1
|
Wang M, Fei C, Zhou Y, Dai Y, Ren L, Zhang X, Yin F. Effect of chemical components on color variation during processing of Crataegi Fructus. Food Sci Biotechnol 2024; 33:3245-3255. [PMID: 39328220 PMCID: PMC11422337 DOI: 10.1007/s10068-024-01576-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 09/28/2024] Open
Abstract
The color and chemical composition of Crataegi Fructus (CF) vary greatly during processing, but few studies have explored the relationship between them. To address this issue, the effect of chemical composition on the color change of CF during processing was evaluated by mass spectrometry and color detection. A total of 107 compounds, including organic acids, flavonoids, furans, terpenoids, lignans and alkaloids, were identified from 26 representative samples by UHPLC-Q-TOF-MS, among them, the first three compounds changed most significantly during CF processing. Based on Spearman's rho correlation and multiple linear regression analysis, 85 variables from 107 compounds were identified to be associated with color value (P < 0.01). There are 12 compounds that are considered to be the key substances that cause color changes. This study not only realized the objectification of color evaluation, but also verified the relationship between color and chemical composition in food processing. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01576-2.
Collapse
Affiliation(s)
- Miaomiao Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 People's Republic of China
| | - Chenghao Fei
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Yaqian Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 People's Republic of China
| | - Yanpeng Dai
- Shandong Academy of Chinese Medicine, Jinan, 250000 People's Republic of China
| | - Lijia Ren
- Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, 214400 People's Republic of China
| | - Xian Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 People's Republic of China
| | - Fangzhou Yin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 People's Republic of China
| |
Collapse
|
2
|
Lou J, Zhang B, Zheng Y, Liu M, Qu Y. Hawthorn pectin plays a protective role in myocardial ischaemia by regulating intestinal flora and short chain fatty acids. Curr Res Food Sci 2024; 9:100863. [PMID: 39416365 PMCID: PMC11480239 DOI: 10.1016/j.crfs.2024.100863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Studies have shown that there is a close relationship between acute myocardial ischaemia (AMI) and intestinal flora imbalance. And pectin has a protective effect on AMI and regulates intestinal flora. Raw hawthorn pectin from hawthorn (RHP) is high methoxyl pectin, which is able to protect injury induced by AMI. After stir-frying of hawthorn, pectin from stir-fried hawthorn (FHP) transformed to low methoxyl pectin, the protective mechanisms against AMI is not well-understood. In this study, the protective effects of RHP and FHP against AMI rats were explored. The results revealed that FHP regulated myocardial enzymes including CK, CK-MB and CTn-1, oxidative stress-related indicator SOD more significantly than RHP. According to the determination of proportion of different kinds of short-chain fatty acids (SCFAs) and abundance of microbiota producing SCFAs, it was speculated that RHP and FHP were fermented by these microbiota. RHP increased the proportion of acetic acid and butyric acid, while FHP increased the proportion of acetic acid in feces. Pretreatment with RHP and FHP enriched the beneficial microbiota and maintained the levels of SCFAs, which significantly increased after modeling. These results revealed that RHP and FHP played a protective role in myocardial ischaemia by regulating intestinal flora and SCFAs.
Collapse
Affiliation(s)
| | | | - Yu Zheng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning, 116600, China
| | - Meiqi Liu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning, 116600, China
| | - Yang Qu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning, 116600, China
| |
Collapse
|
3
|
Seyidoglu N, Karakçı D, Bakır B, Yıkmış S. Hawthorn Vinegar in Health with a Focus on Immune Responses. Nutrients 2024; 16:1868. [PMID: 38931223 PMCID: PMC11206889 DOI: 10.3390/nu16121868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The hawthorn fruit is an interesting medicinal plant that has several biological features, especially related to anti-inflammatory, antioxidant and immune-modulating actions, and boosting general health. In this study, we aimed to clarify the immunological effects of hawthorn vinegar on immunity and general health. We also focused on three different production processes to improve the antioxidant activity of hawthorn vinegar (2) Methods: In the study, besides the traditional production of hawthorn vinegar (N), thermal pasteurization (P) and ultrasound (U) techniques were applied to vinegars. A total of 56 female adult Wistar albino rats were randomly allocated into seven groups; Control, N0.5 (regular vinegar; 0.5 mL/kgbw), N1 (regular vinegar; 1 mL/kgbw), P0.5 (pasteurized vinegar; 0.5 mL/kgbw), P1 (pasteurized vinegar; 1 mL/kgbw), U0.5 (ultrasound treated vinegar; 0.5 mL/kgbw), and U1 (ultrasound treated vinegar; 1 mL/kgbw). Vinegars were administered by oral gavage daily. The average weight gains, body mass index, and blood hematological parameters were measured, and the Neutrophil Lymphocyte ratio was calculated. The plasma IL-1β and TNF-α values, and MDA, IL-1β and TNF-α values of intestinal tissue, were determined. Also, the streptavidin-biotin-peroxidase complex method was applied to determine the expressions of TNF-α and IL-1β in duodenum. (3) Results: There was a decreasing tendency in the average weight gains in all vinegar groups compared to the control group. In addition, there was an increase in NL ratio in all vinegar groups, although not significant. There were no statistical differences among all vinegar groups, although decreases were observed in plasma IL-1β. Also, the plasma TNF-α values showed slight increases in high-dose-of-vinegar groups (N1, P1 and U1), although not significant. In addition, the intestinal tissue IL-1β value tended to increase in groups N0.5, N1 and P0.5, while it tended to decrease in P1, U0.5 and U1. On the other hand, there were slight increases in the TNF-α values of intestinal tissue in all groups compared to control, although these were not significant. Furthermore, the intensive expressions of TNF-α and IL-1β were determined in groups U0.5 and U1. (4) Conclusions: The results suggest that either high doses or ultrasound applications of hawthorn vinegar have positive effects on intestinal health, boosting immunity and general health.
Collapse
Affiliation(s)
- Nilay Seyidoglu
- Department of Physiology, Faculty of Veterinary Medicine, Tekirdag Namik Kemal University, 59030 Tekirdag, Türkiye
| | - Deniz Karakçı
- Department of Biochemistry, Faculty of Veterinary Medicine, Tekirdag Namik Kemal University, 59030 Tekirdag, Türkiye;
| | - Buket Bakır
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Tekirdag Namik Kemal University, 59030 Tekirdag, Türkiye;
| | - Seydi Yıkmış
- Department of Food Technology, Tekirdag Namik Kemal University, 59030 Tekirdag, Türkiye
| |
Collapse
|
4
|
Fan S, Zhu H, Liu W, Ha J, Liu Y, Mi M, Ren Q, Xu L, Zhang J, Liu W, Feng F, Xu J. Comparing massa medicata fermentata before and after charred in terms of digestive promoting effect via metabolomics and microbiome analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:117989. [PMID: 38462026 DOI: 10.1016/j.jep.2024.117989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/17/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Massa Medicata Fermentata, a fermented Chinese medicine, is produced by the fermentation of six traditional Chinese medicines. Liu Shenqu (LSQ) and charred Liu Shenqu (CLSQ) have been used for strengthening the spleen and enhancing digestion for over a thousand years, and CLSQ is commonly used in clinical practice. However, it is unclear whether there is a difference in the spleen strengthening and digestion effects between LSQ and CLSQ, as well as their mechanisms of action. AIM OF STUDY This study aims to compare the effects of LSQ and CLSQ on the digestive function of functional dyspepsia (FD) rats and reveal their mechanisms of action. MATERIALS AND METHODS SPF grade SD rats were randomly divided into 6 groups: control group, model group, Liu Shenqu decoction low-dosage (LSQ LD) group, Liu Shenqu decoction high-dosage (LSQ HD) group, charred Liu Shenqu decoction low-dosage (CLSQ LD) group, and charred Liu Shenqu decoction high-dosage (CLSQ HD) group. Rats were injected intraperitoneally with reserpine to create an FD model and then treated by intragastric administration. During this period, record the weight and food intake of the animals. After 18 days of treatment, specimens of the gastric antrum, spleen, and duodenum of rats were taken for pathological staining and immunohistochemical detection of Ghrelin protein expression. Enzyme linked immunosorbent assay (ELISA) was used to determine the concentration of relevant gastrointestinal hormones in serum. The 16 S rDNA sequencing method was used to evaluate the effect of cecal contents on the structure of the gut microbiota in experimental rats. Plasma metabolomics analysis was performed using ultra high performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UPLC-QTOF-MS) to further reveal their mechanism of action. RESULTS LSQ and CLSQ improved the pathological tissue histological structure of FD rats and increased the levels of MTL and GAS hormones in serum and the levels of ghrelin in the gastric antrum, spleen, and duodenum, while reducing VIP, CCK, and SP hormone levels. The above results showed that the therapeutic efficacy of CLSQ is better than that of LSQ. Futhermore, the mechanism of action of LSQ and CLSQ were revealed. The 16 S rDNA sequencing results showed that both LSQ and CLSQ can improve the composition and diversity of the gut microbiota. And metabolomic analysis demonstrated that 20 metabolites changed after LSQ treatment, and 16 metabolites underwent continuous changes after CLSQ treatment. Further analysis revealed that LSQ mainly intervened in the metabolic pathways of glycerol phospholipid metabolism and arginine and proline metabolism, but CLSQ mainly intervened in the metabolic pathways of ether lipid metabolism, sphingolipid metabolism, and glycerophospholipid metabolism. CONCLUSIONS Both LSQ and CLSQ can improve functional dyspepsia in FD rats, but CLSQ has a stronger improvement effect on FD. Although their mechanisms of action are all related to regulating gastrointestinal hormone secretion, significantly improving intestinal microbiota disorders, and improving multiple metabolic pathways, but the specific gut microbiota and metabolic pathways they regulate are different.
Collapse
Affiliation(s)
- Siqi Fan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Huangyao Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Wanqiu Liu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jingwen Ha
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ying Liu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ma Mi
- Tibetan University of Tibetan Medicine, Lhasa, 850007, China
| | - Qingjia Ren
- Tibetan University of Tibetan Medicine, Lhasa, 850007, China
| | - Lijun Xu
- Tibetan University of Tibetan Medicine, Lhasa, 850007, China
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenyuan Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Food and Pharmaceutical Science College, Huaian, 223003, China; School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Jian Xu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China; Tibetan University of Tibetan Medicine, Lhasa, 850007, China.
| |
Collapse
|
5
|
Hao L, Yu Z, Sun J, Li Z, Li J, Deng Y, Huang H, Huo H, Li H, Huang L. Supplementation of Crataegi fructus alleviates functional dyspepsia and restores gut microbiota in mice. Front Nutr 2024; 11:1385159. [PMID: 38628273 PMCID: PMC11018912 DOI: 10.3389/fnut.2024.1385159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction Functional dyspepsia (FD), also known as non-ulcerative dyspepsia, is a common digestive system disorder. Methods In this study, an FD model was established using hunger and satiety disorders combined with an intraperitoneal injection of L-arginine. Indices used to evaluate the efficacy of hawthorn in FD mice include small intestinal propulsion rate, gastric residual rate, general condition, food intake, amount of drinking water, gastric histopathological examination, and serum nitric oxide (NO) and gastrin levels. Based on the intestinal flora and their metabolites, short-chain fatty acids (SCFAs), the mechanism of action of Crataegi Fructus (hawthorn) on FD was studied. The fecal microbiota transplantation test was used to verify whether hawthorn altered the structure of the intestinal flora. Results The results showed that hawthorn improved FD by significantly reducing the gastric residual rate, increasing the intestinal propulsion rate, the intake of food and drinking water, and the levels of gastrointestinal hormones. Simultaneously, hawthorn elevated substance P and 5-hydroxytryptamine expression in the duodenum, reduced serum NO levels, and increased vasoactive intestinal peptide expression in the duodenum. Notably, hawthorn increased the abundance of beneficial bacteria and SCFA-producing bacteria in the intestines of FD mice, decreased the abundance of conditional pathogenic bacteria, and significantly increased the SCFA content in feces. Discussion The mechanism by which hawthorn improves FD may be related to the regulation of intestinal flora structure and the production of SCFAs.
Collapse
Affiliation(s)
- Liyu Hao
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zeyue Yu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianhui Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongyuan Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianliang Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yurong Deng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hanhui Huang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hairu Huo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongmei Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Wang S, Li Y, Yang X, Hao Y, Zhan X. The effects of Massa Medicata Fermentata on the digestive function and intestinal flora of mice with functional dyspepsia. Front Pharmacol 2024; 15:1359954. [PMID: 38495103 PMCID: PMC10941201 DOI: 10.3389/fphar.2024.1359954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/22/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction: The purpose of this study was to identify the chemical components of Massa Medicata Fermentata (MMF) in different fermentation methods, analyze its regulatory effects on gastrointestinal propulsion and intestinal flora in mice with food accumulation, and further explore its mechanism of action in the treatment of dyspepsia. Methods: The chemical compositions of three kinds of MMF were identified using the UPLC-Q- Exactive Orbitrap mass spectrometer. A model of spleen deficiency and food accumulation in mice was established. The gastric emptying rate and intestinal propulsion rate were calculated, serum gastrin concentration and cholinesterase activity were measured, and 16S rRNA microbial detection was performed in different groups of mouse feces. Results: The results showed that a total of 95 chemical components were identified from the three MMF extracts, 62 of which were the same, but there were differences in flavonoids and their glycosides, organic acids, and esters. MMF, PFMMF, and commercial MMF could all significantly improve the gastric emptying rate, intestinal propulsion rate, and GAS concentration in the serum of model mice; PFMMF has a better effect, while there was no significant difference in cholinesterase activity among the groups (p > 0.05). The 16S rRNA sequencing results showed that the MMF and PFMMF could increase the content of beneficial bacteria Bacteroidetes and decrease the pathogenic bacteria Verrucomicrobia in the intestines of model mice, while the commercial MMF could not. Discussion: Studies suggest that MMF has a variety of possible mechanisms for improving food accumulation and treating gastrointestinal dyspepsia, which provides reference value for the quality evaluation and clinical application of MMF.
Collapse
Affiliation(s)
- Shuyu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanlin Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoqi Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yinxue Hao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xueyan Zhan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science and Technology Commission, Beijing, China
| |
Collapse
|
7
|
Lyu Q, Zheng W, Shan Q, Huang L, Wang Y, Wang L, Kuang H, Azam M, Cao G. Expanding annotation of chemical compounds in hawthorn fruits and their variations in thermal processing using integrated mass spectral similarity networking. Food Res Int 2023; 172:113114. [PMID: 37689886 DOI: 10.1016/j.foodres.2023.113114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Chemical structural characterization of chemical compounds from hawthorn fruits and its thermal processed products was carried out in present study. By linking Global Natural Products Social (GNPS) Molecular Networking and MolNetEnhancer workflow, seventy-four chemical compounds in hawthorn fruits and its thermal processed products were tentatively identified. Three quercetagetin derivatives (quercetagetin-3-O-glucoside, quercetagetin-di-glucoside and its isomer), five quercetin or kaempferol derivatives (quercetin-acetylapiosyl-hexoside, quercetin-3-O-(6″-malonyl-hexoside), quercetin-3-O-(6″-malonyl-hexoside)-(1 → 2)-O-hexoside, quercetin-3-O-(6″-malonyl-hexoside)-(1 → 2)-O-deoxyhexoside, kaempferol-3-O-(6″-malonyl-hexoside)), six procyanidins including four (E)C-ethyl-procyanidins and two A-type procyanidins digallate, as well as 13 triterpenoids including ursolic aldehyde, triterpenoid glycosides, and triterpene acids were reported for the first time in hawthorn fruits. In addition, triterpenoids exhibited considerable thermal stability, while all of flavonoid glycosides, proanthocyanidins and 10 in 13 organic acids showed dramatic decrease after thermal processing.
Collapse
Affiliation(s)
- Qiang Lyu
- School of Pharmacy, Zhejiang Chinese Medical University, 548, Binwen Road, Hangzhou 310053, China
| | - Wanying Zheng
- School of Pharmacy, Zhejiang Chinese Medical University, 548, Binwen Road, Hangzhou 310053, China
| | - Qiyuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, 548, Binwen Road, Hangzhou 310053, China
| | - Lichuang Huang
- School of Pharmacy, Zhejiang Chinese Medical University, 548, Binwen Road, Hangzhou 310053, China
| | - Yiwen Wang
- School of Pharmacy, Zhejiang Chinese Medical University, 548, Binwen Road, Hangzhou 310053, China
| | - Lu Wang
- School of Pharmacy, Zhejiang Chinese Medical University, 548, Binwen Road, Hangzhou 310053, China
| | - Haodan Kuang
- School of Pharmacy, Zhejiang Chinese Medical University, 548, Binwen Road, Hangzhou 310053, China
| | - Muhammad Azam
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, 548, Binwen Road, Hangzhou 310053, China.
| |
Collapse
|
8
|
Gao L, Zhong L, Wei Y, Li L, Wu A, Nie L, Yue J, Wang D, Zhang H, Dong Q, Zang H. A new perspective in understanding the processing mechanisms of traditional Chinese medicine by near-infrared spectroscopy with Aquaphotomics. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
9
|
Lu M, Zhang L, Pan J, Shi H, Zhang M, Li C. Advances in the study of the vascular protective effects and molecular mechanisms of hawthorn ( Crataegus anamesa Sarg.) extracts in cardiovascular diseases. Food Funct 2023. [PMID: 37337667 DOI: 10.1039/d3fo01688a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Hawthorn belongs to the rose family and is a type of functional food. It contains various chemicals, including flavonoids, terpenoids, and organic acid compounds. This study aimed to review the vascular protective effects and molecular mechanisms of hawthorn and its extracts on cardiovascular diseases (CVDs). Hawthorn has a wide range of biological functions. Evidence suggests that the active components of HE reduce oxidative stress and inflammation, regulate lipid levels to prevent lipid accumulation, and inhibit free cholesterol accumulation in macrophages and foam cell formation. Additionally, hawthorn extract (HE) can protect vascular endothelial function, regulate endothelial dysfunction, and promote vascular endothelial relaxation. It has also been reported that the effective components of hawthorn can prevent age-related endothelial dysfunction, increase cellular calcium levels, cause antiplatelet aggregation, and promote antithrombosis. In clinical trials, HE has been proved to reduce the adverse effects of CVDs on blood lipids, blood pressure, left ventricular ejection fraction, heart rate, and exercise tolerance. Previous studies have pointed to the benefits of hawthorn and its extracts in treating atherosclerosis and other vascular diseases. Therefore, as both medicine and food, hawthorn can be used as a new drug source for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Lei Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jinyuan Pan
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Huishan Shi
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Muxin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
10
|
Yu W, Jiang Z, Zhang Z, Jiang L, Liu C, Lu C, Liang Z, Wang G, Yan J. The Wu-Shi-Cha formula protects against ulcerative colitis by orchestrating immunity and microbiota homeostasis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116075. [PMID: 36572328 DOI: 10.1016/j.jep.2022.116075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) has become a healthy burden worldwide due to its insidious onset and repetitive relapse, with a rather complex etiology, including inappropriate immune response, dysbiosis, genetic susceptibility, and unhealthy diets. The Wu-Shi-Cha (WSC) formula is a widely utilized drug to protect against gastrointestinal disorders. AIM OF THE STUDY The study aspired to dissect the pertinent mechanisms of the WSC to treat UC. MATERIALS AND METHODS Network pharmacology and weighted gene co-expression network analysis (WGCNA) were performed to predict the targets of WSC in the context of UC and colorectal cancer. Dextran sodium sulfate (DSS) was used to construct murine models of experimental colitis, and the WSC was given to colitis mice for 14 days. Feces and colon samples were subjected to 16S rRNA gene sequencing combined with liquid chromatography-mass spectrometry (LC-MS) and biochemical experiments, respectively. RESULTS Network pharmacology analysis predicted that the WSC formula could orchestrate inflammation, infection, and tumorigenesis, and WGCNA based on The Cancer Genome Atlas (TCGA) database showed a potent anti-neoplastic effect of the WSC therapy for colorectal cancer. The WSC therapy rescued bursts of pro-inflammatory cytokines and colonic epithelial collapse in DSS-induced colitis mice. Moreover, the high dose of WSC treatment facilitated the alternative activation of peritoneal macrophages (Mφs) and these Mφs were conducive to the survival of intestinal stem cells (ISCs), and the disturbed homeostasis of gut microbiota was re-established after WSC treatment, as evidenced by the decreased colonization of pathological taxa in the fecal samples. CONCLUSION The WSC formula suppresses inflammation and re-establishes the homeostasis of gut microbiota, thereby ameliorating colitis progression.
Collapse
Affiliation(s)
- Wei Yu
- Department of Physiology, Jining Medical University, Jining city, Shandong province, China.
| | - Zizheng Jiang
- Department of Physiology, Jining Medical University, Jining city, Shandong province, China.
| | - Zhiqiang Zhang
- Department of Physiology, Jining Medical University, Jining city, Shandong province, China.
| | - Lu Jiang
- Department of Physiology, Jining Medical University, Jining city, Shandong province, China.
| | - Chen Liu
- Department of Physiology, Jining Medical University, Jining city, Shandong province, China.
| | - Chang Lu
- Department of Physiology, Jining Medical University, Jining city, Shandong province, China.
| | - Zhenghao Liang
- Department of Physiology, Jining Medical University, Jining city, Shandong province, China.
| | - Guoliang Wang
- Department of Physiology, Jining Medical University, Jining city, Shandong province, China.
| | - Jing Yan
- Department of Physiology, Jining Medical University, Jining city, Shandong province, China.
| |
Collapse
|
11
|
Fei C, Xue Q, Li W, Xu Y, Mou L, Li W, Lu T, Yin W, Li L, Yin F. Variations in volatile flavour compounds in Crataegi fructus roasting revealed by E-nose and HS-GC-MS. Front Nutr 2023; 9:1035623. [PMID: 36761989 PMCID: PMC9905410 DOI: 10.3389/fnut.2022.1035623] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/13/2022] [Indexed: 01/26/2023] Open
Abstract
Introduction Crataegi fructus (CF) is an edible and medicinal functional food used worldwide that enhances digestion if consumed in the roasted form. The odour of CF, as a measure of processing degree during roasting, significantly changes. However, the changes remain unclear, but are worth exploring. Methods Herein, the variations in volatile flavour compounds due to CF roasting were investigated using an electronic nose (E-nose) and headspace gas chromatography-mass spectrometry (HS-GC-MS). Results A total of 54 components were identified by GC-MS. Aldehydes, ketones, esters, and furans showed the most significant changes. The Maillard reaction, Strecker degradation, and fatty acid oxidation and degradation are the main reactions that occur during roasting. The results of grey relational analysis (GRA) showed that 25 volatile compounds were closely related to odour (r > 0.9). Finally, 9 volatile components [relative odour activity value, (ROAV) ≥ 1] were confirmed as key substances causing odour changes. Discussion This study not only achieves the objectification of odour evaluation during food processing, but also verifies the applicability and similarity of the E-nose and HS-GC-MS.
Collapse
Affiliation(s)
- Chenghao Fei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qianqian Xue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjing Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liyan Mou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weidong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wu Yin
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China,Wu Yin,
| | - Lin Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China,Lin Li,
| | - Fangzhou Yin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China,*Correspondence: Fangzhou Yin,
| |
Collapse
|
12
|
Ai L, Zhang L, Liang Q, Tian Y, Chen T, Wu C. Investigation of the improving effect of raw and charred hawthorn on functional dyspepsia based on interstitial cells of Cajal. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1010556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BackgroundRaw hawthorn (RH) is a traditional Chinese medicine commonly used to treat indigestion. Charred hawthorn (CH) is obtained from RH by charring. It is reported that the effect of CH treatment on dyspepsia is stronger than RH. However, this has not been fully proven. The purpose of this study was to compare the effects of RH and CH on functional dyspepsia (FD) model rats. And contribute to the development of dietary therapy for dyspepsia.MethodsSPF-grade male SD rats were divided into 5 groups: the control group, the model group, the Mos group, the RH group, and the CH group. The FD rat model was established by using the methods of water restriction, fasting, tilting cage restraint, day and night upside down, swimming, and tail damping. The body weight of rats in each group was recorded. And the gastric emptying rate, intestinal propulsive rate, and the levels of motilin (MTL), gastrin (GAS), and 5-HT in serum were compared in each group. The expression of C-kit in the stomach and small intestine of each group was compared by immunofluorescence and PCR.ResultsRH and CH could increase weight, improve the gastric emptying rate and intestinal propulsive rate, and promote the secretion of motilin (MTL), gastrin (GAS), and 5-HT in the serum of FD rats. RH and CH can upregulate the expression of the characteristic protein c-kit of ICC in the stomach and small intestine of FD model rats, and the effect of CH is stronger than RH.ConclusionRH and CH may increase the number of interstitial cells of Cajal (ICC) in the gastrointestinal tract by upregulating c-kit expression, thus improving gastrointestinal motility in FD model rats. And compared with RH, CH has certain advantages.
Collapse
|
13
|
Zhang SY, Sun XL, Yang XL, Shi PL, Xu LC, Guo QM. Botany, traditional uses, phytochemistry and pharmacological activity of Crataegus pinnatifida (Chinese hawthorn): a review. J Pharm Pharmacol 2022; 74:1507-1545. [PMID: 36179124 DOI: 10.1093/jpp/rgac050] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/18/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Crataegus pinnatifida (C. pinnatifida), including C. pinnatifida Bge. and its variant C. pinnatifida Bge. var. major N, E. Br., has traditionally been used as a homologous plant for traditional medicine and food in ethnic medical systems in China. Crataegus pinnatifida, especially its fruit, has been used for more than 2000 years to treat indigestion, stagnation of meat, hyperlipidemia, blood stasis, heart tingling, sores, etc. This review aimed to provide a systematic summary on the botany, traditional uses, phytochemistry, pharmacology and clinical applications of C. pinnatifida. KEY FINDINGS This plant contains flavonoids, phenylpropanoids, terpenoids, organic acids, saccharides and essential oils. Experimental studies showed that it has hypolipidemic, antimyocardial, anti-ischemia, antithrombotic, anti-atherosclerotic, anti-inflammatory, antineoplastic neuroprotective activity, etc. Importantly, it has good effects in treating diseases of the digestive system and cardiovascular and cerebrovascular systems. SUMMARY There is convincing evidence from both in vitro and in vivo studies supporting the traditional uses of C. pinnatifida. However, multitarget network pharmacology and molecular docking technology should be used to study the interaction between the active ingredients and targets of C. pinnatifida. Furthermore, exploring the synergy of C. pinnatifida with other Chinese medicines to provide new understanding of complex diseases may be a promising strategy.
Collapse
Affiliation(s)
- Shi-Yao Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-Lei Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xing-Liang Yang
- School of Classics, Beijing University of Chinese Medicine, Beijing, China
| | - Peng-Liang Shi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ling-Chuan Xu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qing-Mei Guo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
14
|
Zhang J, Chai X, Zhao F, Hou G, Meng Q. Food Applications and Potential Health Benefits of Hawthorn. Foods 2022; 11:foods11182861. [PMID: 36140986 PMCID: PMC9498108 DOI: 10.3390/foods11182861] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Hawthorn (Crataegus) is a plant of the Rosaceae family and is widely grown throughout the world as one of the medicinal and edible plants, known as the “nutritious fruit” due to its richness in bioactive substances. Preparations derived from it are used in the formulation of dietary supplements, functional foods, and pharmaceutical products. Rich in amino acids, minerals, pectin, vitamin C, chlorogenic acid, epicatechol, and choline, hawthorn has a high therapeutic and health value. Many studies have shown that hawthorn has antioxidant, anti-inflammatory, anticancer, anti-cardiovascular disease, and digestive enhancing properties. This is related to its bioactive components such as polyphenols (chlorogenic acid, proanthocyanidin B2, epicatechin), flavonoids (proanthocyanidins, mucoxanthin, quercetin, rutin), and pentacyclic triterpenoids (ursolic acid, hawthornic acid, oleanolic acid), which are also its main chemical constituents. This paper briefly reviews the chemical composition, nutritional value, food applications, and the important biological and pharmacological activities of hawthorn. This will contribute to the development of functional foods or nutraceuticals from hawthorn.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Xiaoyun Chai
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China
- Correspondence: (X.C.); (Q.M.)
| | - Fenglan Zhao
- Department of Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Guige Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Qingguo Meng
- Department of Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China
- Correspondence: (X.C.); (Q.M.)
| |
Collapse
|
15
|
Guo W, Bai J, Zhang Q, Duan K, Zhang P, Zhang J, Zhao J, Zhang W, Kong D. Influence of thermal processing on the quality of hawthorn: quality markers of heat-processed hawthorn. J Sep Sci 2022; 45:3774-3785. [PMID: 35938469 DOI: 10.1002/jssc.202200222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/12/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022]
Abstract
Hawthorn and its derived products are used worldwide as foods as well as complementary medicine. During the preparation of hawthorn, heating and thermal processing are frequently reported. The thermal processing will change the medicinal purposes and modify the efficacy of hawthorn. However, details including the chemical profile shifting and quality markers of heat-processed hawthorn have not been well understood. In the paper, we analyzed the hawthorn samples processed at different temperatures and different times by ultraviolet visible absorption spectrum and LC-MS technologies combined with multivariate statistical analysis. It was revealed for the first time that thermal processing could greatly change the ultraviolet visible absorption spectra and chemical profiles of hawthorn even with heat treatment at 130°C for 10 minutes. And the ultraviolet visible absorption spectrum, especially the ratio value (RA500 nm/400 nm ), was a descriptive and qualitative indicator of heating degree for the thermal processing at the macroscopic level. Several components, such as hyperoside, chlorogenic acid, quercetin and apigenin, decreased or increased in content during the processing, and they could be utilized as the chemical quality markers. The proposed quality markers for heat-processed hawthorn will be helpful for further optimizing the processing conditions of hawthorn. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wenyan Guo
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jing Bai
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qingning Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Kunfeng Duan
- Department of Pharmacy, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Panpan Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jianghua Zhang
- School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jing Zhao
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Wei Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Dezhi Kong
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
16
|
Sun F, Wu X, Qi Y, Zhong Y, Zeng L, Wang K, Liang S. Combining ultra-high-performance liquid chromatography quadruple exactive orbitrap mass spectrometry with chemometrics to identify and verify the blood-activating components of hawthorn. J Sep Sci 2022; 45:2924-2934. [PMID: 35699087 DOI: 10.1002/jssc.202200230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 11/08/2022]
Abstract
Hawthorn, one of the widely-used Chinese herbal medicines, has been used to treat blood stasis syndrome in the clinic, but its blood-activating components are unclear. This study combined the ultra-high-performance liquid chromatography-quadruple exactive-orbitrap mass spectrometry with chemometrics to identify the blood-activating components of hawthorn. Different polar fractions of hawthorn aqueous extracts were extracted and mixed to prepare 14 samples. The contents of 25 chemical components for 14 samples were determined by the proposed quantitative method which was validated in terms of linearity, precision, stability, repeatability, and recovery, while the blood-activating effect was evaluated by measuring the whole blood viscosity, plasma viscosity, and plasma fibrinogen levels. Then the partial least squares model was established on the spectrum-effect relationship. The result showed that vitexin-2″-O-rhamnoside, rutin, citric acid, malic acid, gallic acid, and fumaric acid could reduce the whole blood viscosity, plasma viscosity, and plasma fibrinogen levels in blood stasis model rats, and these components were the blood-activating components of hawthorn. This study provided a scientific basis for clarifying the blood-activating components of hawthorn, and the spectrum-effect approach proved to be an effective approach to discovering the bioactive components of Chinese herbal medicines.
Collapse
Affiliation(s)
- Fei Sun
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China.,Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, P. R. China.,Innovation Team of Chinese Materia Medica Analysis of Department of Education, Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Xiangqin Wu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Yue Qi
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Yongqi Zhong
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Lu Zeng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Kaiyang Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Shengwang Liang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China.,Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, P. R. China.,Innovation Team of Chinese Materia Medica Analysis of Department of Education, Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| |
Collapse
|
17
|
Li X, Lin Y, Jiang Y, Wu B, Yu Y. Aqueous Extract of Phyllanthus emblica L. Alleviates Functional Dyspepsia through Regulating Gastrointestinal Hormones and Gut Microbiome In Vivo. Foods 2022; 11:foods11101491. [PMID: 35627061 PMCID: PMC9141879 DOI: 10.3390/foods11101491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 02/01/2023] Open
Abstract
Phyllanthus emblica L. fruits were extracted by a hot water assistant with ultrasonication to obtain aqueous Phyllanthus emblica L. extract (APE). The ameliorating functional dyspepsia (FD) effect of a low dose (150 mg/kg) and a high dose (300 mg/kg) of APE was exhibited by determining the gastrointestinal motility, gastrointestinal hormones, and gut microbiome shifts in reserpine induced FD male balb/c mice. APE increased the gastrointestinal motility including the gastric emptying (GE) rate and small intestinal transit (SIT) rate. The level of serum gastrointestinal hormones such as motilin (MTL) and gastrin (GAS) increased, and the vasoactive intestinal peptide (VIP) level decreased after the administration of APE. Furthermore, the gut microbiome analysis demonstrated that APE could regulate the microbiome structure and restore homeostasis by elevating useful bacterial abundance, while simultaneously decreasing harmful bacterial abundance. This study demonstrated the ameliorating FD effect of APE and its potential efficacy in curing functional gastrointestinal disorders and maintaining a healthy digestive tract.
Collapse
Affiliation(s)
- Xiaoqing Li
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China; (X.L.); (Y.L.); (Y.J.)
| | - Yilin Lin
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China; (X.L.); (Y.L.); (Y.J.)
| | - Yiqi Jiang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China; (X.L.); (Y.L.); (Y.J.)
| | - Binbin Wu
- Lui Che Woo Institute of Innovative Medicine, Hong Kong Hub of Paediatric Excellence (HK HOPE), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China;
| | - Yigang Yu
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China; (X.L.); (Y.L.); (Y.J.)
- Correspondence:
| |
Collapse
|
18
|
Yu J, Guo M, Jiang W, Dao Y, Pang X. Illumina-Based Analysis Yields New Insights Into the Fungal Contamination Associated With the Processed Products of Crataegi Fructus. Front Nutr 2022; 9:883698. [PMID: 35634418 PMCID: PMC9135361 DOI: 10.3389/fnut.2022.883698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022] Open
Abstract
Crataegi Fructus, a medicinal and edible herb in China, has been considered a popular dietary supplement globally. It is used for the treatment of dyspepsia and chronic heart failure according to the Chinese Pharmacopoeia (2020). However, fungal contamination in Crataegi Fructus affects its quality and safety, thus preventing its global promotion. In this study, we comprehensively studied the fungal community in processed products of Crataegi Fructus by high-throughput sequencing. A total of 21 Crataegi Fructus samples were collected from five provinces in China, and the samples were divided into five groups based on collection areas, as well as into three groups based on processing methods. We then targeted the internal transcribed spacer 2 sequence through the Illumina Miseq PE300 platform to investigate fungal composition and diversity. Results showed that all 21 samples were detected with fungal contamination, and Ascomycota was dominant at the phylum level. In the groups based on collection areas, Dothideomycetes, Pleosporaceae, and Alternaria were dominant at the class, family, and genus levels, respectively. In the groups based on processing methods, Dothideomycetes, Aspergillaceae, and Alternaria were the most abundant at the class, family, and genus levels, respectively. Differences in fungal communities between various groups were also observed. Furthermore, a total of 115 species were identified, among which seven were potential toxigenic, namely, Trichothecium roseum, Alternaria tenuissima, Aspergillus carbonarius, Penicillium brevicompactum, Aspergillus fumigatus, Rhizopus microspores, and Pichia fermentans. In conclusion, this study reveals great fungal richness and diversity of Crataegi Fructus, providing references for the prevention and control of fungal contamination of Crataegi Fructus in practical production.
Collapse
|
19
|
Sun F, Zeng L, Li J, Zhong Y, Wu X, Wang K, Wang S, Liang S. Developing the liquid chromatography-mass spectrometry method for simultaneously quantifying five components in rat serums after oral administration of hawthorn aqueous extracts and its application to a pharmacokinetic study. J Sep Sci 2022; 45:1839-1846. [PMID: 35318796 DOI: 10.1002/jssc.202100906] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/23/2022] [Accepted: 03/18/2022] [Indexed: 11/10/2022]
Abstract
Hawthorn, one of the widely-used traditional Chinese medicines, has been used to treat dyspepsia, hyperlipidemia, and cardiovascular disease in the clinic. Our previous study revealed that gallic acid, neochlorogenic acid, cryptochlorogenic acid, vitexin, and quercetin were active components of hawthorn. In this study, a simple, precise, and reliable liquid chromatography-mass spectrometry method was developed for the simultaneous quantification of five components in rat serums. The separation was achieved on the Hypersil GOLD C18 column, and the mobile phases consisted of 0.1% acetic acid water and methanol at a flow rate of 0.3 mL/min. The mass spectrometry data acquisition was performed on Q-Extractive-Orbitrap mass spectrometry with an electrospray ionization source in negative ion mode. The proposed liquid chromatography-mass spectrometry method was validated in terms of linearity, intra- and inter-precision, accuracy, recoveries, matrix effects, and stability. Then this newly proposed liquid chromatography-mass spectrometry method was successfully applied to a pharmacokinetic study on rats after oral administration of hawthorn aqueous extracts. This study provided relevant information on the pharmacokinetics of active components of hawthorn and explained the underlying mechanism of their bioactivity.
Collapse
Affiliation(s)
- Fei Sun
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China.,Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, P. R. China.,Innovation Team of Chinese Materia Medica Analysis of Department of Education, Guangzhou, P. R. China
| | - Lu Zeng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Jiaqi Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Yongqi Zhong
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Xiangqin Wu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Kaiyang Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Shumei Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China.,Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, P. R. China.,Innovation Team of Chinese Materia Medica Analysis of Department of Education, Guangzhou, P. R. China
| | - Shengwang Liang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China.,Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, P. R. China.,Innovation Team of Chinese Materia Medica Analysis of Department of Education, Guangzhou, P. R. China
| |
Collapse
|
20
|
Biological properties and potential application of hawthorn and its major functional components: A review. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104988] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
21
|
Ultrahigh-performance liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry for separation and identification of hawthorn fruits by multivariate analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Liu C, He Q, Zeng L, Shen L, Luo Q, Zhang W, Zhou X, Wan J. Digestion-Promoting Effects and Mechanisms of Dashanzha Pill Based on Raw and Charred Crataegi Fructus. Chem Biodivers 2021; 18:e2100705. [PMID: 34710267 DOI: 10.1002/cbdv.202100705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/26/2021] [Indexed: 12/21/2022]
Abstract
Emerging evidence suggests that a high-fat diet (HFD) can influence endoplasmic reticulum (ER) stress and gut microbiota. Crataegi Fructus is a traditional Chinese herb widely used in formulas for dyspepsia, with Dashanzha Pill composed of raw Crataegi Fructus (DR) being a representative drug. Processing products of Crataegi Fructus, however, have a stronger pro-digestive effect, and we hypothesized that Dashanzha Pill composed of charred Crataegi Fructus (DC) is more effective. We found that the contents of glucose 1-phosphate and luteolin in DR and DC were substantially different via ultra-high performance liquid chromatography-hybrid quadrupole-Orbitrap high-resolution mass spectrometry. DC outperformed DR in improving histopathological changes, increasing gastrin and motilin, and decreasing vasoactive intestinal peptides in rats with HFD induced dyspepsia. Fecal microbiota analysis revealed that DC could restore the disturbed intestinal microbiota composition, including that of Bacteroides, Akkermansia, and Intestinimonas to normal levels. Furthermore, DC significantly reduced the mRNA and protein levels of glucose-regulated protein 78, protein kinase R-like ER kinase, and eukaryotic initiation factor 2α. Taken together, DC outperformed DR in relieving dyspepsia by regulating gut microbiota and alleviating ER stress.
Collapse
Affiliation(s)
- Cui Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Qian He
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Linlin Zeng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Ling Shen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Qiaomei Luo
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Wentao Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Xia Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Jun Wan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| |
Collapse
|
23
|
Nutraceuticals for Peripheral Vestibular Pathology: Properties, Usefulness, Future Perspectives and Medico-Legal Aspects. Nutrients 2021; 13:nu13103646. [PMID: 34684646 PMCID: PMC8538675 DOI: 10.3390/nu13103646] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023] Open
Abstract
Vestibular disorders may generate complex signs and symptoms, which may alter patients' balance and the quality of life. Dizziness and vertigo can strongly affect daily activities and relations. Despite the presence of conventional drugs, maneuvers, and surgery, another interesting therapeutic opportunity is offered by nutraceuticals. These molecules are often used in the treatment of dizziness and vertigo, but the rationale of their application is not always solidly demonstrated by the scientific evidence. Several substances have shown a variable level of efficacy/usefulness in this field, but there is lack of important evidence for most of them. From a medico-legal point of view, specific information must be provided to the patient regarding the efficacy and possibilities that the use of these preparations can allow. Administering the right nutraceutical to the proper patient is a fundamental clinical skill. Integrating conventional drug treatment with nutraceutical administration seems to be easy, but it may be difficult considering the (in part unexplored) pharmacodynamics and pharmacokinetics of nutraceuticals. The aim of the scientific community should be to elevate nutraceuticals to the same law and technical dignity of conventional drugs.
Collapse
|
24
|
Liu Y, Liao W, Liu X, Hu Y, Zhu X, Ju L, Feng F, Qu W, Liu W, Xu J. Digestive promoting effect and mechanism of Jiao Sanxian in rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114334. [PMID: 34126213 DOI: 10.1016/j.jep.2021.114334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/22/2021] [Accepted: 06/10/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiao Sanxian, a customary term for the three Traditional Chinese Medicines of charred hawthorn (Crataegi Fructus), charred malt (Hordei Fructus Germinatus) and Liu Shenqu (Massa Medicata Fermentata), is a classic prescription for the treatment of functional dyspepsia (FD). This prescription is called "Jiao Sanxian" in China because people believe that it is a miracle medicine for enhancing digestion and improving stagnation of digestive system. Even though Jiao Sanxian is widely used in clinical treatment, the underlying mechanism has not been clarified to date. AIM OF THE STUDY The present study is aimed to explore the efficacy and mechanism of Jiao Sanxian in improving the symptoms of FD in rats by using multiple pharmacological methods. MATERIALS AND METHODS The Sprague Dawley (SD) rats were divided into control, model, Jiao Sanxian decoction low-dosage (JSXD LD), Jiao Sanxian decoction medium-dosage (JSXD MD), and Jiao Sanxian decoction high-dosage (JSXD HD) group at random. A FD model was established with reserpine, and animals were given intragastric administration. During this period, weight and food intake of animals were recorded. Samples of rat gastric antrum, spleen, and duodenum were collected for pathological staining and immunohistochemical determination of Ghrelin protein expression after 19 days of treatment. Enzyme-linked immunosorbent assay (ELISA) was used to determine the concentration of related brain gut peptides in serum. Moreover, 16S rRNA sequencing was used to valuate the influence of intestinal flora structure of the cecal contents of experimental rats. And plasma metabolomics by Ultra Performance Liquid Chromatography coupled with Quadrupole-Time-of-Flight mass spectrometry (UPLC-Q/TOF-MS) were performed to further reveal the mechanism of action. RESULTS Jiao Sanxian decoction (JSXD) group with different dosage could increase body weight and food intake, improve histopathological changes, and alter disordered brain gut peptides in FD rats. 16S rRNA sequencing results described that JSXD improved the disorder of structural composition, biodiversity and function of gut microbiota in FD rats. Metabolomics illustrated 26 metabolites with JSXD treatment underwent continuous changes, which revealed JSXD might exert digestive effect by ameliorating abnormal metabolic pathways. The most relevant metabolic pathways were arachidonic acid metabolism, pyruvate metabolism, glycerophospholipid metabolism, alanine, aspartate and glutamate metabolism. CONCLUSIONS JSXD can improve functional dyspepsia in rats and the mechanism is related to regulate secretion of brain gut peptides, significantly improve the disorder of intestinal flora and ameliorated multi-metabolic pathways.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Wenting Liao
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xingran Liu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yunwei Hu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xiaoxia Zhu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Longtao Ju
- Nantong Hospital of Integrated Traditional Chinese and Western Medicine, Nantong, 226000, People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, People's Republic of China; Jiangsu Food and Pharmaceutical Science College, Huaian, 223003, People's Republic of China
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Jian Xu
- Department of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
25
|
Li X, Wu D, Niu J, Sun Y, Wang Q, Yang B, Kuang H. Intestinal Flora: A Pivotal Role in Investigation of Traditional Chinese Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:237-268. [PMID: 33622213 DOI: 10.1142/s0192415x21500130] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intestinal flora is essential for maintaining host health and plays a unique role in transforming Traditional Chinese Medicine (TCM). TCM, as a bodyguard, has saved countless lives and maintained human health in the long history, especially in this COVID-19 pandemic. Pains of diseases have been removed from the effective TCM therapy, such as TCM preparation, moxibustion, and acupuncture. With the development of life science and technology, the wisdom and foresight of TCM has been more displayed. Furthermore, TCM has been also inherited and developed in innovation to better realize the modernization and globalization. Nowadays, intestinal flora transforming TCM and TCM targeted intestinal flora treating diseases have been important findings in life science. More and more TCM researches showed the significance of intestinal flora. Intestinal flora is also a way to study TCM to elucidate the profound theory of TCM. Processing, compatibility, and properties of TCM are well demonstrated by intestinal flora. Thus, it is no doubt that intestinal flora is a core in TCM study. The interaction between intestinal flora and TCM is so crucial for host health. Therefore, it is necessary to sum up the latest results in time. This paper systematically depicted the profile of TCM and the importance of intestinal flora in host. What is more, we comprehensively summarized and discussed the latest progress of the interplay between TCM and intestinal flora to better reveal the core connotation of TCM.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, P. R. China
| | - Dan Wu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, P. R. China
| | - Jingjie Niu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, P. R. China
| | - Yanping Sun
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, P. R. China
| | - Qiuhong Wang
- Department of Natural Medicinal Chemistry, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Bingyou Yang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, P. R. China
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, P. R. China
| |
Collapse
|
26
|
Zhang J, Chen Z, Zhang L, Zhao X, Liu Z, Zhou W. A systems-based analysis to explore the multiple mechanisms of Shan Zha for treating human diseases. Food Funct 2021; 12:1176-1191. [PMID: 33432314 DOI: 10.1039/d0fo02433c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Shan Zha has garnered increasing attention in the field of functional foods and medicines due to its widely reported healing effects. However, the potential mechanisms of Shan Zha for human health benefits have not been fully interpreted. Therefore, in the current study, a systems-based method that integrates ADME evaluation, target fishing, gene ontology enrichment analysis, network pharmacology, and pathway analysis is proposed to clarify the underlying pharmacological mechanisms of Shan Zha. As a result, 45 active components of Shan Zha that interacted with 161 protein targets were screened and identified. Moreover, gene ontology enrichment, network and pathway analysis indicated that Shan Zha is beneficial for the treatment of cardiovascular system diseases, digestive system diseases, immune system diseases, inflammatory diseases, cancer, and other diseases through multiple mechanisms. Our study not only proposed an integrated method to comprehensively elucidate the complicated mechanisms of Shan Zha for the treatment of various disorders at the system level, but also provided a reference approach for the mechanistic research of other functional foods.
Collapse
Affiliation(s)
- Jingxiao Zhang
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China.
| | - Ziyi Chen
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin 999077, Hong Kong Special Administrative Region
| | - Lilei Zhang
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China.
| | - Xiaoxiao Zhao
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China.
| | - Zhigang Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen University, Shenzhen, China
| | - Wei Zhou
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China. and State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
27
|
Wang K, Luo L, Xu X, Chen X, He Q, Zou Z, Wang S, Liang S. LC-MS-based plasma metabolomics study of the intervention effect of different polar parts of hawthorn on gastrointestinal motility disorder rats. Biomed Chromatogr 2021; 35:e5076. [PMID: 33476053 DOI: 10.1002/bmc.5076] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/05/2021] [Accepted: 01/18/2021] [Indexed: 01/24/2023]
Abstract
Dyspepsia, one of the most prevalent diseases of the digestive tract that impacts the quality of patient life, is mainly caused by gastrointestinal motility disorder. Hawthorn is a commonly used traditional Chinese medicine for treating dyspepsia, and has been proven to improve gastrointestinal motility. Herein, a rat model of gastrointestinal motility disorder was established by subcutaneous injection with atropine. The modeled rats were treated with four polar parts (T1-4 in descending polarity, corresponding to water, n-butanol, ethyl acetate and petroleum ether extracts, respectively) of hawthorn. Through metabolomics analysis, a total of 20 significantly metabolites were identified with significant changes in their abundance levels and these metabolites were related to many metabolic pathways such as amino acid metabolism and primary bile acid biosynthesis. The results showed that T3 had the best therapeutic effect of promoting gastrointestinal motility. Other parts showed no obvious therapeutic effect, demonstrating that the effective components of hawthorn may be compounds of medium polarity. T3 might achieve good therapeutic effects owing to the gastrointestinal motility promotion activity, and by rectifying the disturbed metabolic pathways in the gastrointestinal motility disorder model.
Collapse
Affiliation(s)
- Kaiyang Wang
- Department of Traditional Chinese Medicine Analysis, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lan Luo
- Department of Traditional Chinese Medicine Analysis, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, Guangzhou, China.,Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou, China.,Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangzhou, China
| | - Xiaoli Xu
- Department of Traditional Chinese Medicine Analysis, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xingyu Chen
- Department of Traditional Chinese Medicine Analysis, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qiong He
- Department of Traditional Chinese Medicine Analysis, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhongjie Zou
- Department of Traditional Chinese Medicine Analysis, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, Guangzhou, China.,Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou, China.,Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangzhou, China
| | - Shumei Wang
- Department of Traditional Chinese Medicine Analysis, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, Guangzhou, China.,Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou, China.,Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangzhou, China
| | - Shengwang Liang
- Department of Traditional Chinese Medicine Analysis, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, Guangzhou, China.,Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou, China.,Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangzhou, China
| |
Collapse
|
28
|
Fei C, Ren C, Wang Y, Li L, Li W, Yin F, Lu T, Yin W. Identification of the raw and processed Crataegi Fructus based on the electronic nose coupled with chemometric methods. Sci Rep 2021; 11:1849. [PMID: 33473146 PMCID: PMC7817683 DOI: 10.1038/s41598-020-79717-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 12/11/2020] [Indexed: 11/26/2022] Open
Abstract
Crataegi Fructus (CF) is widely used as a medicinal and edible material around the world. Currently, different types of processed CF products are commonly found in the market. Quality evaluation of them mainly relies on chemical content determination, which is time and money consuming. To rapidly and nondestructively discriminate different types of processed CF products, an electronic nose coupled with chemometrics was developed. The odour detection method of CF was first established by single-factor investigation. Then, the sensor array was optimised by a stepwise discriminant analysis (SDA) and analysis of variance (ANOVA). Based on the best-optimised sensor array, the digital and mode standard were established, realizing the odour quality control of samples. Meanwhile, mathematical prediction models including the discriminant formula and back-propagation neural network (BPNN) model exhibited good evaluation with a high accuracy rate. These results suggest that the developed electronic nose system could be an alternative way for evaluating the odour of different types of processed CF products.
Collapse
Affiliation(s)
- Chenghao Fei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenchen Ren
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yulin Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lin Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weidong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fangzhou Yin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Wu Yin
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
29
|
Li M, Chen X, Deng J, Ouyang D, Wang D, Liang Y, Chen Y, Sun Y. Effect of thermal processing on free and bound phenolic compounds and antioxidant activities of hawthorn. Food Chem 2020; 332:127429. [DOI: 10.1016/j.foodchem.2020.127429] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 01/07/2023]
|
30
|
Yang M, Yan T, Yu M, Kang J, Gao R, Wang P, Zhang Y, Zhang H, Shi L. Advances in understanding of health‐promoting benefits of medicine and food homology using analysis of gut microbiota and metabolomics. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.49] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Minmin Yang
- College of Life Sciences Shaanxi Normal University Xi'an China
| | - Tao Yan
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Meng Yu
- The Institute of Medicinal Plant Development Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jie Kang
- Physical Education Institute Shaanxi Normal University Xi'an China
| | - Ruoxi Gao
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Peng Wang
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Yuhuan Zhang
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Huafeng Zhang
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
- Internatinal Joint Research Center of Shaanxi Province for Food and Health Science Shaanxi Normal University Xi'an China
| | - Lin Shi
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
- Internatinal Joint Research Center of Shaanxi Province for Food and Health Science Shaanxi Normal University Xi'an China
- Department of Biology and Biological Engineering Chalmers University of Technology Gothenburg Sweden
| |
Collapse
|
31
|
Abstract
Medicinal plants, many of which are wild, have recently been under the spotlight worldwide due to growing requests for natural and sustainable eco-compatible remedies for pathological conditions with beneficial health effects that are able to support/supplement a daily diet or to support and/or replace conventional pharmacological therapy. The main requests for these products are: safety, minimum adverse unwanted effects, better efficacy, greater bioavailability, and lower cost when compared with synthetic medications available on the market. One of these popular herbs is hawthorn (Crataegus spp.), belonging to the Rosaceae family, with about 280 species present in Europe, North Africa, West Asia, and North America. Various parts of this herb, including the berries, flowers, and leaves, are rich in nutrients and beneficial bioactive compounds. Its chemical composition has been reported to have many health benefits, including medicinal and nutraceutical properties. Accordingly, the present review gives a snapshot of the in vitro and in vivo therapeutic potential of this herb on human health.
Collapse
|
32
|
Chen X, Zhang H, Du W, Qian L, Xu Y, Huang Y, Xiong Q, Li H, Yuan J. Comparison of different extraction methods for polysaccharides from Crataegus pinnatifida Bunge. Int J Biol Macromol 2020; 150:1011-1019. [DOI: 10.1016/j.ijbiomac.2019.11.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 01/17/2023]
|
33
|
Bujor A, Miron A, Luca SV, Skalicka-Wozniak K, Silion M, Trifan A, Girard C, Demougeot C, Totoson P. Vasorelaxant effects of Crataegus pentagyna: Links with arginase inhibition and phenolic profile. JOURNAL OF ETHNOPHARMACOLOGY 2020; 252:112559. [PMID: 31935497 DOI: 10.1016/j.jep.2020.112559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Crataegus leaves, flowers and fruits have been traditionally used to improve blood circulation, numerous preclinical and clinical studies supporting the cardiovascular benefits of Crataegus preparations. In this respect, there is very limited data on Crataegus pentagyna; in addition, the chemical profile of this species is still incompletely elucidated. AIM OF THE STUDY The objective of this study was to examine the cardiovascular benefits of Crataegus pentagyna Waldst. et Kit. ex Willd. (small-flowered black hawthorn, Rosaceae) extracts (leaf, flower and fruit ethyl acetate extracts) and the underlying mechanisms. We hypothesized that C. pentagyna extracts might exert vasodilatory effects and inhibit arginase activity due, in large part, to their polyphenolic constituents. MATERIALS AND METHODS C. pentagyna extracts induced-relaxation and the mechanisms involved were studied ex vivo in isolated aortic rings from Sprague-Dawley rats. The inhibitory effects on bovine liver arginase I were assessed by an in vitro assay. Metabolite profiling of C. pentagyna extracts was performed and the most endothelium- and nitric oxide synthase-dependent; flower extract additionally reduced Ca2+ entry and, to a lesser extent, Ca2+ release from the sarcoplasmic reticulum. C. pentagyna proved to be an important source of arginase inhibitors with potential benefits in endothelial dysfunction that remains to be explored.
Collapse
Affiliation(s)
- Alexandra Bujor
- Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115, Iasi, Romania; PEPITE EA 4267, FHU INCREASE, University Bourgogne Franche-Comté, 19 rue Ambroise Paré, F-25030, Besançon, France.
| | - Anca Miron
- Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115, Iasi, Romania.
| | - Simon Vlad Luca
- Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115, Iasi, Romania; Biothermodynamics, TUM School of Life and Food Sciences Weihenstephan, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany.
| | - Krystyna Skalicka-Wozniak
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland.
| | - Mihaela Silion
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487, Iasi, Romania.
| | - Adriana Trifan
- Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115, Iasi, Romania.
| | - Corine Girard
- PEPITE EA 4267, FHU INCREASE, University Bourgogne Franche-Comté, 19 rue Ambroise Paré, F-25030, Besançon, France.
| | - Céline Demougeot
- PEPITE EA 4267, FHU INCREASE, University Bourgogne Franche-Comté, 19 rue Ambroise Paré, F-25030, Besançon, France.
| | - Perle Totoson
- PEPITE EA 4267, FHU INCREASE, University Bourgogne Franche-Comté, 19 rue Ambroise Paré, F-25030, Besançon, France.
| |
Collapse
|
34
|
Ao N, Qu Y, Deng Y, Cai Q, Suo T, Zheng Y. Chemical basis of hawthorn processed with honey protecting against myocardial ischaemia. Food Funct 2020; 11:3134-3143. [PMID: 32207479 DOI: 10.1039/c9fo02406a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Hawthorn including many plants from the genus Crataegus (C.) is used for traditional medicines, herbal drugs, and dietary supplements all over the world. In China, C. pinnatifida Bge. var. major N, E. Br, and C. pinnatifida Bge. are two major species that are used as hawthorn. The purpose of this study is to assay the myocardial protection of hawthorn fruit processed with honey (MSZ) and screen the chemical basis of MSZ on this effect. Firstly, ultra-performance liquid chromatography-quadrupole time of flight-mass spectrometry (UPLC/Q-TOF-MS) was used to analyze the chemical constituents of the sliced dry fruit of hawthorn (SZ) and MSZ. Principal component analysis (PCA) was used to differentiate them. Orthogonal partial least squares-discriminate analysis (OPLS-DA) was applied to screen different compounds between SZ and MSZ, and 32 different compounds were selected. Then a pharmacodynamic test to investigate their protective effect against myocardial ischaemia was carried out. The results demonstrated that the protective effect of MSZ was better than that of SZ on the same dose. Finally, the chemical basis for the protective effect provided by MSZ against myocardial ischaemia was speculated based on correlation analysis. Taken together, all these results suggest that phenylpropanoids, organic acids, tannins, and flavonoids might be the chemical basis of MSZ protecting against myocardial ischaemia.
Collapse
Affiliation(s)
- Nannan Ao
- Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China.
| | | | | | | | | | | |
Collapse
|
35
|
Liu F, Zhang X, Ji Y. Total Flavonoid Extract from Hawthorn (Crataegus pinnatifida) Improves Inflammatory Cytokines-Evoked Epithelial Barrier Deficit. Med Sci Monit 2020; 26:e920170. [PMID: 32065826 PMCID: PMC7041422 DOI: 10.12659/msm.920170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Intestinal epithelial barrier dysfunction is involved in the development and pathogenesis of intestinal diseases, such as irritable bowel syndrome, inflammatory bowel disease, and celiac disease. This study was performed to evaluate the ability of total flavonoid extract from hawthorn (TFH) to improve TNF-α-evoked intestinal epithelial barrier deficit. Material/Methods Caco-2 cells monolayers were exposed to TNF-α in different concentrations of TFH. Intestinal epithelial barrier function was evaluated using epithelial permeability and transepithelial electrical resistance (TER). Results Our findings showed that TFH alleviated the increase of paracellular permeability and the decline of transepithelial electrical resistance (TER) evoked by TNF-α. Additionally, 24-h pre-incubation with TFH inhibited TNF-α-evoked secretion of pro-inflammatory factors (IL-6, IL-8, MCP-1, and IL-1β). Furthermore, TFH inhibited TNF-α-evoked overexpression of pMLC and MLCK and alleviated breakdown of TJs protein (ZO-1 and occludin). The activations of Elk-1 and NFκBp65 were inhibited by TFH pre-incubation. Conclusions TFH can alleviate TNF-α-evoked intestinal epithelial barrier deficit via the NFκBp65-mediated MLCK-MLC signaling pathway.
Collapse
Affiliation(s)
- Feng Liu
- Department of General Anorectal Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu, China (mainland)
| | - Xuesong Zhang
- Central Laboratory, Jingjiang People's Hospital, Jingjiang, Jiangsu, China (mainland)
| | - Yong Ji
- Department of General Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu, China (mainland)
| |
Collapse
|