg), quercetin (0.01-0.65 μg/mg), luteolin (0.05-1.30 ng/mg), scopoletin (0.10-1.14 μg/mg), scopolin (0.03-1.21 μg/mg). CONCLUSIONS A sensitive LC-ESI-MS/MS method was developed, validated, and used to quantify six marker compounds. The results indicated a large degree of phytochemical variation occurred across all samples tested, which highlights the importance of producing herbal medicine under controlled conditions and the necessity of analytical quality control methods.
Collapse
Affiliation(s)
- Duné Olivier
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Frank van der Kooy
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Minja Gerber
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
9
|
Kane NF, Kiani BH, Desrosiers MR, Towler MJ, Weathers PJ. Artemisia extracts differ from artemisinin effects on human hepatic CYP450s 2B6 and 3A4 in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115587. [PMID: 35934190 DOI: 10.1016/j.jep.2022.115587] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Chinese medicinal herb, Artemisia annua L., has been used for >2,000 yr as traditional tea infusions to treat a variety of infectious diseases including malaria, and its use is spreading globally (along with A. afra Jacq. ex Willd.) mainly through grassroots efforts. AIM OF THE STUDY Artemisinin is more bioavailable delivered from the plant, Artemisia annua L. than the pure drug, but little is known about how delivery via a hot water infusion (tea) alters induction of hepatic CYP2B6 and CYP3A4 that metabolize artemisinin. MATERIALS AND METHODS HepaRG cells were treated with 10 μM artemisinin or rifampicin (positive control), and teas (10 g/L) of A. annua SAM, and A. afra SEN and MAL with 1.6, 0.05 and 0 mg/g DW artemisinin in the leaves, respectively; qPCR and Western blots were used to measure CYP2B6 and CYP3A4 responses. Enzymatic activity of these P450s was measured using human liver microsomes and P450-Glo assays. RESULTS All teas inhibited activity of CYP2B6 and CYP3A4. Artemisinin and the high artemisinin-containing tea infusion (SAM) induced CYP2B6 and CYP3A4 transcription, but artemisinin-deficient teas, MAL and SEN, did not. Artemisinin increased CYP2B6 and CYP3A4 protein levels, but none of the three teas did, indicating a post-transcription inhibition by all three teas. CONCLUSIONS This study showed that Artemisia teas inhibit activity and artemisinin autoinduction of CYP2B6 and CYP3A4 post transcription, a response likely the effect of other phytochemicals in these teas. Results are important for understanding Artemisia tea posology.
Collapse
Affiliation(s)
- Ndeye F Kane
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| | - Bushra H Kiani
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| | - Matthew R Desrosiers
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| | - Melissa J Towler
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| | - Pamela J Weathers
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| |
Collapse
|
10
|
Molecular modeling identification of potential drug candidates from selected African plants against SARS-CoV-2 key druggable proteins. SCIENTIFIC AFRICAN 2022; 17:e01279. [PMID: 35856008 PMCID: PMC9279166 DOI: 10.1016/j.sciaf.2022.e01279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/13/2022] [Accepted: 07/10/2022] [Indexed: 01/18/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) pandemic, caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is one of the major health threats the world has experienced. In order to stem the tide of the virus and its associated disease, rapid efforts have been dedicated to identifying credible anti-SARS-CoV-2 drugs. This study forms part of the continuing efforts to develop anti-SARS-CoV-2 molecules and employed a computational structure-activity relationship approach with emphasis on 99 plant secondary metabolites from eight selected African medicinal plants with proven therapeutic benefits against respiratory diseases focusing on the viral protein targets [Spike protein (Sgp), Main protease (Mpro), and RNA-dependent RNA polymerase (RdRp)]. The results of the molecular dynamics simulation of the best docked compounds presented as binding free energy revealed that three compounds each against the Sgp (VBS, COG and ABA), and Mpro (COR, QOR and ABG) had higher and better affinity for the proteins than the respective reference drugs, cefoperazone (CSP) and Nelfinavir (NEF), while four compounds (HDG, VBS, COR and KOR) had higher and favorable binding affinity towards RdRp than the reference standard, ramdesivir (RDS). Analysis of interaction with the receptor binding domain amino acid residues of Sgp showed that VBS had the highest number of interactions (17) relative to 14 and 13 for COG and ABA, respectively. For Mpro, COR showed interactions with catalytic dyad residues (His172 and Cys145). Compared to RDS, COR, HDG, VBS and KOR formed 19, 18, 17 and 12 H-bond and Van der Waal bonds, respectively, with RdRp. Furthermore, structural examination of the three proteins after binding to the lead compounds revealed that the compounds formed stable complexes. These observations suggest that the identified compounds might be beneficial in the fight against COVID-19 and are suggested for further in vitro and in vivo experimental validation.
Collapse
|
11
|
Uhomoibhi JOO, Shode FO, Idowu KA, Sabiu S. Molecular modelling identification of phytocompounds from selected African botanicals as promising therapeutics against druggable human host cell targets of SARS-CoV-2. J Mol Graph Model 2022; 114:108185. [PMID: 35430474 PMCID: PMC9002601 DOI: 10.1016/j.jmgm.2022.108185] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022]
Abstract
The coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is highly pathogenic and transmissible. It is mediated by the binding of viral spike proteins to human cells via entry and replication processes involving human angiotensin converting enzyme-2 (hACE2), transmembrane serine protease (TMPRSS2) and cathepsin L (Cath L). The identification of novel therapeutics that can modulate viral entry or replication has been of research interest and would be germane in managing COVID-19 subjects. This study investigated the structure-activity relationship inhibitory potential of 99 phytocompounds from selected African botanicals with proven therapeutic benefits against respiratory diseases focusing on SARS-CoV-2's human cell proteins (hACE2, TMPRSS2, and Cathepsin L) as druggable targets using computational methods. Evaluation of the binding energies of the phytocompounds showed that two compounds, Abrusoside A (-63.393 kcal/mol) and Kaempferol-3-O-rutinoside (-58.939 kcal/mol) had stronger affinity for the exopeptidase site of hACE2 compared to the reference drug, MLN-4760 (-54.545 kcal/mol). The study further revealed that Verbascoside (-63.338 kcal/mol), Abrectorin (-37.880 kcal/mol), and Friedelin (-36.989 kcal/mol) are potential inhibitors of TMPRSS2 compared to Nafamostat (-36.186 kcal/mol), while Hemiphloin (-41.425 kcal/mol), Quercetin-3-O-rutinoside (-37.257 kcal/mol), and Myricetin-3-O-galactoside (-36.342 kcal/mol) are potential inhibitors of Cathepsin L relative to Bafilomycin A1 (-38.180 kcal/mol). The structural analysis suggests that these compounds do not compromise the structural integrity of the proteins, but rather stabilized and interacted well with the active site amino acid residues critical to inhibition of the respective proteins. Overall, the findings from this study are suggestive of the structural mechanism of inhibitory action of the identified leads against the proteins critical for SARS-CoV-2 to enter the human host cell. While the study has lent credence to the significant role the compounds could play in developing potent SARS-CoV-2 candidate drugs against COVID-19, further structural refinement, and modifications of the compounds for subsequent in vitro as well as preclinical and clinical evaluations are underway.
Collapse
Affiliation(s)
- John Omo-Osagie Uhomoibhi
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Francis Oluwole Shode
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Kehinde Ademola Idowu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
12
|
Awad AM, Kumar P, Ismail‐Fitry MR, Jusoh S, Ab Aziz MF, Sazili AQ. Overview of plant extracts as natural preservatives in meat. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16796] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Pavan Kumar
- Halal Products Research Institute Universiti Putra Malaysia UPM Serdang Malaysia
- Department of Livestock Products Technology College of Veterinary Science Guru Angad Dev Veterinary and Animal Sciences University Ludhiana India
| | - Mohammad Rashedi Ismail‐Fitry
- Department of Food Technology, Faculty of Food Science and Technology Universiti Putra Malaysia UPM Serdang Malaysia
| | - Shokri Jusoh
- Department of Animal Science, Faculty of Agriculture Universiti Putra Malaysia UPM Serdang Malaysia
| | - Muhamad Faris Ab Aziz
- Department of Animal Science, Faculty of Agriculture Universiti Putra Malaysia UPM Serdang Malaysia
| | - Awis Qurni Sazili
- Halal Products Research Institute Universiti Putra Malaysia UPM Serdang Malaysia
- Department of Animal Science, Faculty of Agriculture Universiti Putra Malaysia UPM Serdang Malaysia
- Halal Product Research Institute Universiti Putra Malaysia UPM Serdang Malaysia
| |
Collapse
|
13
|
Schepetkin IA, Özek G, Özek T, Kirpotina LN, Khlebnikov AI, Klein RA, Quinn MT. Neutrophil Immunomodulatory Activity of Farnesene, a Component of Artemisia dracunculus Essential Oils. Pharmaceuticals (Basel) 2022; 15:642. [PMID: 35631467 PMCID: PMC9143003 DOI: 10.3390/ph15050642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/20/2022] Open
Abstract
Despite their reported therapeutic properties, not much is known about the immunomodulatory activity of essential oils present in Artemisia species. We isolated essential oils from the flowers and leaves of five Artemisia species: A. tridentata, A. ludoviciana, A. dracunculus, A. frigida, and A. cana. The chemical composition of the Artemisia essential oil samples had similarities and differences as compared to those previously reported in the literature. The main components of essential oils obtained from A. tridentata, A. ludoviciana, A. frigida, and A. cana were camphor (23.0-51.3%), 1,8-cineole (5.7-30.0%), camphene (1.6-7.7%), borneol (2.3-14.6%), artemisiole (1.2-7.5%), terpinen-4-ol (2.0-6.9%), α-pinene (0.8-3.9%), and santolinatriene (0.7-3.5%). Essential oils from A. dracunculus were enriched in methyl chavicol (38.8-42.9%), methyl eugenol (26.1-26.4%), terpinolene (5.5-8.8%), (E/Z)-β-ocimene (7.3-16.0%), β-phellandrene (1.3-2.2%), p-cymen-8-ol (0.9-2.3%), and xanthoxylin (1.2-2.2%). A comparison across species also demonstrated that some compounds were present in only one Artemisia species. Although Artemisia essential oils were weak activators of human neutrophils, they were relatively more potent in inhibiting subsequent neutrophil Ca2+ mobilization with N-formyl peptide receptor 1 (FPR1) agonist fMLF- and FPR2 agonist WKYMVM, with the most potent being essential oils from A. dracunculus. Further analysis of unique compounds found in A. dracunculus showed that farnesene, a compound with a similar hydrocarbon structure as lipoxin A4, inhibited Ca2+ influx induced in human neutrophils by fMLF (IC50 = 1.2 μM), WKYMVM (IC50 = 1.4 μM), or interleukin 8 (IC50 = 2.6 μM). Pretreatment with A. dracunculus essential oils and farnesene also inhibited human neutrophil chemotaxis induced by fMLF, suggesting these treatments down-regulated human neutrophil responses to inflammatory chemoattractants. Thus, our studies have identified farnesene as a potential anti-inflammatory modulator of human neutrophils.
Collapse
Affiliation(s)
- Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (I.A.S.); (L.N.K.)
| | - Gulmira Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey; (G.Ö.); (T.Ö.)
| | - Temel Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey; (G.Ö.); (T.Ö.)
| | - Liliya N. Kirpotina
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (I.A.S.); (L.N.K.)
| | | | - Robyn A. Klein
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA;
| | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (I.A.S.); (L.N.K.)
| |
Collapse
|
14
|
Zvarivadza W, Marume U. Growth performance and heamatobiochemical parameters of broilers fed diets containing Artemisia afra essential oil. CANADIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1139/cjas-2020-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The study was conducted to determine the effects of Artemisia afra Jacq. ex Willd. essential oil inclusion in diets on growth performance and blood parameters in broiler chickens. Four hundred day-old Cobb 500 chicks were randomly allotted to four treatments: NC – negative control (commercial broiler diet without antibiotics), PC – positive control (commercial broiler diet), AA1 – commercial diet + 0.1% A. afra essential oil, and AA2 – commercial diet + 0.3 % A. afra essential oil. Each treatment was replicated 10 times. From the results, birds fed the PC diet had the highest average daily feed intake (105.60 g ± 3.18) and average daily gain (ADG) in the grower phase. The highest ADG in the finisher phase was obtained in the AAI treatment (170.23 g·d−1 ± 2.00), whereas the feed conversion ratio was lower in the essential-oil-containing diets. Diet significantly improved protein utilization efficiency in both grower and finisher phases. Birds fed AA1 had the highest values for neutrophils, monocytes, and eosinophils, whereas those fed the NC diet had the highest alkaline phosphatase levels (102.00 IU·L−1 ± 7.61). The findings of the study suggest the use of A. afra essential oil in broiler diets can positively improve growth and flock health.
Collapse
Affiliation(s)
- William Zvarivadza
- Department of Animal Science, School of Agricultural Sciences, Faculty of Agriculture, Science and Technology, North-West University, P Bag X 2046, Mmabatho 2735, South Africa
- Food Security and Safety Niche area, Faculty of Agriculture, Science and Technology, North-West University, P Bag X 2046, Mmabatho 2735, South Africa
| | - Upenyu Marume
- Department of Animal Science, School of Agricultural Sciences, Faculty of Agriculture, Science and Technology, North-West University, P Bag X 2046, Mmabatho 2735, South Africa
- Food Security and Safety Niche area, Faculty of Agriculture, Science and Technology, North-West University, P Bag X 2046, Mmabatho 2735, South Africa
| |
Collapse
|
15
|
Lee BJ, van Niekerk SE, Legoabe LJ, van der Kooy F. Validating a sensitive LCMS method for the quantitation of artemisinin in Artemisia spp. including material used in retracted clinical trials. J Pharm Biomed Anal 2022; 208:114446. [PMID: 34763209 DOI: 10.1016/j.jpba.2021.114446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 10/05/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022]
Abstract
Two recent clinical trials reported that Artemisia afra contained significant amounts of the bioactive compound artemisinin. We suspected sample contamination and therefore obtained the A. afra material for testing. A sensitive liquid chromatography mass spectrometry method was developed and validated for the accurate quantitation of artemisinin in Artemisia annua and A. afra plant material. This validated analytical method, with a limit of detection of 0.22 ng/mL (0.22 pg on column), which is an order of magnitude more sensitive than recently published methods, was applied to quantify artemisinin in a collection of Artemisia samples including the A. afra material that was used in the clinical trials.All 16A. annua samples (oldest sample 21 years old) contained the expected levels of artemisinin (0.12-0.63%) whilst none of the A. afra samples in our collection contained any trace of artemisinin (> 0.00001%). However, the A. afra samples used in the clinical trials did contain detectable amounts of artemisinin (0.0013% and 0.0011% vs the claimed amount of 0.0045%).The authors of the clinical trials suspected that cross contamination during sample handling and preparation was likely, reconfirming the importance of having analytical quality control methods in place before clinical trials are conducted. Quality control and ensuring safety of trial participants is of utmost importance.
Collapse
Affiliation(s)
- Barend J Lee
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Suzanne E van Niekerk
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Frank van der Kooy
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| |
Collapse
|
16
|
Ashraf K, Tajeri S, Arnold CS, Amanzougaghene N, Franetich JF, Vantaux A, Soulard V, Bordessoulles M, Cazals G, Bousema T, van Gemert GJ, Le Grand R, Dereuddre-Bosquet N, Barale JC, Witkowski B, Snounou G, Duval R, Botté CY, Mazier D. Artemisinin-independent inhibitory activity of Artemisia sp. infusions against different Plasmodium stages including relapse-causing hypnozoites. Life Sci Alliance 2021; 5:5/3/e202101237. [PMID: 34857648 PMCID: PMC8675911 DOI: 10.26508/lsa.202101237] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022] Open
Abstract
Infusions from two Artemisia species, one containing artemisinin, the other not, equally inhibit pre-erythrocytic and erythrocytic stages of different Plasmodium species, including two relapsing species. Artemisinin-based combination therapies (ACT) are the frontline treatments against malaria worldwide. Recently the use of traditional infusions from Artemisia annua (from which artemisinin is obtained) or Artemisia afra (lacking artemisinin) has been controversially advocated. Such unregulated plant-based remedies are strongly discouraged as they might constitute sub-optimal therapies and promote drug resistance. Here, we conducted the first comparative study of the anti-malarial effects of both plant infusions in vitro against the asexual erythrocytic stages of Plasmodium falciparum and the pre-erythrocytic (i.e., liver) stages of various Plasmodium species. Low concentrations of either infusion accounted for significant inhibitory activities across every parasite species and stage studied. We show that these antiplasmodial effects were essentially artemisinin-independent and were additionally monitored by observations of the parasite apicoplast and mitochondrion. In particular, the infusions significantly incapacitated sporozoites, and for Plasmodium vivax and P. cynomolgi, disrupted the hypnozoites. This provides the first indication that compounds other than 8-aminoquinolines could be effective antimalarials against relapsing parasites. These observations advocate for further screening to uncover urgently needed novel antimalarial lead compounds.
Collapse
Affiliation(s)
- Kutub Ashraf
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National pour la Recherche Scientifique (CNRS), Centre d'Immunologie et des Maladies Infectieuses, CIMI, Paris, France.,Unité d'Epidémiologie Moléculaire du Paludisme, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,Institut Pasteur, Pasteur International Network, Malaria Translational Research Pasteur International Unit, Phnom Penh, Cambodia and Paris, Paris, France
| | - Shahin Tajeri
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National pour la Recherche Scientifique (CNRS), Centre d'Immunologie et des Maladies Infectieuses, CIMI, Paris, France
| | - Christophe-Sébastien Arnold
- ApicoLipid Team, Institute for Advanced Biosciences, Centre National pour la Recherche Scientifique (CNRS) UMR5309, Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale (INSERM) U1209, La Tronche, France
| | - Nadia Amanzougaghene
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National pour la Recherche Scientifique (CNRS), Centre d'Immunologie et des Maladies Infectieuses, CIMI, Paris, France
| | - Jean-François Franetich
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National pour la Recherche Scientifique (CNRS), Centre d'Immunologie et des Maladies Infectieuses, CIMI, Paris, France
| | - Amélie Vantaux
- Unité d'Epidémiologie Moléculaire du Paludisme, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,Institut Pasteur, Pasteur International Network, Malaria Translational Research Pasteur International Unit, Phnom Penh, Cambodia and Paris, Paris, France
| | - Valérie Soulard
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National pour la Recherche Scientifique (CNRS), Centre d'Immunologie et des Maladies Infectieuses, CIMI, Paris, France
| | - Mallaury Bordessoulles
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National pour la Recherche Scientifique (CNRS), Centre d'Immunologie et des Maladies Infectieuses, CIMI, Paris, France
| | - Guillaume Cazals
- Institut des Biomolécules Max Mousseron, UMR 5247, Université de Montpellier, Montpellier, France
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Roger Le Grand
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA-HB), Infectious Disease Models and Innovative Therapies (IDMIT) Department, Institut de Biologie François Jacob (IBFJ), Direction de la Recherche Fondamentale (DRF), Fontenay-aux-Roses, France
| | - Nathalie Dereuddre-Bosquet
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA-HB), Infectious Disease Models and Innovative Therapies (IDMIT) Department, Institut de Biologie François Jacob (IBFJ), Direction de la Recherche Fondamentale (DRF), Fontenay-aux-Roses, France
| | - Jean-Christophe Barale
- Institut Pasteur, Pasteur International Network, Malaria Translational Research Pasteur International Unit, Phnom Penh, Cambodia and Paris, Paris, France.,Institut Pasteur, Université de Paris, CNRS UMR 3528, Structural Microbiology Unit, Paris, France
| | - Benoit Witkowski
- Unité d'Epidémiologie Moléculaire du Paludisme, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,Institut Pasteur, Pasteur International Network, Malaria Translational Research Pasteur International Unit, Phnom Penh, Cambodia and Paris, Paris, France
| | - Georges Snounou
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA-HB), Infectious Disease Models and Innovative Therapies (IDMIT) Department, Institut de Biologie François Jacob (IBFJ), Direction de la Recherche Fondamentale (DRF), Fontenay-aux-Roses, France
| | - Romain Duval
- Université de Paris, Institut de Recherche pour le Développement (IRD), UMR 261 MERIT, Paris, France
| | - Cyrille Y Botté
- ApicoLipid Team, Institute for Advanced Biosciences, Centre National pour la Recherche Scientifique (CNRS) UMR5309, Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale (INSERM) U1209, La Tronche, France
| | - Dominique Mazier
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National pour la Recherche Scientifique (CNRS), Centre d'Immunologie et des Maladies Infectieuses, CIMI, Paris, France
| |
Collapse
|
17
|
Kim WH, Jang HJ, Kim J, Jeong CH, Enebish G, Kim SY, Min H. Anti-inflammatory effects of Artemisia stechmanniana Besser extract on LPS-stimulated macrophages. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1982869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Wan-Hoon Kim
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Hyun Jun Jang
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Jisu Kim
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | | | - Ganbold Enebish
- Department of Biology, Ulaanbaatar State University, Ulaanbaatar, Mongolia
| | - Soo-Yong Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Hyeyoung Min
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| |
Collapse
|
18
|
Aprilio K, Wilar G. Emergence of Ethnomedical COVID-19 Treatment: A Literature Review. Infect Drug Resist 2021; 14:4277-4289. [PMID: 34703254 PMCID: PMC8541748 DOI: 10.2147/idr.s327986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022] Open
Abstract
The emergence of COVID-19 as a new pandemic in the modern era has led the public to a new perspective of health. In the earlier days of the COVID-19 pandemic, many factors made people go on their own ways in finding its supposed "cure". With conventional medicines' limited availability and access, traditional medicines become more appealing due to its widespread availability and increased perception of safety. Several herbal medicines are then believed to be able to alleviate or cure COVID-19 and its symptoms. Similarities and patterns in herbal medicines being used show local wisdom of the respective communities regarding their knowledge of diseases and its treatment, known as ethnomedicine. Despite not being approved yet by regulatory bodies as a definitive guideline in COVID-19 management, the application of ethnomedicine results in several herbal medicine candidates that show a promising result regarding its efficacy in managing COVID-19. This literature review aims to study how a society and its knowledge of medicine responds to a new and currently developing disease, and whether if that knowledge merits further study in search of a cure for the pandemic. Furthermore, the narrative aspect in this review also explores socio-politics and public health aspects and considerations of non-conventional COVID-19 treatment.
Collapse
Affiliation(s)
- Kevin Aprilio
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| |
Collapse
|
19
|
Nie C, Trimpert J, Moon S, Haag R, Gilmore K, Kaufer BB, Seeberger PH. In vitro efficacy of Artemisia extracts against SARS-CoV-2. Virol J 2021; 18:182. [PMID: 34496903 PMCID: PMC8424155 DOI: 10.1186/s12985-021-01651-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/29/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Traditional medicines based on herbal extracts have been proposed as affordable treatments for patients suffering from coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Teas and drinks containing extracts of Artemisia annua and Artemisia afra have been widely used in Africa in efforts to prevent SARS-CoV-2 infection and fight COVID-19. METHODS The plant extracts and Covid-Organics drink produced in Madagascar were tested for plaque reduction using both feline coronavirus and SARS-CoV-2 in vitro. Their cytotoxicities were also investigated. RESULTS Several extracts as well as Covid-Organics inhibited SARS-CoV-2 and FCoV infection at concentrations that did not affect cell viability. CONCLUSIONS Some plant extracts show inhibitory activity against FCoV and SARS-CoV-2. However, it remains unclear whether peak plasma concentrations in humans can reach levels needed to inhibit viral infection following consumption of teas or Covid-Organics. Clinical studies are required to evaluate the utility of these drinks for COVID-19 prevention or treatment of patients.
Collapse
Affiliation(s)
- Chuanxiong Nie
- Institute for Virology, Freie Universität Berlin, Robert von Ostertag-Str. 7-13, 14163, Berlin, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Jakob Trimpert
- Institute for Virology, Freie Universität Berlin, Robert von Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Sooyeon Moon
- Department for Biomolecular Systems, Max-Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Rainer Haag
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Kerry Gilmore
- Department for Biomolecular Systems, Max-Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry, University of Connecticut, 55 N. Eagleville Rd., Storrs, CT, 06268, USA
| | - Benedikt B Kaufer
- Institute for Virology, Freie Universität Berlin, Robert von Ostertag-Str. 7-13, 14163, Berlin, Germany.
| | - Peter H Seeberger
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany.,Department for Biomolecular Systems, Max-Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
20
|
Nie C, Trimpert J, Moon S, Haag R, Gilmore K, Kaufer BB, Seeberger PH. In vitro efficacy of Artemisia extracts against SARS-CoV-2. Virol J 2021; 18:182. [PMID: 34496903 DOI: 10.1101/2021.02.14.431122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/29/2021] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Traditional medicines based on herbal extracts have been proposed as affordable treatments for patients suffering from coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Teas and drinks containing extracts of Artemisia annua and Artemisia afra have been widely used in Africa in efforts to prevent SARS-CoV-2 infection and fight COVID-19. METHODS The plant extracts and Covid-Organics drink produced in Madagascar were tested for plaque reduction using both feline coronavirus and SARS-CoV-2 in vitro. Their cytotoxicities were also investigated. RESULTS Several extracts as well as Covid-Organics inhibited SARS-CoV-2 and FCoV infection at concentrations that did not affect cell viability. CONCLUSIONS Some plant extracts show inhibitory activity against FCoV and SARS-CoV-2. However, it remains unclear whether peak plasma concentrations in humans can reach levels needed to inhibit viral infection following consumption of teas or Covid-Organics. Clinical studies are required to evaluate the utility of these drinks for COVID-19 prevention or treatment of patients.
Collapse
Affiliation(s)
- Chuanxiong Nie
- Institute for Virology, Freie Universität Berlin, Robert von Ostertag-Str. 7-13, 14163, Berlin, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Jakob Trimpert
- Institute for Virology, Freie Universität Berlin, Robert von Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Sooyeon Moon
- Department for Biomolecular Systems, Max-Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Rainer Haag
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Kerry Gilmore
- Department for Biomolecular Systems, Max-Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Rd., Storrs, CT, 06268, USA
| | - Benedikt B Kaufer
- Institute for Virology, Freie Universität Berlin, Robert von Ostertag-Str. 7-13, 14163, Berlin, Germany.
| | - Peter H Seeberger
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
- Department for Biomolecular Systems, Max-Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
21
|
The Effects of Artemisia Plant and Its Components Against Respiratory Viruses Like Influenza and Their Mechanisms of Action. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.113060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Context: Artemisia genus and its chemical constituents show antiviral activity against different viruses. The aim of this study was to review the effects of selected Artemisia species and their components against respiratory viruses like influenza and coronavirus. Methods: All the articles published in English or Persian related to the effects of Artemisia and its components on viral respiratory infections and relevant mechanisms of action were searched throughout Medline, Science Direct, Scopus, Ebsco, Google Scholar, and Cochrane Library Database from 1966 up to April 2020. Results: A few numbers of Artemisia species such as A. scoparia, A. rupestris, and A. annua and their components showed efficacy against the influenza virus and coronaviruses. Furthermore, some chemical compounds isolated from Artemisia species, like rupestonic acid, showed potent anti-influenza activity. The mechanism of antiviral activity was also determined for some of these compounds. Conclusions: The present study summarized the efficacy of a number of Artemisia species and their components against respiratory viruses like influenza and coronavirus. Future studies on other Artemisia species may lead to the discovery of new antiviral drugs against the influenza virus and coronaviruses.
Collapse
|
22
|
Nair MS, Huang Y, Fidock DA, Polyak SJ, Wagoner J, Towler MJ, Weathers PJ. Artemisia annua L. extracts inhibit the in vitro replication of SARS-CoV-2 and two of its variants. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114016. [PMID: 33716085 PMCID: PMC7952131 DOI: 10.1016/j.jep.2021.114016] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 05/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia annua L. has been used for millennia in Southeast Asia to treat "fever". Many infectious microbial and viral diseases have been shown to respond to A. annua and communities around the world use the plant as a medicinal tea, especially for treating malaria. AIM OF THE STUDY SARS-CoV-2 (the cause of Covid-19) globally has infected and killed millions of people. Because of the broad-spectrum antiviral activity of artemisinin that includes blockade of SARS-CoV-1, we queried whether A. annua suppressed SARS-CoV-2. MATERIALS AND METHODS Using Vero E6 and Calu-3 cells, we measured anti SARS-CoV-2 activity against fully infectious virus of dried leaf extracts of seven cultivars of A. annua sourced from four continents. IC50s were calculated and defined as the concentrations that inhibited viral replication by 50%; CC50s were also calculated and defined as the concentrations that kill 50% of cells. RESULTS Hot-water leaf extracts based on artemisinin, total flavonoids, or dry leaf mass showed antiviral activity with IC50 values of 0.1-8.7 μM, 0.01-0.14 μg, and 23.4-57.4 μg, respectively. Antiviral efficacy did not correlate with artemisinin or total flavonoid contents of the extracts. One dried leaf sample was >12 years old, yet its hot-water extract was still found to be active. The UK and South African variants, B1.1.7 and B1.351, were similarly inhibited. While all hot water extracts were effective, concentrations of artemisinin and total flavonoids varied by nearly 100-fold in the extracts. Artemisinin alone showed an estimated IC50 of about 70 μM, and the clinically used artemisinin derivatives artesunate, artemether, and dihydroartemisinin were ineffective or cytotoxic at elevated micromolar concentrations. In contrast, the antimalarial drug amodiaquine had an IC50 = 5.8 μM. Extracts had minimal effects on infection of Vero E6 or Calu-3 cells by a reporter virus pseudotyped by the SARS-CoV-2 spike protein. There was no cytotoxicity within an order of magnitude above the antiviral IC90 values. CONCLUSIONS A. annua extracts inhibit SARS-CoV-2 infection, and the active component(s) in the extracts is likely something besides artemisinin or a combination of components that block virus infection at a step downstream of virus entry. Further studies will determine in vivo efficacy to assess whether A. annua might provide a cost-effective therapeutic to treat SARS-CoV-2 infections.
Collapse
Affiliation(s)
- M S Nair
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| | - Y Huang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| | - D A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - S J Polyak
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104, USA.
| | - J Wagoner
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104, USA.
| | - M J Towler
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| | - P J Weathers
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| |
Collapse
|
23
|
Nair M, Huang Y, Fidock D, Polyak S, Wagoner J, Towler M, Weathers P. Artemisia annua L. extracts inhibit the in vitro replication of SARS-CoV-2 and two of its variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.08.425825. [PMID: 33442683 PMCID: PMC7805440 DOI: 10.1101/2021.01.08.425825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia annua L. has been used for millennia in Southeast Asia to treat "fever". Many infectious microbial and viral diseases have been shown to respond to A. annua and communities around the world use the plant as a medicinal tea, especially for treating malaria. AIM OF THE STUDY SARS-CoV-2 (the cause of Covid-19) globally has infected and killed millions of people. Because of the broad-spectrum antiviral activity of artemisinin that includes blockade of SARS-CoV-1, we queried whether A. annua suppressed SARS-CoV-2. MATERIALS AND METHODS Using Vero E6 and Calu-3 cells, we measured anti viral activity SARS-CoV-2 activity against fully infectious virusof dried leaf extracts of seven cultivars of A. annua sourced from four continents. IC50s were calculated and defined as (the concentrations that inhibited viral replication by 50%.) and CC50s (the concentrations that kill 50% of cells) were calculated. RESULTS Hot-water leaf extracts based on artemisinin, total flavonoids, or dry leaf mass showed antiviral activity with IC50 values of 0.1-8.7 μM, 0.01-0.14 μg, and 23.4-57.4 μg, respectively. Antiviral efficacy did not correlate with artemisinin or total flavonoid contents of the extracts. One dried leaf sample was >12 years old, yet the hot-water extract was still found to be active. The UK and South African variants, B1.1.7 and B1.351, were similarly inhibited. While all hot water extracts were effective, concentrations of artemisinin and total flavonoids varied by nearly 100-fold in the extracts. Artemisinin alone showed an estimated IC50 of about 70 μM, and the clinically used artemisinin derivatives artesunate, artemether, and dihydroartemisinin were ineffective or cytotoxic at elevated micromolar concentrations. In contrast, the antimalarial drug amodiaquine had an IC50 = 5.8 μM. Extracts had minimal effects on infection of Vero E6 or Calu-3 cells by a reporter virus pseudotyped by the SARS-CoV-2 spike protein. There was no cytotoxicity within an order of magnitude above the antiviral IC90 values. CONCLUSIONS A. annua extracts inhibit SARS-CoV-2 infection, and the active component(s) in the extracts is likely something besides artemisinin or a combination of components that block virus infection at a step downstream of virus entry. Further studies will determine in vivo efficacy to assess whether A. annua might provide a cost-effective therapeutic to treat SARS-CoV-2 infections.
Collapse
Affiliation(s)
- M.S. Nair
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Y. Huang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - D.A. Fidock
- Department of Microbiology and Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - S.J. Polyak
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104
| | - J. Wagoner
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104
| | - M.J. Towler
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - P.J. Weathers
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| |
Collapse
|
24
|
Plant Extracts Obtained with Green Solvents as Natural Antioxidants in Fresh Meat Products. Antioxidants (Basel) 2021; 10:antiox10020181. [PMID: 33513904 PMCID: PMC7912489 DOI: 10.3390/antiox10020181] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/23/2022] Open
Abstract
Plants are rich in bioactive compounds (BACs), mainly polyphenols, which are valuable choices to replace synthetic antioxidants in meat products. These natural antioxidants from plants, in the form of extracts and essential oils (EOs), have been obtained from different sources such as fruits (dragon fruit, guarana, pomegranate), vegetables, (cabbage, onion), herbs, and spices (epazote, ginger, rosemary, sage, thyme, turmeric, winter savory) by several extraction processes. However, in the context of current directives there is a notable incentive for “green” solvents to replace organic ones and conventional techniques, in order to avoid harm to the environment, operator, and consumer health. In addition, the recycling of co-products from the processing of these plant materials allow us to obtain valuable BACs from under-exploited materials, contributing to the revalorization of these wastes. The resulting extracts allow us to maintain the quality of meat products, exhibiting similar or better antioxidant properties compared to those shown by synthetic ones. Their incorporation in fresh meat products would maintain the oxidative stability, stabilizing colour parameters, decreasing the formation of metmyoglobin, lipid, and protein oxidation and the generation of lipid-derived volatile compounds, without affecting sensory attributes. In addition, these novel ingredients contribute to improve both technological and functional characteristics, thus diversifying the offer of so-called “wellness foods”. In this review, the application of plant extracts as natural antioxidants in several fresh meat products is presented, showing their efficacy as scavenging radicals and imparting additional health benefits.
Collapse
|
25
|
Trendafilova A, Moujir LM, Sousa PMC, Seca AML. Research Advances on Health Effects of Edible Artemisia Species and Some Sesquiterpene Lactones Constituents. Foods 2020; 10:E65. [PMID: 33396790 PMCID: PMC7823681 DOI: 10.3390/foods10010065] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 12/20/2022] Open
Abstract
The genus Artemisia, often known collectively as "wormwood", has aroused great interest in the scientific community, pharmaceutical and food industries, generating many studies on the most varied aspects of these plants. In this review, the most recent evidence on health effects of edible Artemisia species and some of its constituents are presented and discussed, based on studies published until 2020, available in the Scopus, Web of Sciences and PubMed databases, related to food applications, nutritional and sesquiterpene lactones composition, and their therapeutic effects supported by in vivo and clinical studies. The analysis of more than 300 selected articles highlights the beneficial effect on health and the high clinical relevance of several Artemisia species besides some sesquiterpene lactones constituents and their derivatives. From an integrated perspective, as it includes therapeutic and nutritional properties, without ignoring some adverse effects described in the literature, this review shows the great potential of Artemisia plants and some of their constituents as dietary supplements, functional foods and as the source of new, more efficient, and safe medicines. Despite all the benefits demonstrated, some gaps need to be filled, mainly related to the use of raw Artemisia extracts, such as its standardization and clinical trials on adverse effects and its health care efficacy.
Collapse
Affiliation(s)
- Antoaneta Trendafilova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria
| | - Laila M. Moujir
- Department of Biochemistry, Microbiology, Genetics and Cell Biology, Facultad de Farmacia, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain;
| | - Pedro M. C. Sousa
- Faculty of Sciences and Technology, University of Azores, 9500-321 Ponta Delgada, Portugal;
| | - Ana M. L. Seca
- cE3c—Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group & Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus, 9500-321 Ponta Delgada, Portugal
- LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
26
|
Dandara C, Dzobo K, Chirikure S. COVID-19 Pandemic and Africa: From the Situation in Zimbabwe to a Case for Precision Herbal Medicine. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 25:209-212. [PMID: 32654634 DOI: 10.1089/omi.2020.0099] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This opinion commentary on the coronavirus disease 2019 (COVID-19) pandemic brings together observations from Zimbabwe specifically, and Africa broadly, drawing from the fields of pharmacogenomics, precision herbal medicine, and responsible innovation so as to respond to the pandemic in ways that are efficient, critically informed, principled, and responsive to needs in rural and urban communities across Africa. With new findings suggesting that COVID-19 is a systemic disease, impacting the respiratory system and beyond in some individuals, we need new molecular targets for therapeutics innovation more than ever. We argue that the current pandemic will likely strip the limited resources from other diseases such as malaria, human immunodeficiency virus (HIV) infection, and among others affecting the African continent. Hence, we need to address not only COVID-19 but also its broader health care and societal impacts in Africa. Extensive diagnostic testing to trace and isolate the COVID-19 cases as well as basic income and economic support for those who are unable to work will be needed. A critically informed and democratic governance that builds on transparency and trust for the elected leaders is crucial. Finally, the pandemic offers a silver lining for Africa: the prospects to integrate omics research with long-standing expertise in herbal medicine in Africa, thus accelerating the advances toward novel molecular therapeutic targets for COVID-19 and precision herbal medicine worldwide.
Collapse
Affiliation(s)
- Collet Dandara
- Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kevin Dzobo
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Shadreck Chirikure
- Department of Archaeology, Faculty of Science, University of Cape Town, Cape Town, South Africa.,Division of Social Sciences, School of Archaeology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Liu Q, Deng J, Liu M. Classification models for predicting the antimalarial activity against Plasmodium falciparum. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2020; 31:313-324. [PMID: 32191533 DOI: 10.1080/1062936x.2020.1740890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Support vector machine (SVM) and general regression neural network (GRNN) were used to develop classification models for predicting the antimalarial activity against Plasmodium falciparum. Only 15 molecular descriptors were used to build the classification models for the antimalarial activities of 4750 compounds, which were divided into a training set (3887 compounds) and a test set (863 compounds). For the SVM model, its prediction accuracies are 89.5% for the training set and 87.3% for the test set. For the GRNN model, the prediction accuracies for the two sets are 99.7% and 88.9%, respectively. Both SVC and GRNN models have better prediction ability than the classification model based on binary logistic regression (BLR) analysis. Compared with previously published classification models both SVC and GRNN models are satisfactory in predicting antimalarial activities of compounds with in addition of fewer descriptors.
Collapse
Affiliation(s)
- Q Liu
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Regeneration, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, China
| | - J Deng
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Regeneration, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, China
| | - M Liu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, PR China
| |
Collapse
|
28
|
Umbelliprenin as a novel component of the phytochemical pool from Artemisia spp. J Pharm Biomed Anal 2020; 184:113205. [PMID: 32113116 DOI: 10.1016/j.jpba.2020.113205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 02/08/2023]
Abstract
Plants belonging to Artemisia spp. are known to biosynthesize a wide panel of 3,3-dimethylallyl- and sesquiterpenyl- substituted coumarins. In this short communication we applied a novel extraction methodology based on the use of subcritical butane under a counter-current mode to further characterize the presence of selected biologically active oxyprenylated phenylpropanoids, namely coumarins and ferulic acid derivatives, in extracts deriving from aerial parts of Artemisia vulgaris L. (commonly known as "common mugwort") (Asteraceae). In the mean time, we assessed the efficiency of the above mentioned extractive methodology with other routes like maceration and ultrasounds and microwaves-based methods using absolute EtOH as the solvents. UHPLC analysis coupled to UV/Vis detection revealed that, among the 5 pure chemical standard assayed, only umbelliprenin (7-farnesyloxycoumarin) was recorded, while boropinic acid, 4'-geranyloxyferulic acid, 7-isopentenyloxycoumarin, and auraptene were not detected. The best extractive yield (0.18 %) was obtained after extaction with subcritical butane. The presence of umbelliprenin in Artemisia plant species has been reported herein for the first time. This coumarin may represent the biosynthetic precursors of sesquiterpenyloxycoumarins with more complex structures typically found in this genus.
Collapse
|