1
|
Scaglione E, Sateriale D, Mantova G, Di Rosario M, Continisio L, Vitiello M, Pagliarulo C, Colicchio R, Pagliuca C, Salvatore P. Antimicrobial efficacy of Punica granatum Lythraceae peel extract against pathogens belonging to the ESKAPE group. Front Microbiol 2024; 15:1383027. [PMID: 38711969 PMCID: PMC11070501 DOI: 10.3389/fmicb.2024.1383027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/02/2024] [Indexed: 05/08/2024] Open
Abstract
The improper use and abuse of antibiotics have led to an increase in multidrug-resistant (MDR) bacteria resulting in a failure of standard antibiotic therapies. To date, this phenomenon represents a leading public health threat of the 21st century which requires alternative strategies to fight infections such as the identification of new molecules active against MDR strains. In the last 20 years, natural extracts with biological activities attracted scientific interest. Following the One Health Approach, natural by-products represent a sustainable and promising alternative solution. Consistently, the aim of the present study was to evaluate the antimicrobial activity of hydro-alcoholic pomegranate peel extract (PPE) against MDR microorganisms belonging to Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. "ESKAPE" group pathogens. Through semiquantitative and quantitative methods, the PPE showed effective antimicrobial activity against Gram-positive and Gram-negative MDR bacteria. The kinetics of bactericidal action of PPE highlighted that microbial death was achieved in a time- and dose-dependent manner. High concentrations of PPE exhibited antioxidant activity, providing a protective effect on cellular systems and red blood cell membranes. Finally, we report, for the first time, a significant intracellular antibacterial property of PPE as highlighted by its bactericidal action against the staphylococcal reference strain and its bacteriostatic effect against clinical resistant strain in the HeLa cell line. In conclusion, due to its characterized content of polyphenolic compounds and antioxidant activity strength, the PPE could be considered as a therapeutic agent alone or in conjunction with standard antibiotics against challenging infections caused by ESKAPE pathogens.
Collapse
Affiliation(s)
- Elena Scaglione
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Daniela Sateriale
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Giuseppe Mantova
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Martina Di Rosario
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Leonardo Continisio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Mariateresa Vitiello
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Caterina Pagliarulo
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore s.c.ar.l., Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Noureddine B, Mostafa E, Mandal SC. Ethnobotanical, pharmacological, phytochemical, and clinical investigations on Moroccan medicinal plants traditionally used for the management of renal dysfunctions. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115178. [PMID: 35278608 DOI: 10.1016/j.jep.2022.115178] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/26/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Renal disease is a significant public health concern that affects people all over the world. The main limitations of conventional therapy are the adverse reaction on human health and the expensive cost of drugs. Indeed, it is necessary to develop new therapeutic strategies that are less expensive and have fewer side effects. As a consequence of their natural compounds, medicinal plants can be used as an alternative therapy to cure various ailments including kidney diseases. OBJECTIVE of the study: This review paper has two principal goals: (1) to inventory and describe the plants and their ancestral use by Moroccan society to cure renal problems, (2) to link traditional use with scientific confirmations (preclinical and clinical). METHODS To analyze pharmacological effects, phytochemical, and clinical trials of plants, selected for renal therapy, a bibliographical search was undertaken by examining ethnobotanical investigations conducted in Morocco between 1991 and 2019 and consulting peer-reviewed papers from all over the world. RESULTS Approximately 290 plant species, spanning 81 families and 218 genera have been reported as being utilized by Moroccans to manage renal illness. The most frequently mentioned species in Morocco were Herniaria hirsuta subsp. cinerea (DC.), Petroselinum crispum (Mill.) Fuss and Rosmarinus officinalis L. The leaves were the most frequently used plant parts, followed by the whole plant. Decoction and infusion were the most popular methods of preparation. A record of 71 plant species was studied in vitro and/or in vivo for their therapeutic efficacy against kidney disorders, including 10 plants attempting to make it to the clinical stage. Twenty compounds obtained from 15 plants have been studied for the treatment of kidney diseases. CONCLUSION Medicinal herbs could be a credible alternative therapy for renal illness. However, additional controlled trials are required to confirm their efficiency in patients with kidney failure. Overall, this work could be used as a database for future exploration.
Collapse
Affiliation(s)
- Bencheikh Noureddine
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| | - Elachouri Mostafa
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| | - Subhash C Mandal
- Pharmacognosy and Phytotherapy Research Laboratory, Division of Pharmacognosy, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
3
|
Amrouche TA, Yang X, Güven EÇ, Huang W, Chen Q, Wu L, Zhu Y, Liu Y, Wang Y, Lu B. Contribution of edible flowers to the Mediterranean diet: Phytonutrients, bioactivity evaluation and applications. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Thanina Amel Amrouche
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Key Laboratory for Agro‐Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality
- Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| | - Xuan Yang
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Key Laboratory for Agro‐Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality
- Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| | - Esra Çapanoğlu Güven
- Faculty of Chemical and Metallurgical Engineering Food Engineering Department Istanbul Technical University Maslak Istanbul Turkey
| | - Weisu Huang
- Zhejiang Economic & Trade Polytechnic Department of Applied Technology Hangzhou China
| | - Qi Chen
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Key Laboratory for Agro‐Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality
- Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| | - Lipeng Wu
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Key Laboratory for Agro‐Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality
- Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| | - Yuhang Zhu
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Key Laboratory for Agro‐Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality
- Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| | - Yuqi Liu
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Key Laboratory for Agro‐Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality
- Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| | - Yixuan Wang
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Key Laboratory for Agro‐Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality
- Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Key Laboratory for Agro‐Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality
- Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| |
Collapse
|
4
|
Chen Z, Xu L, Gao X, Wang C, Li R, Xu J, Zhang M, Panichayupakaranant P, Chen H. A multifunctional CeO 2@SiO 2-PEG nanoparticle carrier for delivery of food derived proanthocyanidin and curcumin as effective antioxidant, neuroprotective and anticancer agent. Food Res Int 2020; 137:109674. [PMID: 33233251 DOI: 10.1016/j.foodres.2020.109674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/04/2020] [Accepted: 09/06/2020] [Indexed: 02/05/2023]
Abstract
The nanoparticle systems could effectively overcome the drug delivery challenges of food bioactive compounds. In this study, a novel and effective multifunctional PEG modified CeO2@SiO2 nanoparticle (CSP-NPs) system was successfully fabricated. Food derived proanthocyanidin (PAC) and curcumin (Cur) were loaded onto CSP-NPs and formed as PAC-NPs and Cur-NPs. Fourier transform Infrared spectra, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and dynamic light scattering were used to characterize the prepared NPs. CSP-NPs, PAC-NPs and Cur-NPs displayed spherical shape with about 35-45 nm size. The bioactivity analysis revealed that CSP-NPs system could effectively deliver PAC and Cur to exhibit strong antioxidant activity, potent neuroprotective effect against Aβ1-42-mediated toxicity in PC-12 cells (recovered cell viability from 57.5% to 81.0% at the dose of 25 μg/mL) and effective antiproliferative effects on HepG2 and Hela cells. Besides, all prepared nanoparticles (0-100 µg/ml) used in this study showed no significant toxicity on cell models of antioxidative and neuroprotective activities, excepting for cancer cells, suggesting that these nanoparticles had the potential of being utilized in drug delivery. Therefore, CSP-NPs might be a promising delivery system for hydrophilic molecule proanthocyanidin and hydrophobic molecule curcumin against the oxidative damage, neurodegenerative diseases and cancer, which could facilitate the application of food derived nutrients in functional foods industry.
Collapse
Affiliation(s)
- Zhongqin Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Leilei Xu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Xudong Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Chunli Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ruilin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Jun Xu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300384, PR China; State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Pharkphoom Panichayupakaranant
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
5
|
Gao X, Santhanam RK, Xue Z, Jia Y, Wang Y, Lu Y, Phisalaphong M, Chen H. Antioxidant, α-amylase and α-glucosidase activity of various solvent fractions of I. obliquus and the preventive role of active fraction against H 2 O 2 induced damage in hepatic L02 cells as fungisome. J Food Sci 2020; 85:1060-1069. [PMID: 32147838 DOI: 10.1111/1750-3841.15084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/23/2019] [Accepted: 01/25/2020] [Indexed: 11/30/2022]
Abstract
Inonotus obliquus is a traditional mushroom well known for its therapeutic value. In this study, various solvent fractions of I. obliquus were preliminarily screened for their antioxidant, α-amylase and α-glucosidase inhibition properties. To improve the drug delivery, the active fraction (ethyl acetate fraction) of I. obliquus was synthesized into fungisome (ethyl acetate phophotidyl choline complex, EAPC) and its physical parameters were assessed using Fourier transform infrared spectroscopy (FTIR), High performance liquid chromatography (HPLC), Scanning electron microscope (SEM), and ς potential analysis. Then normal human hepatic L02 cells was used to evaluate the cytotoxicity of EAPC. The results showed that EA fraction possesses significant free radical scavenging, α-amylase and α-glucosidase inhibition properties. FTIR, SEM, and HPLC analysis confirmed the fungisome formation. The particle size of EAPC was 102.80 ± 0.42 nm and the ς potential was -54.30 ± 0.61 mV. The percentage of drug entrapment efficiency was 97.13% and the drug release rates of EAPC in simulated gastric fluid and simulated intestinal fluid were 75.04 ± 0.29% and 93.03 ± 0.36%, respectively. EAPC was nontoxic to L02 cells, however it could selectively fight against the H2 O2 induced oxidative damage in L02 cells. This is the first study to provide scientific information to utilize the active fraction of I. obliquus as fungisome. PRACTICAL APPLICATIONS: Inonotus obliquus (IO) is a traditional medicinal fungus. The extracts of IO have obvious antioxidant and hypoglycemic activities. Ethyl acetate (EA) fraction of IO was encapsulated in liposomes to form EAPC. EAPC has a sustained-release effect. It has nontoxic to L02 cells and could protect L02 cells from oxidative damage caused by hydrogen peroxide. This study could provide new ideas for the treatment of diabetes.
Collapse
Affiliation(s)
- Xudong Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P.R. China
| | - Ramesh Kumar Santhanam
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P.R. China.,School of Fundamental Science, University Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Zihan Xue
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P.R. China
| | - Yanan Jia
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P.R. China
| | - Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P.R. China
| | - Yangpeng Lu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P.R. China
| | - Muenduen Phisalaphong
- Department of Chemical Engineering, Chulalongkorn University, Phayathai Road, Bangkok, 10330, Pathum Wan, Thailand
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P.R. China
| |
Collapse
|