1
|
Hu Z, Wu X, Du Y, Zou W, Dong H, Song M, Hang T, Lu Y. Health risk assessment for human mercury exposure from Cinnabaris-containing Baizi Yangxin Pills in healthy volunteers Po administration. J Trace Elem Med Biol 2024; 83:127398. [PMID: 38245934 DOI: 10.1016/j.jtemb.2024.127398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND Cinnabaris (α-HgS), a mineral traditional Chinese material medica, has been used in combination with other herbs manifesting some definite therapeutic effects for thousands of years. But the currently reported mercury poisoning incidents raised the doubts about the safety of Cinnabaris-containing traditional Chinese medicines (TCMs). Baizi Yangxin Pills (BZYXP) is a Cinnabaris-containing TCM widely used in clinical practice. This study evaluated the health risk of mercury exposure from BZYXP in healthy volunteers based on the total mercury and mercury species analysis of blood and urine after single and multiple doses of BZYXP. METHODS Blood pharmacokinetics and urinary excretion studies of mercury were compared between single (9 g, once daily) and multiple doses (9 g, twice daily, continued for 7 days) of BZYXP. The whole blood and urine samples were collected at the specific points or periods after the administration of BZYXP. The total mercury and mercury species in blood and urine samples were determined by cold vapor-atomic fluorescence spectrometry (CV-AFS) and HPLC-CV-AFS, respectively. RESULTS The mercury was excreted slowly and accumulated obviously after continuous exposure of BZYXP. Moreover, the well-known neurotoxin methylmercury (MeHg) was detected in blood samples after 7 days' administration of BZYXP. In the urine samples, only Hg(II) was detected. Therefore, long-term use of BZYXP will cause mercury poisoning due to mercury's high accumulative properties and MeHg formation. CONCLUSION Cinnabaris-containing TCMs such as BZYXP should be restricted to cases in which alternatives are available, and the blood mercury species profile should be monitored during the long-term clinical medication.
Collapse
Affiliation(s)
- Zhaoliang Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Xiao Wu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China; School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Du
- Department of Pharmacy, First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Wenyu Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Haijuan Dong
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing, China
| | - Min Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Taijun Hang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China.
| | - Yuting Lu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
2
|
Liu B, Li L, Xie Q, Li Y, Wang Q. Neurobehavioral effects of cinnabar and the cinnabar-containing pediatric prescription, Yi-Nian-Jin, in juvenile rats. J Trace Elem Med Biol 2023; 76:127112. [PMID: 36481603 DOI: 10.1016/j.jtemb.2022.127112] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/04/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Cinnabar, a mercury-containing mineral medicine, has long been widely used in pediatric prescriptions. The safety of cinnabar-containing prescriptions, particularly for children, is drawing increasing attention worldwide. However, whether cinnabar and these pediatric prescriptions have adverse effects on neurobehavior is unknown. Yi-Nian-Jin (YNJ), a classic pediatric prescription, contains 5.66% (w/w) cinnabar, along with other four herbs. YNJ is widely prescribed to promote digestion, eliminate phlegm, and prevent constipation in children (aged 0-6 years). In this study, we used YNJ as an example of cinnabar-containing pediatric prescriptions to determine mercury absorption, distribution, and accumulation and further investigate its potential neurotoxicity in juvenile rats. MATERIAL AND METHODS Low (67.9 mg/kg), middle (169.8 mg/kg), and high dose (339.6 mg/kg) of cinnabar, and low (1.2 g/kg), middle (3.0 g/kg), and high dose (6.0 g/kg) of YNJ were used in this study, corresponding to 3, 7.5, and 15 times the clinically equivalent dose, respectively. Juvenile rats were orally administered different doses of cinnabar or YNJ for 14 consecutive days. The mercury content in rat blood and tissues (brain, liver, and kidney) and serum biochemical changes on day 14 of consecutive administration and on day 14 after cessation were measured. Moreover, a series of behavioral assays (open field, elevated plus-maze, and Morris water maze assays) were performed after 14 consecutive days of administration. RESULTS The mercury absorption, distribution, and accumulation of cinnabar and YNJ in juvenile rats were substantially different. Mercury in cinnabar was absorbed to a greater extent than that in YNJ, and the mercury content in cinnabar high-dose group (cinnabar-H) was approximately seven times higher than that in YNJ high-dose group (YNJ-H) on day 14 of administration. In contrast, compared with that of cinnabar, the mercury content in YNJ accumulated more in the tissues, especially in the brain and kidney. Repeated administration of cinnabar or YNJ did not affect liver function, renal function, learning, and memory in juvenile rats. However, repeated administration of YNJ at a high dose (6.0 g/kg) affected locomotor activity in juvenile rats. Repeated administration of cinnabar (339.6 mg/kg) or YNJ (>1.2 g/kg) induced anxiety-related behavior in juvenile rats. CONCLUSIONS Mercury in YNJ exhibited lower absorption but higher accumulation in tissues than those of the mercury in cinnabar. Consecutive oral administration of cinnabar or YNJ had no impact on liver function, renal function, learning, and memory, but could cause motor dysfunction and anxiety in juvenile rats.
Collapse
Affiliation(s)
- Bohan Liu
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China
| | - Ludi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China
| | - Qing Xie
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, PR China
| | - Yingzi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China.
| |
Collapse
|
3
|
Wu X, Zhong Z, Lin K, Liu X, Wu Z, Liu Z, Li Y. Comparative pharmacokinetics and urinary excretion of arsenic and mercury after oral administration of realgar, cinnabar and AnGongNiuHuang Pill to rats. Front Pharmacol 2022; 13:967608. [PMID: 36110533 PMCID: PMC9470115 DOI: 10.3389/fphar.2022.967608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Realgar- and cinnabar-containing AnGongNiuHuang Pill (AGNHP) is widely used for treating encephalopathy syndrome. However, it raises great safety concerns due to the adverse effects reported by arsenic or mercury poisoning. Although AGNHP has been generally recognized, little is known about the metabolism of arsenic and mercury and their resulting potential health risk in vivo. Thus, comparative pharmacokinetics and urinary excretion of arsenic and mercury were conducted in rats after oral administration of realgar, cinnabar and AGNHP, respectively. The contents of arsenic and mercury in rat blood and urine were determined by hydride-generation atomic fluorescence spectrometry (HG-AFS) after wet digestion. AGNHP significantly reduced the absorption of arsenic in blood and promoted urinary arsenic excretion. Whereas, it increased the blood mercury absorption and reduced urinary mercury excretion. No significant toxicity was observed in the clinical dose range of AGNHP. However, excessive exposure to arsenic and mercury may still pose risks especially by long-term or excessive medication. The results are helpful for the rational clinical applications of realgar- and cinnabar-containing TCMs.
Collapse
Affiliation(s)
- Xiao Wu
- *Correspondence: Xiao Wu, ; Yongming Li,
| | | | | | | | | | | | | |
Collapse
|
4
|
Lv Z, Zhang M, Jin H, Wei M. An Ultrasensitive DNA Sensor for Hg
2+
Assay Based on Electrodeposited Au/Carbon Nanofibers‐chitosan and Reduced Graphene Oxide. ELECTROANAL 2022. [DOI: 10.1002/elan.202200152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zeping Lv
- College of Food Science and Technology Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou 450001 PR China
| | - Mingli Zhang
- College of Food Science and Technology Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou 450001 PR China
| | - Huali Jin
- College of Food Science and Technology Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou 450001 PR China
| | - Min Wei
- College of Food Science and Technology Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou 450001 PR China
| |
Collapse
|
5
|
Dai W, Feng K, Sun X, Xu L, Wu S, Rahmand K, Jia D, Han T. Natural products for the treatment of stress-induced depression: Pharmacology, mechanism and traditional use. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114692. [PMID: 34742864 DOI: 10.1016/j.jep.2021.114692] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/15/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Depression, one of the most common psychiatric disorders, is the fourth leading cause of long-term disability worldwide. A series of causes triggered depression, including psychological stress and conflict, as well as biological derangement, among which stress has a pivotal role in the development of depression. Traditional herbal medicine has been used for the treatment of various disorders including depression for a long history with multi-targets, multi-levels and multi-ways, attracting great attention from scholars. Recently, natural products have been commercialized as antidepressants which have become increasingly popular in the world health drug markets. Major research contributions in ethnopharmacology have generated and updated vast amount of data associated with natural products in antidepressant-like activity. AIMS OF THE REVIEW This review aims to briefly discuss the pathological mechanism, animal models of stress-induced depression, traditional use of herbal medicines and especially recapitulate the natural products with antidepressant activity and their pharmacological functions and mechanism of action, which may contribute to a better understanding of potential therapeutic effects of natural products and the development of promising drugs with high efficacy and low toxicity for the treatment of stress-induced depression. MATERIALS AND METHODS The contents of this review were sourced from electronic databases including PubMed, Sci Finder, Web of Science, Science Direct, Elsevier, Google Scholar, Chinese Knowledge On frastructure (CNKI), Wan Fang, Chinese Scientific and Technological Periodical Database (VIP) and Chinese Biomedical Database (CBM). Additional information was collected from Yao Zhi website (https://db.yaozh.com/). Data were obtained from April 1992 to June 2021. Only English language was applied to the search. The search terms were 'stress-induced depression', 'pathological mechanism' in the title and 'stress', 'depression', 'animal model' and 'natural products' in the whole text. RESULTS Stress-induced depression is related to the monoaminergic system, hypothalamic-pituitary-adrenal (HPA) axis, neuronal plasticity and a series of inflammatory factors. Four main types of animal models of stress-induced depression were represented. Fifty-eight bioactive phytochemical compounds, fifty-six herb medicines and five formulas from traditional Chinese medicine were highlighted, which exert antidepressant effects by inhibiting monoamine oxidase (MAO) reaction, alleviating dysfunction of the HPA axis and nerve injury, and possessing anti-inflammatory activities. CONCLUSIONS Natural products provide a large number of compounds with antidepressant-like effects, and their therapeutic impacts has been highlighted for a long time. This review summarized the pathological mechanism and animal models of stress-induced depression, and the natural products with antidepressant activity in particular, which will shed light on the action mechanism and clinical potential of these compounds. Natural products also have been a vital and promising source for future antidepressant drug discovery.
Collapse
Affiliation(s)
- Wei Dai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China; Department of Pharmacognosy, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Kunmiao Feng
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xiaolei Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China; Department of Pharmacognosy, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Lingchuan Xu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China.
| | - Sijia Wu
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Khalid Rahmand
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Dan Jia
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China.
| | - Ting Han
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China.
| |
Collapse
|
6
|
Zhong X, Di Z, Xu Y, Liang Q, Feng K, Zhang Y, Di L, Wang R. Mineral medicine: from traditional drugs to multifunctional delivery systems. Chin Med 2022; 17:21. [PMID: 35144660 PMCID: PMC8830990 DOI: 10.1186/s13020-022-00577-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/28/2022] [Indexed: 11/10/2022] Open
Abstract
Mineral drugs are an important constituent of traditional Chinese medicine (TCM). Taking minerals that contain heavy metals as drugs is a very national characteristic part of TCM. However, the safety and scientific nature of mineral drugs are controversial owing to their heavy metals and strong toxicity. In 2000, the Food and Drug Administration (FDA) authorized arsenic trioxide (ATO) as first-line therapy for acute promyelocytic leukemia. This makes the development and utilization of mineral drugs become a research hotspot. The development of nanomedicine has found a great prospect of mineral drugs in nano-delivery carriers. And that will hold promise to address the numerous biological barriers facing mineral drug formulations. However, the studies on mineral drugs in the delivery system are few at present. There is also a lack of a detailed description of mineral drug delivery systems. In this review, the advanced strategies of mineral drug delivery systems in tumor therapy are summarized. In addition, the therapeutic advantages and research progress of novel mineral drug delivery systems are also discussed. Here, we hope that this will provide a useful reference for the design and application of new mineral drug delivery systems.
Collapse
Affiliation(s)
- Xiaoqing Zhong
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Zhenning Di
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Yuanxin Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Qifan Liang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Kuanhan Feng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Yuting Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Liuqing Di
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China.
| | - Ruoning Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China.
| |
Collapse
|
7
|
Sun XC, Song X, Guo F, Yuan YH, Wang SY, Wang S, Liu KL, Lv XY, Han B, Zhang C, Liu JT. Terrestrosin D, a spirostanol saponin from Tribulus terrestris L. with potential hepatorenal toxicity. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114716. [PMID: 34626781 DOI: 10.1016/j.jep.2021.114716] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/11/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fructus Tribuli (FT) has been commonly used as a traditional medicine for thousands of years. With the diverse uses of FT, more attention has been paid to its hepatorenal toxicity. However, the compounds causing the hepatorenal toxicity of FT remain undetermined. Terrestrosin D (TED), a major spirostanol saponin isolated from FT, may exert hepatorenal toxicity. AIM OF THE STUDY This study aimed to evaluate the potential hepatorenal toxicity of TED, and preliminarily explore the possible mechanism of TED-induced hepatorenal toxicity. MATERIALS AND METHODS Cytotoxicity assays, a repeated-dose 28-day in-vivo study, a toxicokinetic study, and a tissue distribution study were used to evaluate the potential hepatorenal toxicity of TED. Furthermore, network pharmacology was applied to preliminarily explore the possible mechanism of TED-induced hepatorenal toxicity. RESULTS Both the in vitro and in vivo studies showed that the spirostanol saponin TED had potential hepatorenal toxicity. Nonetheless, hepatorenal toxicity induced by oral treatment with TED at a dosage range of 5 - 15 mg/kg daily for 28 consecutive days to Sprague-Dawley (SD) rats was reversible after 14 days of TED withdrawal. The toxicokinetic study demonstrated that the systematic exposure of SD rats to TED had an accumulation phenomenon and a dose-dependent trend after a 28-day repeated-dose oral administration. The tissue distribution study revealed that TED had a targeted distribution in the liver and kidneys accompanied by a phenomenon of accumulation in SD rats. Network pharmacology combined with molecular docking methods was used to screen for the key targets (HSP90AA1, CNR1, and DRD2) and the key pathways of TED-induced hepatorenal toxicity. CONCLUSIONS The spirostanol saponin TED, a major spirostanol saponin isolated from FT, had potential hepatorenal toxicity.
Collapse
Affiliation(s)
- Xiao-Chen Sun
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiao Song
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Shandong Drug and Food Vocational College, Weihai, 264210, China
| | - Fei Guo
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Yao-Hui Yuan
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Shu-Yue Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Shuai Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Kun-Lin Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xi-Yu Lv
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Bing Han
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Chao Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Jiang-Ting Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
8
|
Xu X, Yu Z, Han B, Li S, Sun Y, Du Y, Wang Z, Gao D, Zhang Z. Luteolin alleviates inorganic mercury-induced kidney injury via activation of the AMPK/mTOR autophagy pathway. J Inorg Biochem 2021; 224:111583. [PMID: 34428638 DOI: 10.1016/j.jinorgbio.2021.111583] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 12/11/2022]
Abstract
Inorganic mercury is a ubiquitous toxic pollutant in the environment. Exposure to inorganic mercury can cause various poisonous effects, including kidney injury. However, no safe and effective treatment for kidney injury caused by inorganic mercury has been found and used. Luteolin (Lut) possesses various beneficial bioactivities. Here, our research aims to investigate the protective effect of Lut on renal injury induced by mercury chloride (HgCl2) and identify the underlying autophagy regulation mechanism. Twenty-eight 6-8 weeks old Wistar rats were randomly assigned to four groups: control, HgCl2, HgCl2 + Lut, and Lut. We performed the determination of oxidative stress and renal function indicators, histopathological analysis, the terminal deoxynucleotidyl transferase-mediated deoxyuracil nucleoside triphosphate nick-end labeling assay to detect apoptosis, western blot detection of autophagy-related protein levels, and atomic absorption method to detect mercury content. Our results showed that Lut ameliorated oxidative stress, apoptosis and restored the autophagy and renal function caused by HgCl2 in rats. Concretely, the level of nuclear factor E2-related factor, renal adenosine monophosphate-activated protein kinase (AMPK) expression, and autophagy regulation-related proteins levels were down-regulated, and the mammalian target of rapamycin (mTOR) expression was up-regulated by HgCl2 treatment. However, Lut treatment reversed the above changes. Notably, Lut reduced the accumulation of HgCl2 in the kidneys and promoted the excretion of HgCl2 through urine. Collectively, our results demonstrate that Lut can attenuate inorganic mercury-induced renal injury via activating the AMPK/mTOR autophagy pathway. Therefore, Lut may be a potential biological medicine to protect against renal damage induced by HgCl2.
Collapse
Affiliation(s)
- Xinyue Xu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Zhongxian Yu
- Pharmacy Department, The Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gongnong Road, Hongqi Street, Chaoyang District, Changchun City, Jilin Province 130021, China
| | - Biqi Han
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Yingshuo Sun
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Yu Du
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Ziwei Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Di Gao
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin 150030, China.
| |
Collapse
|
9
|
Ma HH, Ding YN, Wang A, Li X, Wang Y, Shi FG, Lu YF. Cinnabar protects serum-nutrient starvation induced apoptosis by improving intracellular oxidative stress and inhibiting the expression of CHOP and PERK. Biochem Biophys Rep 2021; 27:101055. [PMID: 34258395 PMCID: PMC8255187 DOI: 10.1016/j.bbrep.2021.101055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 04/30/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
Cinnabar has been used for treatment of various disorders for thousands of years. The medical use of cinnabar, however, has been controversial because of its heavy metal mercury content. A large quantity of studies indicate that the toxicity of cinnabar is far below other inorganic or organic mercury-containing compounds. Yet, the underlying molecular basis has remained unresolved. Here, we investigated the beneficial effects of cinnabar on serum-nutrient starvation-elicited cell injury. Our findings showed that treatment of human renal proximal tubular cells (HK-2) with 4 nM cinnabar effectively inhibited nutrient deprivation induced apoptosis, reduced intracellular reactive oxygen species generation and increased GSH content, which was contrary to the exacerbated apoptotic cell death and oxidative stress in cells treated with HgCl2 at equal mercury concentration. In addition, cinnabar exerted robust antioxidative and antiapoptotic effects in cells under dual challenges of nutrient deprivation and treatment of H2O2. The protein expression levels of both CHOP and PERK were remarkably down-regulated in the cells treated with cinnabar compared to the control cells or cells treated with HgCl2. Overall, our data indicates that cinnabar at low concentration exerts anti-oxidative stress and anti-apoptosis effects by inhibiting the expression of the endoplasmic reticulum stress pathway proteins CHOP and PERK.
Collapse
Affiliation(s)
- Hong-Hong Ma
- Joint International Research Laboratory of Ethnomedicine, and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Yan-Nan Ding
- Joint International Research Laboratory of Ethnomedicine, and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Ao Wang
- Zunyi Institute of Product Quality Inspection and Testing, Zunyi, 563000, China
| | - Xia Li
- Joint International Research Laboratory of Ethnomedicine, and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Yang Wang
- Joint International Research Laboratory of Ethnomedicine, and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Fu-Guo Shi
- Joint International Research Laboratory of Ethnomedicine, and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Yuan-Fu Lu
- Joint International Research Laboratory of Ethnomedicine, and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| |
Collapse
|