1
|
Liu C, Zhong Y, Xiang Y, Qin L, Li J, Huang L, Ning J, He W, Wu C, Cheng Q, Yi D, Liu N, Xu C, Liang Z, He J. Octyl succinic anhydride-modified chitosan/oxidized sodium alginate Schiff base hydrogel loaded with terbinafine hydrochloride: pH-responsive, self-repairing, antifungal properties. Int J Biol Macromol 2025; 301:140431. [PMID: 39884625 DOI: 10.1016/j.ijbiomac.2025.140431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/14/2025] [Accepted: 01/26/2025] [Indexed: 02/01/2025]
Abstract
The application of hydrogels to drug delivery limited by the difficulty of encapsulating hydrophobic drugs; therefore, the development of novel composite hydrogels for the delivery of hydrophobic drugs is urgently needed. In this study, terbinafine hydrochloride/hydroxypropyl-β-cyclodextrin inclusion complexes (TFH/HP-β-CD ICs) were added to a Schiff base hydrogel matrix containing octenyl succinic anhydride-modified chitosan (OSA-CS) and sodium alginate (OIA) to prepare a TFH composite hydrogel (TFH GEL). The results revealed that the solubility of TFH in water within TFH/HP-β-CD IC reached 32.13 mg/mL. The TFH GEL successfully encapsulated the IC without any drug leakage and exhibited excellent acid pH responsiveness. Moreover, the hydrogels were mechanically stable, self-healing, and injectable. Haemocompatibility and cytotoxicity tests confirmed the excellent biocompatibility of the TFH GEL. Importantly, TFH GEL effectively inhibited Microsporum canis growth in vitro and in vivo. In summary, a novel composite hydrogel was developed by combining a modified natural polymer hydrogel with a complexing agent to deliver the hydrophobic antifungal drug TFH, this study provides a new strategy for treating fungal skin infections.
Collapse
Affiliation(s)
- Chengzhi Liu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, Guangxi 530004, China
| | - Yawen Zhong
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, Guangxi 530004, China
| | - Yifei Xiang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, Guangxi 530004, China
| | - Lanqian Qin
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, Guangxi 530004, China
| | - Jiada Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, Guangxi 530004, China
| | - Luyuan Huang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, Guangxi 530004, China
| | - Junkai Ning
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, Guangxi 530004, China
| | - Weiwei He
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, Guangxi 530004, China
| | - Chunxuan Wu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, Guangxi 530004, China
| | - Qiuqi Cheng
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, Guangxi 530004, China
| | - Dandan Yi
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, Guangxi 530004, China
| | - Niu Liu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, Guangxi 530004, China
| | - Chuang Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhengmin Liang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, Guangxi 530004, China.
| | - Jiakang He
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, Guangxi 530004, China.
| |
Collapse
|
2
|
Qin Q, Su J, Liu J, Chen R, Wei W, Yuan Z, Lai S, Duan R, Lai J, Ye L, Liang H, Jiang J. Global, regional, and national burden of fungal skin diseases in 204 countries and territories from 1990 to 2021: An analysis of the global burden of disease study 2021. Mycoses 2024; 67:e13787. [PMID: 39138504 DOI: 10.1111/myc.13787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/22/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Fungal skin diseases are common skin diseases with a heterogeneous distribution worldwide. OBJECTIVES This study aimed to analyse the spatiotemporal trends in the burden of fungal skin diseases at global, regional, and national levels from 1990 to 2021. METHODS Based on the data obtained from the Global Burden of Disease Study (GBD) 2021, we described the incident cases, prevalent cases, number of disability-adjusted life years (DALYs), and corresponding age-standardised rates (ASRs) for fungal skin diseases in 1990 and 2021 by sex, age, socio-demographic index (SDI), 21 GBD regions, and 204 countries and territories. We used Joinpoint regression analysis to assess the temporal trends in burden of fungal skin diseases during 1990 to 2021. Spearman's rank test was used to analyse the relationship between disease burden and potential factors. RESULTS From 1990 to 2021, the incident cases, prevalent cases, and DALYs for fungal skin diseases worldwide increased by 67.93%, 67.73%, and 66.77%, respectively. Globally, the age-standardised incidence rate (ASIR), age-standardised prevalence rate (ASPR), and age-standardised DALYs rate (ASDR) for fungal skin diseases in 2021 were 21668.40 per 100,000 population (95% UI: 19601.19-23729.17), 7789.55 per 100,000 population (95% UI: 7059.28-8583.54), and 43.39 per 100,000 population (95% UI: 17.79-89.10), respectively. Between 1990 and 2021, the ASIR, ASPR, and ASDR for fungal skin diseases have modestly increased, with AAPC of 11.71% (95% confidence interval [CI]: 11.03%-12.39%), 19.24% (95% CI: 18.12%-20.36%), and 20.25% (95% CI: 19.33%-21.18%), respectively. Males experienced a higher burden of fungal skin diseases than females. The incident cases, prevalent cases, and DALYs for fungal skin diseases were highest at the age of 5-9, while the ASRs were highest among the elderly. At national level, the highest ASRs were observed in Nigeria, Ethiopia, and Mali. Overall, SDI was negatively correlated with the ASRs, whereas Global Land-Ocean Temperature Index (GLOTI) was remarkably positively correlated with the burden of fungal skin diseases. CONCLUSIONS Between 1990 and 2021, the global burden of fungal skin diseases has increased, causing a high disease burden worldwide, particularly in underdeveloped regions and among vulnerable population such as children and the elderly. With global warming and aging of the population, the burden of fungal skin diseases may continue to increase in the future. Targeted and specific measures should be taken to address these disparities and the ongoing burden of fungal skin diseases.
Collapse
Affiliation(s)
- Qinglian Qin
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinming Su
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- China (Guangxi)-ASEAN Joint Laboratory of Emerging Infectious Diseases, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Jie Liu
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Rongfeng Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Wudi Wei
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Zongxiang Yuan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Shiyi Lai
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Ran Duan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Jingzhen Lai
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- China (Guangxi)-ASEAN Joint Laboratory of Emerging Infectious Diseases, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- China (Guangxi)-ASEAN Joint Laboratory of Emerging Infectious Diseases, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- China (Guangxi)-ASEAN Joint Laboratory of Emerging Infectious Diseases, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
3
|
Wanga LA, Indieka AS, Matasyoh JC. Antidermatophytic quinolizidine alkaloids from Calpurnia aurea subsp. aurea (Aiton) Benth. Fitoterapia 2023; 171:105698. [PMID: 37802229 DOI: 10.1016/j.fitote.2023.105698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
From the leaves and stem bark of the Kenyan medicinal plant Calpurnia aurea subsp. aurea, four previously undescribed quinolizidine alkaloids namely, 2β-methoxy-13α-O-(2'-pyrrolylcarbonyl) virgiline, 2α-methoxy-13β-O-(2'-pyrrolylcarbonyl) virgiline, 3α-O-angelate-2β-hydroxy-13α-O-(2'-pyrrolylcarbonyl) virgiline, 2,3-dehydro-virgiline were isolated together with four known ones. Structural elucidation of the compounds was based on 1D and 2D NMR spectroscopy and mass spectrometry. Their relative configurations were determined by NOESY correlations and literature. The quinolizidine alkaloids were tested against Trichophyton rubrum, Trichophyton interdigitale, Trichophyton benhamiae, Microsporum canis and Nannizzia gypsea, common causative agents of most of the tinea infections in human. All the isolated quinolizidine alkaloids exhibited antidermatophytic activity with MIC ranging from 37.5 μg/ml to 300 μg/ml.
Collapse
Affiliation(s)
- Lucy Aketch Wanga
- Department of Chemistry, Faculty of Sciences, Egerton University, P.O. Box 536, Egerton 20115, Kenya; Department of Biochemistry and Molecular Biology, Faculty of Sciences, Egerton University, P.O. Box 536, Egerton 20115, Kenya; Department of Microbial Drugs, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany; Institute of Microbiology of the Czech Academy of Sciences, VIDENSKA 1083, PRAHA 4, 142 00, Czech Republic
| | - Abwao Stephen Indieka
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, Egerton University, P.O. Box 536, Egerton 20115, Kenya
| | - Josphat Clement Matasyoh
- Department of Chemistry, Faculty of Sciences, Egerton University, P.O. Box 536, Egerton 20115, Kenya.
| |
Collapse
|
4
|
Hikaambo CN, Shakela N, Woodland JG, Wicht KJ, Chibale K. Drug discovery in Africa tackles zoonotic and related infections. Sci Transl Med 2023; 15:eadj0035. [PMID: 37851825 DOI: 10.1126/scitranslmed.adj0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Zoonotic and related infections pose an enormous health threat to the world's second-most populous continent. Despite the challenges faced by drug discovery scientists in Africa, recent progress toward identifying potential medicines across diverse disease areas is a cause for optimism and an indicator of progress in African-led scientific initiatives.
Collapse
Affiliation(s)
- Christabel N Hikaambo
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Natalia Shakela
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - John G Woodland
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, Cape Town, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Kathryn J Wicht
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, Cape Town, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, Cape Town, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| |
Collapse
|
5
|
Antimicrobial Activity of Some Medicinal Herbs to the Treatment of Cutaneous and Mucocutaneous Infections: Preliminary Research. Microorganisms 2023; 11:microorganisms11020272. [PMID: 36838237 PMCID: PMC9962950 DOI: 10.3390/microorganisms11020272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
(1) Background: Superficial, including cutaneous and mucocutaneous infections are a current public health problem with universal distribution. One of the main concerns, in the present/future, is fungal/bacterial infections by resistant microorganisms. This study aimed to verify if decoctions of coptidis (Coptis chinensis, Ranunculaceae family), neem (Azadirachta indica, Meliaceae family), and their essential oils (EOs), as well as the EO of manuka (Leptospermum scoparium, Myrtaceae family) have antimicrobial activity against prevalent species of microorganisms responsible for superficial infections. (2) Methods: The antimicrobial activity was determined by the minimum inhibitory concentration (MIC), using broth microdilution method, and minimum lethal concentration (MLC) was determined from subculture of MIC plates. (3) Results: C. chinensis EO and decoction demonstrated some antifungal action against the yeasts and dermatophytes tested. Greatest bactericidal effect against Propionibacterium acnes and some action against Staphylococcus aureus was observed. For A. indica only EO proved activity against dermatophytes and P. acnes. L. scoparium EO showed the broadest antimicrobial spectrum with activity against bacteria, yeasts, and dermatophytes showing greater activity against P. acnes and S. aureus. (4) Conclusions: C. chinensis (EO/decoction), EOs of L. scoparium and A. indica proved in vitro efficacy against fungal, bacterial, or mixed agents of superficial infections, either by sensitive or resistant strains.
Collapse
|
6
|
Asfour HZ, Alhakamy NA, Alam MS, Al-Rabia MW, Md S. Design of Experiment Navigated Methodical Development of Neem Oil Nanoemulsion Containing Tea Tree Oil for Dual Effect Against Dermal Illness: Ex Vivo Dermatokinetic and In Vivo. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02301-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Van Vuuren SF, Motlhatlego KE, Netshia V. Traditionally used polyherbals in a southern African therapeutic context. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114977. [PMID: 35017037 DOI: 10.1016/j.jep.2022.114977] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In African traditional medicine, there are several plant species that are used in combination with either other plant species or non-plant derived combinations such as sugar and honey, salt and vinegar, milk, fat etc. This review examines the role of these combinations and postulates the scientific and therapeutic validation of such combinations. AIM OF THE STUDY This study reviewed the ethnopharmacological literature and documented the use of southern African plant combinations to find a scientific rationale for such combinations, and provide recommendations for future studies. MATERIALS AND METHODS Ethnobotanical books and online databases such as Scopus, ScienceDirect, PubMed and Google Scholar were used to find ethnobotanical studies within the southern African context that focus on the combinations of plants with other plants or various additional ingredients. The scientific literature was examined to determine if evidence was available to substantiate such combinations. RESULTS One hundred and eighty-seven medicinal plant (plant-to-plant) combinations that are used in the southern African traditional healing system were recorded. These plant combinations were used against infections of the gastrointestinal tract, respiratory tract, and skin as well other non-infectious diseases such as reproductive and psychiatric disorders. Respiratory infections were the most documented infections to be treated using plant combinations. The plant that was documented to be most commonly used in combination with other plants was Artemisia afra Jacq. ex Willd. While plant-plant combinations have drawn a marked interest, comparatively, plant-adjuvant (e.g. milk, sugar, honey, salt, vinegar, fats) combinations have attracted less research interest. Milk was reported as the most used additional ingredient in combination with medicinal plants. The combination of animal urine and dung with medicinal plants has been reported as a treatment for treat prostate infections, the human immunodeficiency virus (HIV). Other ingredients such as clay and flour were also documented, and these are often mixed with medicinal plants to treat fever, stomach ailments, sexually transmitted infections (STI) and skin conditions. Although combination therapy has been frequently reported in ethnobotanical records, over 90% of the combinations reviewed still need to be scientifically validated. CONCLUSION Scientific reports on the antimicrobial, anti-oxidant, anti-inflammatory and other pharmacological effects of these combinations may offer an understanding of traditional combination therapy. In addition, investigation into the mechanisms of action of these combinations are also recommended to supplement the findings. Nonetheless, the use of plant combinations is still an untapped research area in southern Africa and there is a need to validate the use of those documented combinations to obtain a better understanding of combined traditional medicinal plant use.
Collapse
Affiliation(s)
- S F Van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, South Africa.
| | - K E Motlhatlego
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, South Africa
| | - V Netshia
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, South Africa
| |
Collapse
|
8
|
Khumalo GP, Van Wyk BE, Feng Y, Cock IE. A review of the traditional use of southern African medicinal plants for the treatment of inflammation and inflammatory pain. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114436. [PMID: 34289396 DOI: 10.1016/j.jep.2021.114436] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammation is a serious global concern due to its debilitating symptoms, resulting in considerable suffering and lost productivity. Chronic and auto-immune inflammatory diseases are of particular concern. Several pharmaceutical therapies are already available. However, the use of non-steroidal anti-inflammatory drugs (NSAID's) is accompanied by harmful and toxic side effects. Hence, the search for safer alternative therapeutics with limited side effects is imperative. The use of medicinal plants is common practice amongst the southern African population and may provide targets for drug development. AIM OF THE STUDY This study aims to review and document the medicinal uses and pharmacological properties of southern African medicinal plants used for inflammation and pain-related ailments. MATERIAL AND METHODS An extensive literature review was undertaken to identify southern African plants used traditionally to treat inflammation. A variety of ethnobotanical books and grey literature, as well as ScienceDirect, Google Scholar and Scopus search engines were used as sources of information. RESULTS This review identified 555 medicinal plants from 118 families which were traditionally used in southern Africa to treat inflammation and pain. Fabaceae was the most prominent family with 63 species, followed by Asteraceae (54 species) and Apocynaceae (33 species). The top category of ailments indicated include non-specific inflammation with 150 species, followed by inflammatory pain (148 species), headache (114 species) and toothache (114 species). CONCLUSION Despite a large number of southern African medicinal plants used to treat inflammation and pain, relatively few have been screened for their anti-inflammatory properties. Furthermore, biologically active plant extracts have been tested against relatively few inflammatory markers and considerable further work is required.
Collapse
Affiliation(s)
- Gugulethu P Khumalo
- Environmental Futures Research Institute, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, Queensland, 4111, Australia; School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, Queensland, 4111, Australia; Griffith Research Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Nathan, Queensland, 4111, Australia
| | - Ben Erik Van Wyk
- Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, Johannesburg, South Africa
| | - Yunjiang Feng
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, Queensland, 4111, Australia; Griffith Research Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Nathan, Queensland, 4111, Australia
| | - Ian E Cock
- Environmental Futures Research Institute, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, Queensland, 4111, Australia; School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, Queensland, 4111, Australia.
| |
Collapse
|
9
|
More GK, Meddows-Taylor S, Prinsloo G. Metabolomic Profiling of Antioxidant Compounds in Five Vachellia Species. Molecules 2021; 26:molecules26206214. [PMID: 34684798 PMCID: PMC8539452 DOI: 10.3390/molecules26206214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/21/2022] Open
Abstract
The genus Vachellia, previously known as Acacia, belongs to the family Fabaceae, subfamily Leguminosae, which are flowering plants, commonly known as thorn trees. They are traditionally used medicinally in various countries including South Africa for the treatment of ailments such as fever, sore throat, Tuberculosis, convulsions and as sedatives. The aim of this study was to determine biochemical variations in five Vachellia species and correlate their metabolite profiles to antioxidant activity using a chemometric approach. The antioxidant activity of five Vachellia aqueous-methanolic extracts were analyzed using three methods: 2,2-di-phenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS+) analysis and the ferric reducing antioxidant power (FRAP) assay by means of serial dilution and bioautography with the thin-layer chromatography (TLC) method. Amongst the Vachellia extracts tested, V. karroo, V. kosiensis and V. xanthophloea demonstrated the highest DPPH, ABTS+ and FRAP inhibitory activity. The antioxidant activities of DPPH were higher than those obtained by ABTS+, although these values varied among the Vachellia species. Proton nuclear magnetic resonance (1H NMR), coupled with multivariate statistical modeling tools such as principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA), were performed to profile metabolites responsible for the observed activity. The OPLS-DA categorized the five Vachellia species, separating them into two groups, with V. karroo, V. kosiensis and V. xanthophloea demonstrating significantly higher radical scavenging activity than V. tortilis and V. sieberiana, which clustered together to form another group with lower radical scavenging activity. Annotation of metabolites was carried out using the ultra-high-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UHPLC-qTOF-MS), and it tentatively identified 23 metabolites of significance, including epigallocatechin (m/z = 305.0659), methyl gallate (m/z = 183.0294) and quercetin (m/z = 301.0358), amongst others. These results elucidated the metabolites that separated the Vachellia species from each other and demonstrated their possible free radical scavenging activities.
Collapse
Affiliation(s)
- Garland Kgosi More
- College of Agriculture and Environmental Sciences Laboratories, University of South Africa, Florida, Johannesburg 1710, South Africa
- Correspondence:
| | - Stephen Meddows-Taylor
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida, Johannesburg 1710, South Africa;
| | - Gerhard Prinsloo
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida, Johannesburg 1710, South Africa;
| |
Collapse
|
10
|
Cock I, Mavuso N, Van Vuuren S. A Review of Plant-Based Therapies for the Treatment of Urinary Tract Infections in Traditional Southern African Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:7341124. [PMID: 34367307 PMCID: PMC8346297 DOI: 10.1155/2021/7341124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/09/2021] [Indexed: 12/04/2022]
Abstract
Urinary tract infections (UTIs) are amongst the most common bacterial infections globally, with ∼11% of the world's population contracting at least one infection annually. Several South African plants are used in traditional healing systems to treat UTIs, yet the therapeutic potential of these plants against bacteria that cause UTI remains poorly explored. This study documents southern African plant species used traditionally to treat UTIs. An extensive literature review was undertaken to document the southern African plant species that are used in traditional South African medicine to treat UTIs, thereby highlighting gaps in the current research that require further study. One hundred and fifty-three southern African plant species that are used to treat UTIs were identified. Eighty-five southern African plants were identified as having noteworthy inhibitory activity against the major UTI-causing bacteria. Few of those studies screened against all of the bacterial causes of UTIs, and none of those studies examined the mechanism of action of the plant preparations. Furthermore, many of those studies did not test the toxicity of the plant extracts, so an evaluation of the safety for therapeutic usage was lacking. Substantial further research is to determine their potential for therapeutic use.
Collapse
Affiliation(s)
- Ian Cock
- School of Environment and Science, Griffith University, Brisbane 4111, Australia
- Environmental Futures Research Institute, Griffith University, Brisbane, Australia
| | - Nothando Mavuso
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng 2193, South Africa
| | - Sandy Van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng 2193, South Africa
| |
Collapse
|