1
|
Peng C, Wang M, Zheng C, Zhang X, Chen Y, Wang L. Organophosphate flame retardant triphenyl phosphate (TPhP) induced colonic fibrosis by bringing about epithelial-mesenchymal transition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117913. [PMID: 39970497 DOI: 10.1016/j.ecoenv.2025.117913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/15/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Intestinal fibrosis is often observed in inflammatory bowel disease (IBD) and seriously affects intestinal health. Our previous study identified that triphenyl phosphate (TPhP), one kind of frequently used organophosphate flame retardants (OPFRs), induced IBD-like features in colon. Herein, we firstly observed extracellular matrix deposition in colon tissues, indicative of appearance of colonic fibrosis. Further studies showed that TPhP downregulated epithelial marker E-cadherin levels but upregulated alpha smooth muscle actin (α-SMA) in mouse colon tissues, and similar results were observed in cultured colon cells, indicating that fibrogenesis might be attributed to epithelial-mesenchymal transition (EMT). Further transcriptome and experimental data demonstrated that TPhP-induced EMT was closely associated with activated Wnt/β-catenin pathway. Moreover, FOXM1 facilitated the entrance of β-catenin into nucleus to regulate expression of Wnt target genes, promoting EMT initiation. Collectively, these findings demonstrated that TPhP induced colonic fibrosis in mice by activating EMT, and this work may provide new perspectives in exploring etiology of intestinal fibrosis and developing relevant treatment strategies.
Collapse
Affiliation(s)
- Chunyan Peng
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Mo Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Chang Zheng
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Xiaoqi Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Yabing Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
2
|
Zhou M, Niu H, Lu D, Zhang H, Luo D, Yu Z, Huang G, Li J, Xiong C, Tang Q, Zhang H, Liang F, Chen R. Wu Mei Wan suppresses colorectal cancer stemness by regulating Sox9 expression via JAK2/STAT3 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:118998. [PMID: 39489363 DOI: 10.1016/j.jep.2024.118998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wu Mei Wan (WMW) is a traditional Chinese herbal formula with a long-standing history in Chinese medicine, valued for its therapeutic properties. However, its potential anti-cancer effects, especially against colorectal cancer (CRC), have not been fully elucidated. AIM OF THE STUDY This study aims to investigate the effects of WMW on colorectal cancer stemness and to elucidate the underlying molecular mechanisms, focusing on the modulation of Sox9 expression via the JAK2/STAT3 signaling pathway. MATERIALS AND METHODS WMW was prepared and analyzed using UPLC-MS to identify their main components. To study the therapeutic effects of WMW, AOM/DSS-induced CRC mouse models were established. A comprehensive suite of experimental techniques, including in vivo imaging, cell culture, transfection, CCK-8 assays, colony formation assays, wound healing assays, cell migration assays, Western blotting, dot blot analysis, RT-qPCR, immunohistochemistry, cell transcriptome sequencing, and gene set enrichment analysis, were utilized to explore the pharmacological effects and mechanisms of WMW. RESULTS WMW significantly inhibited CRC cell viability, proliferation, invasion, and migration in vitro. Mechanistically, WMW suppressed CRC stemness by downregulating Sox9 expression through the JAK2/STAT3 signaling pathway. Additionally, the regulation of methylation and demethylation mediated by TET1 and DNMT3a expression was directly associated with the JAK2/STAT3 pathway's modulation of Sox9 expression. In vivo, WMW treatment attenuated CRC progression and metastasis with minimal toxicity. CONCLUSION These findings suggest that WMW exerts potent anti-CRC stemness effects by regulating Sox9 via the JAK2/STAT3 signaling pathway, underscoring its potential as a promising therapeutic agent for CRC treatment.
Collapse
Affiliation(s)
- Minfeng Zhou
- Department of Integrative Chinese and Western Medicine, Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1277 Liberation Avenue, 430022, Wuhan City, China
| | - Huifang Niu
- Jianghan University School of Medicine, 8 Triangle Lake Road, 430056, Wuhan City, China; Jianghan University Institute of Acupuncture and Moxibustion, 8 Triangle Lake Road, 430056, Wuhan City, China
| | - Damin Lu
- Hubei University of Chinese Medicine.Tanhualin one, Wuhan City, 430065, China
| | - Haiming Zhang
- Wuhan Central Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Nanjing Road. Wuhan City, 430014, China
| | - Dan Luo
- Wuhan Hospital of Integrated Chinese and Western Medicine Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Zhongshan Avenue. Wuhan City, 430033, China
| | - Zhaomin Yu
- Hubei Hospital of Integrated Traditional Chinese and Western Medicine, Diamond Horn Lake Road. Wuhan City, 430000, China
| | - Guichen Huang
- Department of Integrative Chinese and Western Medicine, Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1277 Liberation Avenue, 430022, Wuhan City, China
| | - Jinxiao Li
- Department of Integrative Chinese and Western Medicine, Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1277 Liberation Avenue, 430022, Wuhan City, China
| | - Chutong Xiong
- Department of Integrative Chinese and Western Medicine, Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1277 Liberation Avenue, 430022, Wuhan City, China
| | - Qian Tang
- Hubei University of Chinese Medicine.Tanhualin one, Wuhan City, 430065, China
| | - Hongxing Zhang
- Jianghan University School of Medicine, 8 Triangle Lake Road, 430056, Wuhan City, China; Jianghan University Institute of Acupuncture and Moxibustion, 8 Triangle Lake Road, 430056, Wuhan City, China.
| | - Fengxia Liang
- Hubei University of Chinese Medicine.Tanhualin one, Wuhan City, 430065, China.
| | - Rui Chen
- Department of Integrative Chinese and Western Medicine, Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1277 Liberation Avenue, 430022, Wuhan City, China.
| |
Collapse
|
3
|
Tang X, He M, Ren Y, Ji M, Yan X, Zeng W, Lv Y, Li Y, He Y. Traditional Chinese Medicine formulas-based interventions on colorectal carcinoma prevention: The efficacies, mechanisms and advantages. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:119008. [PMID: 39471879 DOI: 10.1016/j.jep.2024.119008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/08/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Traditional Chinese Medicine Formulas (TCMFs) represent a distinctive medical approach to disease treatment and have been utilized in clinical practice for treating intestinal diseases for thousands of years. Recently, TCMFs have received increasing attention due to their advantages of high efficiency, safety, as well as low toxicity, providing promising strategies for preventing colorectal carcinoma (CRC). Nonetheless, the potential mechanism of TCMFs in preventing CRC has not been fully elucidated. AIM OF THE STUDY The literature from the past three years was reviewed to highlight the therapeutic effects and underlying mechanisms of TCMFs in preventing CRC. MATERIALS AND METHODS The keywords have been searched, including "traditional Chinese medicine formulas," "herb pairs," "Herbal plant-derived nanoparticles," et al. in "PubMed" and "China National Knowledge Infrastructure (CNKI)," and screened published articles related to the treatment of intestinal precancerous lesions. This review primarily examined the effectiveness and mechanisms of TCMFs in treating intestinal precancerous lesions, highlighting their significant potential in preventing CRC. RESULTS Gegen Qinlian decoction, Shaoyao decoction, Wu Wei Wan, etc., exert substantial therapeutic effects on intestinal precancerous lesions. These therapeutic effects are demonstrated by a reduction in disease activity index scores, suppression of intestinal inflammation, and preservation of body weight and intestinal function, all of which contribute to the effective prevention of CRC. Besides, the classic Chinese herbal pairs and the extracellular vesicle-like nanoparticles of herbaceous plants have demonstrated superior efficacy in the treatment of intestinal precancerous lesions. Mechanistically, protecting the epithelial barrier, regulating gut microbiota as well as related metabolism, modulating macrophage polarization, and maintaining immune balance contribute to the role of TCMFs in CRC prevention. CONCLUSIONS This review demonstrates the great potential and mechanism of TCMFs in CRC prevention and provides a scientific basis for their utilization in CRC prevention.
Collapse
Affiliation(s)
- Xiaojuan Tang
- School of biomedical sciences, Hunan University, Changsha, 410012, Hunan, China; Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China.
| | - Min He
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yuan Ren
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Meng Ji
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Xiaoqi Yan
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China
| | - Wen Zeng
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yuan Lv
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China
| | - Yongmin Li
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China
| | - Yongheng He
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China; Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
4
|
Ling F, Chen Y, Li J, Xu M, Song G, Tu L, Wang H, Li S, Zhu L. Estrogen Receptor β Activation Mitigates Colitis-associated Intestinal Fibrosis via Inhibition of TGF-β/Smad and TLR4/MyD88/NF-κB Signaling Pathways. Inflamm Bowel Dis 2025; 31:11-27. [PMID: 39078887 DOI: 10.1093/ibd/izae156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Indexed: 01/07/2025]
Abstract
BACKGROUND Intestinal fibrosis, a complex complication of colitis, is characterized by excessive extracellular matrix (ECM) deposition. Estrogen receptor (ER) β may play a role in regulating this process. METHODS Intestinal tissue samples from stenotic and nonstenotic regions were collected from Crohn's disease (CD) patients. RNA sequencing was conducted on a mouse model to identify differentially expressed mRNAs. Histological, immunohistochemical, and semiquantitative Western blotting analyses were employed to assess ECM deposition and fibrosis. The roles of relevant pathways in fibroblast transdifferentiation, activity, and migration were examined. RESULTS Estrogen receptor β expression was found to be downregulated in the stenotic intestinal tissue of CD patients. Histological fibrosis score, collagen deposition, and profibrotic molecules in the colon of an intestinal fibrosis mouse model were significantly decreased after activation of ERβ. In vitro, ERβ activation alleviated transforming growth factor (TGF)-β-induced fibroblast activation and migration, as evidenced by the inhibition of col1α1, fibronectin, α-smooth muscle actin (α-SMA), collagen I, and N-cadherin expression. RNA sequencing showed that ERβ activation affected the expression of genes involved in ECM homeostasis and tissue remodeling. Enrichment analysis of differentially expressed genes highlighted that the downregulated genes were enriched in ECM-receptor interaction, TGF-β signaling, and Toll-like receptor (TLR) signaling. Western blotting confirmed the involvement of TGF-β/Smad and TLR4/MyD88/NF-κB signaling pathways in modulating fibrosis both in vivo and in vitro. The promoter activity of TGF-β1 and TLR4 could be suppressed by ERβ transcription factor. CONCLUSION Estrogen receptor β may regulate intestinal fibrosis through modulation of the TGF-β/Smad and TLR4/MyD88/NF-κB signaling pathways. Targeting ERβ activation could be a promising therapeutic strategy for treating intestinal fibrosis.
Collapse
Affiliation(s)
- Fangmei Ling
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yidong Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junrong Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingyang Xu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gengqing Song
- Department of Gastroenterology and Hepatology, Metrohealth Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Lei Tu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangru Zhu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Chen S, Nie K, Wang H, Gao Y, Jiang X, Su H, Wang Z, Tang Y, Lu F, Dong H, Li J. Wu-Mei-Wan enhances brown adipose tissue function and white adipose browning in obese mice via upregulation of HSF1. Chin Med 2025; 20:1. [PMID: 39754217 PMCID: PMC11697821 DOI: 10.1186/s13020-024-01053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND This research aims to explore the anti-obesity potential of Wu-Mei-Wan (WMW), particularly its effects on adipose tissue regulation in obese mice induced by a high-fat diet (HFD). The study focuses on understanding the role of heat shock factor 1 (HSF1) in mediating these effects. METHODS HFD-induced obese mice were treated with WMW. Body weight, food intake, and histopathological analysis of adipose tissue were conducted. Brown adipose tissue (BAT) activity was evaluated using Positron Emission Tomography, and ultrastructural changes were examined via transmission electron microscopy. Proteomic analysis identified targets of WMW in obesity treatment. HSF1 expression was inhibited to confirm its role. Molecular docking studied interactions between WMW and HSF1. Short-chain fatty acids (SCFAs) in the intestines were measured to determine if WMW's effects on HSF1 are mediated through SCFAs. Protein expression was assessed using western blot, immunohistochemistry, immunofluorescence and RT-qPCR were employed to detect the mRNA levels. Statistical analyses included t-tests, ANOVA, and non-parametric tests like the Mann-Whitney U test or Kruskal-Wallis test. RESULTS WMW significantly mitigates the adverse effects of a HFD on body weight and glucose metabolism in obese mice. Both low-dose WMW and high-dose WMW treatments led to reduced weight gain and improved glucose tolerance, with low-dose WMW showing more pronounced effects. WMW also reversed structural damage in BAT, enhancing mitochondrial integrity and thermogenic function, particularly at the low dose. Additionally, WMW treatment promoted the browning of WAT, evidenced by increased expression of key thermogenic proteins such as UCP1 and PGC-1α. The increase in HSF1 expression in both BAT and WAT, observed with WMW treatment, was crucial for these beneficial effects, as inhibition of HSF1 negated the positive outcomes. Furthermore, WMW treatment led to elevated levels of short-chain fatty acids SCFAs in the intestines, which are associated with increased HSF1 expression. CONCLUSIONS WMW represents a potent therapeutic strategy for obesity, promoting metabolic health and beneficial modulation of adipose tissue through an HSF1-dependent pathway.
Collapse
Affiliation(s)
- Shen Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xinyue Jiang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Hao Su
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhi Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yueheng Tang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Jingbin Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
6
|
Hashemi Z, Hui T, Wu A, Matouba D, Zukowski S, Nejati S, Lim C, Bruzzese J, Lin C, Seabold K, Mills C, Wrath K, Wang H, Wang H, Verzi MP, Perekatt A. Epithelial-specific loss of Smad4 alleviates the fibrotic response in an acute colitis mouse model. Life Sci Alliance 2024; 7:e202402935. [PMID: 39366762 PMCID: PMC11452480 DOI: 10.26508/lsa.202402935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Mucosal healing is associated with better clinical outcomes in patients with inflammatory bowel disease. But the epithelial-specific contribution to mucosal healing in vivo is poorly understood. We evaluated mucosal healing in an acute dextran sulfate sodium mouse model that shows an alleviated colitis response after epithelial-specific loss of Smad4. We find that enhanced epithelial wound healing alleviates the fibrotic response. Dextran sulfate sodium caused increased mesenchymal collagen deposition-indicative of fibrosis-within a week in the WT but not in the Smad4 KO colon. The fibrotic response correlated with decreased epithelial proliferation in the WT, whereas uninterrupted proliferation and an expanded zone of proliferation were observed in the Smad4 KO colon epithelium. Furthermore, the Smad4 KO colon showed epithelial extracellular matrix alterations that promote epithelial regeneration. Our data suggest that epithelium is a key determinant of the mucosal healing response in vivo, implicating mucosal healing as a strategy against fibrosis in inflammatory bowel disease patients.
Collapse
Affiliation(s)
- Zahra Hashemi
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Thompson Hui
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Alex Wu
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - Dahlia Matouba
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Steven Zukowski
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Shima Nejati
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Crystal Lim
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Julianna Bruzzese
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Cindy Lin
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Kyle Seabold
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Connor Mills
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Kylee Wrath
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Haoyu Wang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Hongjun Wang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Michael P Verzi
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - Ansu Perekatt
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| |
Collapse
|
7
|
Liu L, Chen Y, Han Y, Zhang X, Wu Y, Lin J, Cao L, Wu M, Zheng H, Fang Y, Wei L, Sferra TJ, Jafri A, Ke X, Peng J, Shen A. Qing Hua Chang Yin ameliorates chronic colitis in mice by inhibiting PERK-ATF4-CHOP pathway of ER stress and the NF-κB signalling pathway. PHARMACEUTICAL BIOLOGY 2024; 62:607-620. [PMID: 39034914 PMCID: PMC11265301 DOI: 10.1080/13880209.2024.2378012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 07/02/2024] [Indexed: 07/23/2024]
Abstract
CONTEXT Ulcerative colitis has been clinically treated with Qing Hua Chang Yin (QHCY), a traditional Chinese medicine formula. However, its precise mechanisms in mitigating chronic colitis are largely uncharted. OBJECTIVE To elucidate the therapeutic efficiency of QHCY on chronic colitis and explore its underlying molecular mechanisms. MATERIALS AND METHODS A total ion chromatogram fingerprint of QHCY was analysed. Chronic colitis was induced in male C57BL/6 mice using 2% dextran sodium sulphate (DSS) over 49 days. Mice were divided into control, DSS, DSS + QHCY (0.8, 1.6 and 3.2 g/kg/d dose, respectively) and DSS + mesalazine (0.2 g/kg/d) groups (n = 6). Mice were intragastrically administered QHCY or mesalazine for 49 days. The changes of disease activity index (DAI), colon length, colon histomorphology and serum pro-inflammatory factors in mice were observed. RNA sequencing was utilized to identify the differentially expressed transcripts (DETs) in colonic tissues and the associated signalling pathways. The expression of endoplasmic reticulum (ER) stress-related protein and NF-κB signalling pathway-related proteins in colonic tissues was detected by immunohistochemistry staining. RESULTS Forty-seven compounds were identified in QHCY. Compared with the DSS group, QHCY significantly improved symptoms of chronic colitis like DAI increase, weight loss, colon shortening and histological damage. It notably reduced serum levels of IL-6, IL-1β and TNF-α. QHCY suppressed the activation of PERK-ATF4-CHOP pathway of ER stress and NF-κB signalling pathways in colonic tissues. DISCUSSION AND CONCLUSIONS The findings in this study provide novel insights into the potential of QHCY in treating chronic colitis patients.
Collapse
Affiliation(s)
- Liya Liu
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Youqin Chen
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children’s Hospital, Cleveland, OH, USA
| | - Yuying Han
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Xinran Zhang
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Yulun Wu
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Jing Lin
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Liujing Cao
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Meizhu Wu
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Huifang Zheng
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Yi Fang
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lihui Wei
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Thomas J. Sferra
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children’s Hospital, Cleveland, OH, USA
| | - Anjum Jafri
- Department of Genetics and Genome Sciences, Histology Core, Case Western Reserve University, Cleveland, OH, USA
| | - Xiao Ke
- Department of Gastroenterology, The Second People’s Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Clinical Medical Research Centre of Chinese Medicine for Spleen and Stomach, Fuzhou, China
| | - Jun Peng
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Aling Shen
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| |
Collapse
|
8
|
Zhou M, Chen Y, Jin W, Li P, Hu J, Guo X. Traditional Chinese Medicine: A Promising Treatment Option for Intestinal Fibrosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2107-2129. [PMID: 39581857 DOI: 10.1142/s0192415x24500812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Intestinal fibrosis, a common complication of inflammatory bowel disease, in particular in Crohn's disease, arises from chronic inflammation, leading to intestinal narrowing, structural damage, and functional impairment that significantly impact patients' quality of life. Current treatment options for intestinal fibrosis are limited, with surgery being the primary intervention. Traditional Chinese Medicine (TCM) has emerged as a promising approach in preventing and treating intestinal fibrosis. However, there is a scarcity of literature summarizing the mechanisms underlying TCM's efficacy in this context. To address this gap, we conducted a comprehensive review, uncovering multiple mechanisms through which TCM mitigates intestinal fibrosis. These mechanisms include immune cell balance regulation, suppression of inflammatory responses, reduction of inflammatory mediators, alleviation of colon tissue damage, restoration of intestinal function, modulation of growth factors to inhibit fibroblast activation, dynamic regulation of TIMPs and MMPs to reduce extracellular matrix deposition, inhibition of epithelial-mesenchymal transition and endothelial-mesenchymal transition, autophagy modulation, maintenance of the intestinal mucosal barrier, prevention of tissue damage by harmful factors, and regulation of cell proliferation and apoptosis. This study aims to bridge existing knowledge gaps by presenting recent evidence supporting the utilization of TCM in both clinical and experimental research settings.
Collapse
Affiliation(s)
- Meng'en Zhou
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yan Chen
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Wenqi Jin
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Peng Li
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Jie Hu
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Xiutian Guo
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
9
|
Huang Q, Peng W, Luo Q, Zhao W, Dai W, Zeng H, Wong HLX, Hu X. Exploring the mechanism of Suxin Hugan Fang in treating ulcerative colitis based on network pharmacology. Sci Rep 2024; 14:27196. [PMID: 39516633 PMCID: PMC11549446 DOI: 10.1038/s41598-024-78833-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
As a traditional Chinese medicine formula used in clinical practice for an extended period, Suxin-Hugan-Fang (SXHGF) exhibits excellent anti-inflammatory properties. However, the efficacy of SXHGF in treating ulcerative colitis (UC) and its mechanism of action are still unclear. In this study, the therapeutic effects of SXHGF on UC were evaluated using network pharmacology and experimental validation, while also investigating its mechanism of action. By administering DSS to C57BL/6 mice to construct a mouse model of ulcerative colitis, the therapeutic effect of SXHGF on ulcerative colitis was evaluated based on weight loss percentage, disease activity index, colon length changes, and pathological conditions as indicators. The main chemical components of SXHGF were determined by LC-MS-QTOF method. The potential targets and mechanisms of action of SXHGF in the treatment of UC were inferred using bioinformatics methods, and further validated through ELISA, IHC, and Western blotting assays. The experimental results demonstrate that SXHGF can suppress oxidative stress and oxidative damage in the colon tissue of UC mice, and alleviate DSS-induced ulcerative colitis by inhibiting the JAK2/STAT3 and NFκB pathways.
Collapse
Affiliation(s)
- Qiang Huang
- Department of Pharmacy, Xiaolan People's Hospital of Zhongshan, Zhongshan, 528415, Guangdong, PR China
| | - Weijie Peng
- Pharmacology Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan, 528401, Guangdong, PR China
| | - Qing Luo
- Pharmacology Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan, 528401, Guangdong, PR China
| | - Wenchang Zhao
- Dongguan Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523121, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, PR China
- Clinical Trial Institution, Xiaolan Hospital, Southern Medical University, Zhongshan, 528415, Guangdong, PR China
| | - Weibo Dai
- Pharmacology Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan, 528401, Guangdong, PR China.
| | - Huifen Zeng
- Clinical Trial Institution, Xiaolan Hospital, Southern Medical University, Zhongshan, 528415, Guangdong, PR China.
| | - Hoi Leong Xavier Wong
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, 999077, PR China
| | - Xianjing Hu
- Dongguan Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523121, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, PR China.
| |
Collapse
|
10
|
Zhou Y, Xiong X, Cheng Z, Chen Z, Wu S, Yu Y, Liu Y, Chen G, Li L. Ginsenoside Rb1 Alleviates DSS-Induced Ulcerative Colitis by Protecting the Intestinal Barrier Through the Signal Network of VDR, PPARγ and NF-κB. Drug Des Devel Ther 2024; 18:4825-4838. [PMID: 39494151 PMCID: PMC11531243 DOI: 10.2147/dddt.s481769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/05/2024] [Indexed: 11/05/2024] Open
Abstract
Purpose Ginseng (Panax ginseng Meyer) is an herbal medicine used in traditional Chinese medicine (TCM), has the effects of treating colitis and other diseases. Ginsenoside Rb1 (GRb1), a major component of ginseng, modulates autoimmunity and metabolism. However, the mechanism underlying GRb1 treatment of ulcerative colitis (UC) has not yet been elucidated. UC is a refractory inflammatory bowel disease (IBD) with a high recurrence rate, and researches on new drugs for UC have been in the spotlight for a long time. Methods Mice with DSS-induced UC were treated with GRb1 or 0.9% saline for 10 days. Colon tissue of UC mice was collected to detect the levels of intestinal inflammatory cytokines and integrity of the intestinal barrier. RNA-seq and network pharmacology were used to predict the therapeutic targets of GRb1 during UC treatment. Results GRb1 treatment alleviated intestinal inflammation and improved intestinal barrier dysfunction in UC mice. Specifically, GRb1 downregulated the levels of pro-inflammatory cytokines such as TNF-α and IL-6, while upregulating the level of the anti-inflammatory cytokine IL-10. Additionally, GRb1 treatment increased the levels of tight junction proteins including ZO-1, Occludin, and E-cadherin, which are crucial for maintaining intestinal barrier integrity. Further analyses using RNA-seq and network pharmacology suggested that these effects might involve the regulation of GRb1 in the signal transduction network of VDR, PPARγ, and NF-κB. Conclusion The study demonstrated that GRb1 effectively alleviated UC by modulating intestinal inflammation and protecting the integrity of the intestinal barrier through the signal transduction network of VDR, PPARγ, and NF-κB.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Xinyu Xiong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Zhe Cheng
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Zekai Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Shizhen Wu
- College of Acupuncture and Bone Injury, Hubei University of Chinese Medicine, Wuhan, 430061, People’s Republic of China
| | - Yan Yu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Yujin Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Guang Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Lingli Li
- Department of Traditional Chinese Medicine, Wuhan Fourth Hospital, Wuhan, 430033, People’s Republic of China
| |
Collapse
|
11
|
Zhou M, Niu H, Chen R, Chen W, Cui D. Gui ShenWan prevent premature ovarian insufficiency by modulating autophagy and angiogenesis via facilitating VDR. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117955. [PMID: 38395181 DOI: 10.1016/j.jep.2024.117955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gui Shen Wan (GSW) stands out as a promising therapeutic approach for addressing Premature Ovarian Insufficiency (POI). With deep roots in traditional medicine, GSW highlights the ethnopharmacological significance of herbal interventions in addressing nuanced aspects of women's health, with a specific emphasis on ovarian functionality. Recognizing the importance of GSW in gynecological contexts resonates with a rich tradition of using botanical formulations to navigate the intricacies of reproductive health. Delving into GSW's potential for treating POI emphasizes the crucial role of ethnopharmacological insights in guiding modern research endeavors. AIM OF THE STUDY GSW is extensively utilized in gynecological disorders and has recently emerged as a potential therapeutic approach for POI. The present investigation aimed to assess the efficacy of GSW in treating POI in rats and elucidate its underlying molecular mechanisms. MATERIALS AND METHODS The study employed GSW for POI treatment in rats. GSW, prepared as pills, underwent HPLC fingerprinting for quality control. Reagents and drugs, including VCD and dehydroepiandrosterone (DHEA), were sourced from reputable providers. Eighty Sprague-Dawley rats were categorized into groups for POI induction and treatment. Ovarian tissue underwent HE staining, immunohistochemical staining, Western Blot, qRT-PCR, and vaginal secretion testing. ELISA was utilized for target molecule detection. This methodology ensures a robust and reliable experimental framework. RESULTS The results highlight a robust collaborative improvement in POI among rats subjected to combined GSW and DHEA treatment. Particularly noteworthy is the substantial enhancement in the expression of vascular regeneration-related molecules-VDR-Klotho-VEGFR-accompanied by a significant elevation in autophagy levels. Post-GSW administration, rat ovarian morphology demonstrated increased stability, hormone levels exhibited more consistent maintenance, and there was a marked reduction in inflammatory response compared to other groups (p < 0.01). Furthermore, GSW intervention resulted in a more pronounced upregulation of ovarian autophagy (p < 0.05). CONCLUSION By modulating VDR-Klotho signaling, GSW exerts regulatory control over ovarian autophagy and vascular regeneration, thereby mitigating the occurrence and progression of POI in rats.
Collapse
Affiliation(s)
- Minfeng Zhou
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1277 Liberation Avenue, 430022, Wuhan City, China
| | - Huifang Niu
- School of Food Science and Technology, Huazhong Agricultural University, 1 Lion Rock Street. Wuhan City, 430070, China
| | - Rui Chen
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1277 Liberation Avenue, 430022, Wuhan City, China.
| | - Wenmao Chen
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1277 Liberation Avenue, 430022, Wuhan City, China.
| | - Dandan Cui
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1277 Liberation Avenue, 430022, Wuhan City, China.
| |
Collapse
|
12
|
Hashemi Z, Hui T, Wu A, Matouba D, Zukowski S, Nejati S, Lim C, Bruzzese J, Seabold K, Mills C, Lin C, Wrath K, Wang H, Wang H, Verzi MP, Perekatt A. Smad4 Loss in the Mouse Intestinal Epithelium Alleviates the Pathological Fibrotic Response to Injury in the Colon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.578000. [PMID: 38559102 PMCID: PMC10979917 DOI: 10.1101/2024.03.08.578000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Mucosal healing is associated with better clinical outcomes in patients with inflammatory bowel diseases (IBDs). Unresolved injury and inflammation, on the other hand, increases pathological fibrosis and the predisposition to cancer. Loss of Smad4, a tumor suppressor, is known to increase colitis-associated cancer in mouse models of chronic IBD. Since common biological processes are involved in both injury repair and tumor growth, we sought to investigate the effect of Smad4 loss on the response to epithelial injury. To this end, Smad4 was knocked out specifically in the intestinal epithelium and transcriptomic and morphological changes compared between wild type mice and Smad4 knock out mice after DSS-induced injury. We find that Smad4 loss alleviates pathological fibrosis and enhances mucosal repair. The transcriptomic changes specific to epithelium indicate molecular changes that affect epithelial extracellular matrix (ECM) and promote enhanced mucosal repair. These findings suggest that the biological processes that promote wound healing alleviate the pathological fibrotic response to DSS. Therefore, these mucosal repair processes could be exploited to develop therapies that promote normal wound healing and prevent fibrosis. NEW AND NOTEWORTHY We show that transcriptomic changes due to Smad4 loss in the colonic epithelium alleviates the pathological fibrotic response to DSS in an IBD mouse model of acute inflammation. Most notably, we find that collagen deposition in the epithelial ECM, as opposed to that in the lamina propria, correlates with epithelial changes that enhance wound healing. This is the first report on a mouse model providing alleviated fibrotic response in a DSS-IBD mouse model in vivo .
Collapse
|
13
|
Xiao W, Hu C, Ni Y, Wang J, Jiao K, Zhou M, Li Z. 27-Hydroxycholesterol activates the GSK-3β/β-catenin signaling pathway resulting in intestinal fibrosis by inducing oxidative stress: effect of dietary interventions. Inflamm Res 2024; 73:289-304. [PMID: 38184500 DOI: 10.1007/s00011-023-01835-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 01/08/2024] Open
Abstract
OBJECTIVE Intestinal fibrosis, a common and serious complication of inflammatory bowel disease (IBD), results from chronic inflammation. A high-cholesterol diet may be a risk factor for IBD and 27-hydroxylcholesterol (27HC) is the main human cholesterol metabolite. This study investigated whether 27HC can induce intestinal fibrosis. METHODS The effects of cholesterol and 27HC on intestinal fibrosis were assessed in zebrafish and human intestinal epithelial Caco-2 cells. RESULTS Cholesterol and 27HC induced intestinal inflammation and collagen deposition, inhibited E-cadherin (E-ca) expression in the intestinal epithelium, and promoted nuclear translocation of β-catenin in zebrafish. Cholesterol and 27HC up-regulated expression of COL-1, α-SMA, CTGF, TIMP1, N-cadherin, vimentin, glycogen synthesis kinase-3β (GSK-3β) and β-catenin, but inhibited E-ca, in Caco-2 cells. The expression of these proteins was inhibited by CYP27A1 knockdown and β-catenin knockdown. 27HC-induced nuclear translocation of β-catenin occurs in Caco-2 cells. p38, ERK, and AKT activate β-catenin and thereby participate in 27HC-induced epithelia-mesenchymal transition (EMT) and fibrosis. 27HC-increased oxidative stress and the fibrosis and EMT markers, the nuclear translocation of β-catenin, and the up-regulation of p-cell kinase proteins promoted by 27HC were inhibited by N-acetyl-L-cysteine (NAC). Folic acid (FA), resveratrol (RES), and NAC all ameliorated the 27HC-induced effects in Caco-2 cells and zebrafish. CONCLUSION A high-cholesterol diet caused intestinal fibrosis in zebrafish, mediated by a major cholesterol metabolite, 27HC. 27HC increased oxidative stress and activated p38, ERK, AKT, and β-catenin, leading to EMT of epithelial cells and intestinal fibrosis. FA and RES both ameliorated intestinal fibrosis by restraining 27HC-induced β-catenin activation.
Collapse
Affiliation(s)
- Wei Xiao
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chunyan Hu
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yifan Ni
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jie Wang
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Kailin Jiao
- Department of Nutrition, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China.
| | - Ming Zhou
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Zhong Li
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
14
|
Wang J, Bai M, Zhang C, An N, Wan L, Wang XN, Du RH, Shen Y, Yuan ZY, Wu XD, Wu XF, Xu Q. Natural compound fraxinellone ameliorates intestinal fibrosis in mice via direct intervention of HSP47-collagen interaction in the epithelium. Acta Pharmacol Sin 2023; 44:2469-2478. [PMID: 37580493 PMCID: PMC10692176 DOI: 10.1038/s41401-023-01143-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/23/2023] [Indexed: 08/16/2023] Open
Abstract
Intestinal fibrosis is a common complication of inflammatory bowel disease. There is still a lack of effective drugs for the prevention or treatment of intestinal fibrosis. Heat shock protein 47 (HSP47) plays a key role in the development of intestinal fibrosis. In this study we investigated the therapeutic potential and underlying mechanisms of fraxinellone, a degraded limonoid isolated from the root bark of Dictamnus dasycarpus, in the treatment of intestinal fibrosis. Intestinal fibrosis was induced in mice by dextran sodium sulfate (DSS) treatment. DDS-treated mice were administered fraxinellone (7.5, 15, 30 mg·kg-1·d-1, i.g.) for 45 days. We showed that fraxinellone administration dose-dependently alleviated DSS-induced intestinal impairments, and reduced the production of intestinal fibrosis biomarkers such as α-smooth muscle actin (SMA), collagen I, hydroxyproline, fibronectin and laminin, and cytokines such as TGF-β, TNF-α and IL-β. We then established in vitro intestinal fibrosis cell models in SW480 and HT-29 cells, and demonstrated that treatment with fraxinellone (3, 10, 30 μM) significantly relieved TGF-β-induced fibrosis responses by inhibiting the TGF-β/Smad2/3 signaling pathway. Molecular docking suggested that the fraxinellone might disrupt the interaction between HSP47 and collagen, which was confirmed by coimmunoprecipitation experiments. SPR analysis showed that fraxinellone had a high affinity for HSP47 with a Kd value of 3.542 × 10-5 M. This study provides a new example of HSP47-collagen intervention by a natural compound and has important implications for the clinical treatment of inflammation-induced issue fibrosis.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210000, China
| | - Mei Bai
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
| | - Cui Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
| | - Ning An
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
| | - Li Wan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210000, China
| | - Xiao-Ning Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
| | - Rong-Hui Du
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
| | - Zhi-Yao Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
| | - Xu-Dong Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China.
| | - Xue-Feng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China.
| |
Collapse
|
15
|
Li X, Yu M, Zhao Q, Yu Y. Prospective therapeutics for intestinal and hepatic fibrosis. Bioeng Transl Med 2023; 8:e10579. [PMID: 38023697 PMCID: PMC10658571 DOI: 10.1002/btm2.10579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/17/2023] [Accepted: 07/12/2023] [Indexed: 12/01/2023] Open
Abstract
Currently, there are no effective therapies for intestinal and hepatic fibrosis representing a considerable unmet need. Breakthroughs in pathogenesis have accelerated the development of anti-fibrotic therapeutics in recent years. Particularly, with the development of nanotechnology, the harsh environment of the gastrointestinal tract and inaccessible microenvironment of fibrotic lesions seem to be no longer considered a great barrier to the use of anti-fibrotic drugs. In this review, we comprehensively summarize recent preclinical and clinical studies on intestinal and hepatic fibrosis. It is found that the targets for preclinical studies on intestinal fibrosis is varied, which could be divided into molecular, cellular, and tissues level, although little clinical trials are ongoing. Liver fibrosis clinical trials have focused on improving metabolic disorders, preventing the activation and proliferation of hepatic stellate cells, promoting the degradation of collagen, and reducing inflammation and cell death. At the preclinical stage, the therapeutic strategies have focused on drug targets and delivery systems. At last, promising remedies to the current challenges are based on multi-modal synergistic and targeted delivery therapies through mesenchymal stem cells, nanotechnology, and gut-liver axis providing useful insights into anti-fibrotic strategies for clinical use.
Collapse
Affiliation(s)
- Xin Li
- Department of Clinical Pharmacy, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Institute of Pharmaceutics, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Mengli Yu
- Department of Gastroenterology, The Fourth Affiliated HospitalZhejiang University School of MedicineYiwuChina
| | - Qingwei Zhao
- Department of Clinical Pharmacy, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yang Yu
- College of Pharmaceutical SciencesSouthwest UniversityChongqingChina
| |
Collapse
|
16
|
Yang Y, Xiao G, Cheng P, Zeng J, Liu Y. Protective Application of Chinese Herbal Compounds and Formulae in Intestinal Inflammation in Humans and Animals. Molecules 2023; 28:6811. [PMID: 37836654 PMCID: PMC10574200 DOI: 10.3390/molecules28196811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Intestinal inflammation is a chronic gastrointestinal disorder with uncertain pathophysiology and causation that has significantly impacted both the physical and mental health of both people and animals. An increasing body of research has demonstrated the critical role of cellular signaling pathways in initiating and managing intestinal inflammation. This review focuses on the interactions of three cellular signaling pathways (TLR4/NF-κB, PI3K-AKT, MAPKs) with immunity and gut microbiota to explain the possible pathogenesis of intestinal inflammation. Traditional medicinal drugs frequently have drawbacks and negative side effects. This paper also summarizes the pharmacological mechanism and application of Chinese herbal compounds (Berberine, Sanguinarine, Astragalus polysaccharide, Curcumin, and Cannabinoids) and formulae (Wumei Wan, Gegen-Qinlian decoction, Banxia xiexin decoction) against intestinal inflammation. We show that the herbal compounds and formulae may influence the interactions among cell signaling pathways, immune function, and gut microbiota in humans and animals, exerting their immunomodulatory capacity and anti-inflammatory and antimicrobial effects. This demonstrates their strong potential to improve gut inflammation. We aim to promote herbal medicine and apply it to multispecies animals to achieve better health.
Collapse
Affiliation(s)
- Yang Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Gang Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
| | - Pi Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Yisong Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| |
Collapse
|
17
|
Macias-Ceja DC, Mendoza-Ballesteros MT, Ortega-Albiach M, Barrachina MD, Ortiz-Masià D. Role of the epithelial barrier in intestinal fibrosis associated with inflammatory bowel disease: relevance of the epithelial-to mesenchymal transition. Front Cell Dev Biol 2023; 11:1258843. [PMID: 37822869 PMCID: PMC10562728 DOI: 10.3389/fcell.2023.1258843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023] Open
Abstract
In inflammatory bowel disease (IBD), chronic inflammation in the gastrointestinal tract can lead to tissue damage and remodelling, which can ultimately result in fibrosis. Prolonged injury and inflammation can trigger the activation of fibroblasts and extracellular matrix (ECM) components. As fibrosis progresses, the tissue becomes increasingly stiff and less functional, which can lead to complications such as intestinal strictures, obstructive symptoms, and eventually, organ dysfunction. Epithelial cells play a key role in fibrosis, as they secrete cytokines and growth factors that promote fibroblast activation and ECM deposition. Additionally, epithelial cells can undergo a process called epithelial-mesenchymal transition, in which they acquire a more mesenchymal-like phenotype and contribute directly to fibroblast activation and ECM deposition. Overall, the interactions between epithelial cells, immune cells, and fibroblasts play a critical role in the development and progression of fibrosis in IBD. Understanding these complex interactions may provide new targets for therapeutic interventions to prevent or treat fibrosis in IBD. In this review, we have collected and discussed the recent literature highlighting the contribution of epithelial cells to the pathogenesis of the fibrotic complications of IBD, including evidence of EMT, the epigenetic control of the EMT, the potential influence of the intestinal microbiome in EMT, and the possible therapeutic strategies to target EMT. Finally we discuss the pro-fibrotic interactions epithelial-immune cells and epithelial-fibroblasts cells.
Collapse
Affiliation(s)
- Dulce C. Macias-Ceja
- Departamento de Farmacología and CIBEREHD, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | | | | | - M. Dolores Barrachina
- Departamento de Farmacología and CIBEREHD, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Dolores Ortiz-Masià
- Departamento de Farmacología and CIBEREHD, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
18
|
Han Y, Liu L, Chen Y, Zheng H, Yao M, Cao L, Sferra TJ, Ke X, Peng J, Shen A. Qing Hua Chang Yin alleviates chronic colitis of mice by protecting intestinal barrier function and improving colonic microflora. Front Pharmacol 2023; 14:1176579. [PMID: 37576825 PMCID: PMC10413571 DOI: 10.3389/fphar.2023.1176579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Background: Qing Hua Chang Yin (QHCY) is a famous formula of traditional Chinese medicine (TCM) and has been proven to have protective effect on ulcerative colitis. However, its protective effect and potential therapeutic mechanisms in chronic colitis remain unclear. The purpose of this study is to explore the effects and underlying mechanisms of QHCY on dextran sulfate sodium (DSS)-induced chronic colitis mice model. Methods: The chronic colitis model was established by administration of 2% DSS for three consecutive cycles of 7 days with two intervals of 14 days for recovery by drinking water. The experiment lasted 49 days. The DSS + QHCY group received QHCY administration by oral gavage at doses of 1.6 g/kg/d, DSS + Mesalazine group was administrated Mesalazine by oral gavage at doses of 0.2 g/kg/d. The control and DSS group were given equal volume of distilled water. The body weight, stool consistency and blood in stool were monitored every 2 days. The disease activity index (DAI) was calculated. The colon length was measured after the mice were sacrificed. The histomorphology of colonic tissues was checked by the HE and PAS staining. Immunohistochemistry was performed to detect the expressions of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6), tight junction proteins (ZO-1, occludin) and Mucin2 (MUC2). 16S rRNA sequencing analysis was conducted to study the diversity and abundance of gut microbiota changes. Results: QHCY treatment not only significantly attenuated DSS-induced the weight loss, DAI score increase, colon shortening and histological damage in mice, but also decreased the expression of pro-inflammatory cytokines in colonic tissues and increased the expression of ZO-1, occludin, and MUC2. Furthermore, QHCY enhanced the diversity of gut microbes and regulated the structure and composition of intestinal microflora in mice with chronic colitis. Conclusion: QHCY has a therapeutic effect on a murine model of chronic colitis. It can effectively reduce the clinical and pathological manifestations of colitis and prevent alterations in the gut microbiota.
Collapse
Affiliation(s)
- Yuying Han
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Liya Liu
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Youqin Chen
- Department of Pediatrics, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Huifang Zheng
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Mengying Yao
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Liujing Cao
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Thomas J. Sferra
- Department of Pediatrics, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Xiao Ke
- Department of Gastroenterology, The Second People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Clinical Medical Research Centre of Chinese Medicine for Spleen and Stomach, Fuzhou, China
| | - Jun Peng
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Aling Shen
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
19
|
Duan ZL, Wang YJ, Lu ZH, Tian L, Xia ZQ, Wang KL, Chen T, Wang R, Feng ZY, Shi GP, Xu XT, Bu F, Ding Y, Jiang F, Zhou JY, Wang Q, Chen YG. Wumei Wan attenuates angiogenesis and inflammation by modulating RAGE signaling pathway in IBD: Network pharmacology analysis and experimental evidence. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154658. [PMID: 36706698 DOI: 10.1016/j.phymed.2023.154658] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Wumei Wan (WMW) has been used to address digestive disorder for centuries in traditional Chinese medicine. Previous studies have demonstrated its anti-colitis efficacy, but the underlying mechanism of its action remains to be further clarified. PURPOSE To investigate the underlying mechanisms of WMW in the treatment of chronic ulcerative colitis (UC) through network pharmacology and experimental validation. METHODS Traditional Chinese Medicine Systems Pharmacology (TCMSP) platform were used to identify the ingredients and potential targets of WMW. The microarray gene data GSE75214 datasets from GEO database was used to define UC-associated targets. Cytoscape3.7.2 was employed to construct the protein-protein interaction (PPI) network and compounds-disease targets network. GO enrichment analysis and KEGG pathway analysis were performed by R software for functional annotation. UPLC-TOF-MS/MS method was used to quantitatively analyze the active ingredients of WMW. For experimental validation, three cycles of 2% dextran sulfate sodium salt (DSS) were used to construct chronic colitis model. The hub targets and signal pathway were detected by qPCR, ELISA, western blotting , immunohistochemical and immunofluorescence. RESULTS Through network analysis, 104 active ingredients were obtained from WMW, and 47 of these ingredients had potential targets for UC. A total of 41 potential targets of WMW and 13 hub targets were identified. KEGG analysis showed that WMW involved in advanced glycation end products-receptor of advanced glycation end products (AGE-RAGE) signaling pathway. Taxifolin, rutaecarpine, kaempferol, quercetin, and luteolin of WMW were the more highly predictive components related to the AGE-RAGE signaling pathway. In vivo validation, WMW improved DSS-induced colitis, reduced the expression of inflammatory cytokines and chemokines. Notably, it significantly decreased the mRNA expression of Spp1, Serpine1, Mmp2, Mmp9, Ptgs2, Nos2, Kdr and Icam1, which were associated with angiogenesis. In addition, we confirmed WMW inhibited RAGE expression and diminished DSS-induced epithelial barrier alterations CONCLUSION: Our results initially demonstrated the effective components and the strong anti-angiogenic activity of WMW in experimental chronic colitis. Sufficient evidence of the satisfactory anti-colitis action of WMW was verified in this study, suggesting its potential as a quite prospective agent for the therapy of UC.
Collapse
Affiliation(s)
- Zheng-Lan Duan
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yu-Ji Wang
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhi-Hua Lu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Lin Tian
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zi-Qian Xia
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Kui-Ling Wang
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Tuo Chen
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Rong Wang
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Ze-Yu Feng
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Guo-Ping Shi
- Collaborative Innovation Center for Cancer Medicine, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Xin-Tian Xu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Fan Bu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yang Ding
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Feng Jiang
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Jin-Yong Zhou
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Qiong Wang
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China.
| | - Yu-Gen Chen
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Collaborative Innovation Center for Cancer Medicine, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China.
| |
Collapse
|
20
|
Yan S, Wang P, Wei H, Jia R, Zhen M, Li Q, Xue C, Li J. Treatment of ulcerative colitis with Wu-Mei-Wan by inhibiting intestinal inflammatory response and repairing damaged intestinal mucosa. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154362. [PMID: 35947900 DOI: 10.1016/j.phymed.2022.154362] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/17/2022] [Accepted: 07/26/2022] [Indexed: 05/23/2023]
Abstract
BACKGROUND Wu-Mei-Wan (WMW), a traditional Chinese medicine, has been applied in the treatment of gastrointestinal diseases with long-term diarrhea and mucopurulent bloody stool as the main symptoms since ancient times. Studies have shown that WMW inhibits intestinal inflammation, repairs damaged intestinal mucosa, resists colon necrosis, and resists intestinal fibrosis. However, the specific mechanism of action is not yet clear. OBJECTIVE Ulcerative colitis (UC), an intestinal disease with intestinal inflammation and injury as the main pathological manifestations, is one of the high-risk factors for colon cancer. Inhibiting the inflammatory response and promoting colonic epithelial repair are critical to the treatment of UC. However, there is still a lack of remedies with satisfactory curative effects. In this study, the role of WMW in dextran sulfate sodium (DSS)-induced colitis in mice and its related mechanisms are discussed from two aspects: intestinal inflammation and tissue repair. METHODS DSS was used to induce colitis in mice and the therapeutic effect of WMW was analyzed by disease activity score, histopathological score, colon length measurement, serum cytokine detection, and flow cytometry. Macrophage activation and colonic stem cell proliferation were observed by immunohistochemistry. The expression of critical molecules in macrophage activation and colonic stem cell proliferation signaling pathways in colon tissue was detected with immunohistochemistry, immunofluorescence staining, RT-qPCR, and Western blot. RESULTS WMW could significantly alleviate DSS-induced colitis. We showed that WMW could reduce disease activity, reduce pathological scores, limit weight loss, inhibit colon shortening, inhibit inflammatory factor secretion, attenuate inflammatory response, and promote the repair of damaged colonic epithelium. WMW inhibited the activation of colonic macrophages, and its mechanism might be inhibiting the Notch/NF-κB/NLRP3 pathway; WMW promoted the proliferation of colonic stem cells, and its mechanism was associated with the regulation of the Hippo/YAP signaling pathway. CONCLUSION The results of this study suggested that WMW could treat UC via a mechanism that inhibited the intestinal inflammatory response and repaired damaged intestinal mucosa.
Collapse
Affiliation(s)
- Shuguang Yan
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Xianyang 712046, China
| | - Ping Wang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Hailiang Wei
- Department of General Surgery, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Rui Jia
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Xianyang 712046, China
| | - Meijia Zhen
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Xianyang 712046, China
| | - Qian Li
- Medical Research and Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046
| | - Chang Xue
- Department of Chinese Medicine, Ankang Central Hospital, Ankang 725099, China.
| | - Jingtao Li
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Xianyang 712046, China; Department of infectious disease, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China.
| |
Collapse
|
21
|
Opdenakker G, Vermeire S, Abu El-Asrar A. How to place the duality of specific MMP-9 inhibition for treatment of inflammatory bowel diseases into clinical opportunities? Front Immunol 2022; 13:983964. [PMID: 36164340 PMCID: PMC9509204 DOI: 10.3389/fimmu.2022.983964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Crohn’s disease (CD) and ulcerative colitis (UC) are inflammatory bowel diseases (IBD) with the involvement of immune cells and molecules, including cytokines, chemokines and proteases. A previous extensive review about the molecular biology of matrix metalloproteases (MMPs) and tissue inhibitors of metalloproteases (TIMPs), related to intestinal barrier destruction and restoration functions in IBD, is here complemented with the literature from the last five years. We also compare IBD as a prototypic mucosal inflammation of an epithelial barrier against microorganisms with inflammatory retinopathy as a disease with a barrier dysfunction at the level of blood vessels. Multiple reasons are at the basis of halting clinical trials with monoclonal antibodies against MMP-9 for IBD treatment. These include (i) the absence of a causative role of MMP-9 in the pathology in animal models of IBD, (ii) the fact that endotoxins, crossing the intestinal barrier, induce massive local release of both neutrophil collagenase (MMP-8) and gelatinase B (MMP-9), (iii) insufficient recognition that MMPs modify the activities of cytokines, chemokines and their receptors, (iv) ignorance that MMPs exist as mixtures of proteoforms with different posttranslational modifications and with different specific activities and (v) the fact that MMPs and TIMPs act in an interactive network, possibly having also beneficial effects on IBD evolution. Nevertheless, inhibition of MMPs may be a useful therapeutic approach during specific IBD disease phases or in specific sub-phenotypes. This temporary “window of opportunity” for MMP-9 inhibition may be complemented by a locoregional one, provided that the pharmacological agents are targeted in time to affected tissues, as is achieved in ophthalmological inflammation. Thus, in order to discover spatial and temporal windows of opportunity for MMP inhibition as treatment of IBD, more preclinical work including well controlled animal studies will be further needed. In this respect, MMP-9/NGAL complex analysis in various body compartments is helpful for better stratification of IBD patients who may benefit from anti-MMP-9.
Collapse
Affiliation(s)
- Ghislain Opdenakker
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- University Hospitals Leuven, KU Leuven, Leuven, Belgium
- Department of Ophthalmology, King Saud University, Riyadh, Saudi Arabia
- *Correspondence: Ghislain Opdenakker,
| | | | | |
Collapse
|
22
|
Ye Y, Zhang X, Su D, Ren Y, Cheng F, Yao Y, Shi G, Ji Y, Chen S, Shi P, Dai L, Su X, Deng H. Therapeutic efficacy of human adipose mesenchymal stem cells in Crohn's colon fibrosis is improved by IFN-γ and kynurenic acid priming through indoleamine 2,3-dioxygenase-1 signaling. Stem Cell Res Ther 2022; 13:465. [PMID: 36076306 PMCID: PMC9461110 DOI: 10.1186/s13287-022-03157-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Inflammatory bowel diseases (IBD) are chronic relapsing-remitting inflammatory diseases of the gastrointestinal tract that are typically categorized into two subtypes: Crohn's disease (CD) and ulcerative colitis (UC). Although MSCs therapy has achieved encouraging outcomes in IBD therapy, objective responses are limited in colon fibrosis stenosis owing to the complicated microenvironment of CD and MSCs heterogeneity of quality. Here, we chose IFN-γ and kynurenic acid (KYNA) to overcome the low response and heterogeneity of human adipose-derived MSCs (hADSCs) to treat IBD and expand the therapeutic effects based on the excellent ability of IFN-γ and KYNA to promote indoleamine 2,3-dioxygenase-1 (IDO-1) signaling, providing a potential protocol to treat IBD and fibrosis disease. METHODS hADSCs were isolated, cultured, and identified from human abdominal adipose tissue. The CD pathology-like acute colitis and chronic colon fibrosis rat model was induced by 2,4,6-trinitrobenzen sulfonic acid (TNBS). hADSCs were pretreated in vitro with IFN-γ and KYNA and then were transplanted intravenously at day 1 and 3 of TNBS administration in colitis along with at day 1, 15, and 29 of TNBS administration in chronic colonic fibrosis. Therapeutic efficacy was evaluated by body weights, disease activity index, pathological staining, real-time PCR, Western blot, and flow cytometry. For knockout of IDO-1, hADSCs were transfected with IDO-1-targeting small gRNA carried on a CRISPR-Cas9-lentivirus vector. RESULTS hADSCs treated with IFN-γ and KYNA significantly upregulated the expression and secretion of IDO-1, which has effectively ameliorated CD pathology-like colitis injury and fibrosis. Notably, the ability of hADSCs with IDO-1 knockout to treat colitis was significantly impaired and diminished the protective effects of the primed hADSCs with IFN-γ and KYNA. CONCLUSION Inflammatory cytokines IFN-γ- and KYNA-treated hADSCs more effectively alleviate TNBS-induced colitis and colonic fibrosis through an IDO-1-dependent manner. Primed hADSCs are a promising new strategy to improve the therapeutic efficacy of MSCs and worth further research.
Collapse
Affiliation(s)
- Yixin Ye
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiaomei Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dongsheng Su
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yushuang Ren
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fuyi Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yunqi Yao
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Gang Shi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yanhong Ji
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Shuang Chen
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Pengyi Shi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiaolan Su
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
23
|
Yuan S, Li Y, Li J, Xue JC, Wang Q, Hou XT, Meng H, Nan JX, Zhang QG. Traditional Chinese Medicine and Natural Products: Potential Approaches for Inflammatory Bowel Disease. Front Pharmacol 2022; 13:892790. [PMID: 35873579 PMCID: PMC9301246 DOI: 10.3389/fphar.2022.892790] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a rare, recurrent, and intractable inflammation obstruction of the stomach tract, usually accompanied by inflammation of cell proliferation and inflammation of the colon and carries a particular cause of inflammation. The clinical use of drugs in western countries affects IBD treatment, but various adverse effects and high prices limit their application. For these reasons, Traditional Chinese Medicine (TCM) is more advantageous in treating IBD. This paper reviews the mechanism and research status of TCM and natural products in IBD treatment by analyzing the relevant literature to provide a scientific and theoretical basis for IBD treatment.
Collapse
Affiliation(s)
- Shuo Yuan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - You Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Jiao Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China.,Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, China
| | - Jia-Chen Xue
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China.,Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, China
| | - Qi Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Xiao-Ting Hou
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Huan Meng
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Ji-Xing Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Qing-Gao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Chronic Disease Research Center, Medical College, Dalian University, Dalian, China.,Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, China
| |
Collapse
|
24
|
Zhang S, Luo H, Tan D, Peng B, Zhong Z, Wang Y. Holism of Chinese herbal medicine prescriptions for inflammatory bowel disease: A review based on clinical evidence and experimental research. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154202. [PMID: 35665678 DOI: 10.1016/j.phymed.2022.154202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic nonspecific inflammatory disease that causes a heavy burden and lacks effective treatments. Chinese herbal medicine prescriptions (CHMPs), which are characterized by a synergistic usage of herbs, are widely used in the management of IBD. The molecular mechanisms of action of CHMP are still ambiguous as the canonical "one-compound-one-target" approach has difficulty describing the dynamic bioreactions among CHMP objects. It seems more flexible to define the holism of CHMP for IBD by employing high-throughput analysis. However, studies that discuss the development of CHMP in treating IBD in a holistic view are still lacking. PURPOSE This review appraised preclinical and clinical research to fully describe the anti-IBD capacity of CHMPs and discussed CHMPs' holistic characteristics that can contribute to better management of IBD. METHODS & RESULTS We screened clinical and preclinical references of CHMP being used as treatments for IBD. We discussed the complexity of IBD and the development of CHMP to present the sophistication of CHMP treatments. To describe the clinical effectiveness of CHMPs against IBD, we performed an umbrella review of CHMP-associated META analyses, in which 1174 records were filtered down to 12 references. Then, we discussed 14 kinds of CHMPs that had a long history of use and analyzed their mechanisms of action. Representative herbs were employed to provide a subordinate explanation for the whole prescription. As holism is the dominant characteristic of CHMPs, we explored applications of CHMPs for IBD with the help of omics, gut microbiome, and network pharmacology, which are potential approaches to a dynamic figure of bioactions of CHMPs. CONCLUSION This review is the first to discuss the potential of CHMPs to manage IBD in a holistic context and will provide inspiring explanations for CHMP applications for further product transformation and application to other diseases.
Collapse
Affiliation(s)
- Siyuan Zhang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Dechao Tan
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Bo Peng
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
25
|
Lyu M, Wang Y, Chen Q, Qin J, Hou D, Huang S, Shao D, Gong X, Huang G, Zhang S, Zhang Z, Cui H. Molecular Mechanism Underlying Effects of Wumeiwan on Steroid-Dependent Asthma: A Network Pharmacology, Molecular Docking, and Experimental Verification Study. Drug Des Devel Ther 2022; 16:909-929. [PMID: 35386850 PMCID: PMC8978578 DOI: 10.2147/dddt.s349950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Background Steroid-dependent asthma (SDA) is characterized by oral corticosteroid (OCS) resistance and dependence. Wumeiwan (WMW) showed potentials in reducing the dose of OCS of SDA patients based on our previous studies. Methods Network pharmacology was conducted to explore the molecular mechanism of WMW against SDA with the databases of TCMSP, STRING, etcetera. GO annotation and KEGG functional enrichment analysis were conducted by metascape database. Pymol performed the molecular docking. In the experiment, the OVA-induced plus descending dexamethasone intervention chronic asthmatic rat model was conducted. Lung pathological changes were analyzed by H&E, Masson, and IHC staining. Relative expressions of the gene were performed by real-time PCR. Results A total of 102 bioactive ingredients in WMW were identified, as well as 191 common targets were found from 241 predicted targets in WMW and 3539 SDA-related targets. The top five bioactive ingredients were identified as pivotal ingredients, which included quercetin, candletoxin A, palmidin A, kaempferol, and beta-sitosterol. Besides, 35 HUB genes were obtained from the PPI network, namely, TP53, AKT1, MAPK1, JUN, HSP90AA1, TNF, RELA, IL6, CXCL8, EGFR, etcetera. GO biological process analysis indicated that HUB genes were related to bacteria, transferase, cell differentiation, and steroid. KEGG pathway enrichment analysis indicated that the potential mechanism might be associated with IL-17 and MAPK signaling pathways. Molecular docking results supported these findings. H&E and Masson staining proved that WMW could reduce airway inflammation and remodeling of model rats, which might be related to the downward expression of IL-8 proved by IHC staining and real-time PCR. Conclusion WMW could be a complementary and alternative therapy for SDA by reducing airway inflammation.
Collapse
Affiliation(s)
- Mingsheng Lyu
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yahui Wang
- Department of Neurology and Stroke Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Qiuyi Chen
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Jingbo Qin
- National Institute of TCM Constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Dan Hou
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Shuaiyang Huang
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Dongmei Shao
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xuefeng Gong
- Department of Traditional Chinese Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Guirui Huang
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Shiyu Zhang
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Zhijie Zhang
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Hongsheng Cui
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| |
Collapse
|
26
|
Yan S, Wei H, Jia R, Zhen M, Bao S, Wang W, Liu F, Li J. Wu-Mei-Wan Ameliorates Murine Ulcerative Colitis by Regulating Macrophage Polarization. Front Pharmacol 2022; 13:859167. [PMID: 35387334 PMCID: PMC8978603 DOI: 10.3389/fphar.2022.859167] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/02/2022] [Indexed: 12/24/2022] Open
Abstract
An increasing body of evidence shows that macrophages play an important role in the pathogenesis of ulcerative colitis (UC). Macrophage polarization and changes in related signaling pathways are reported to have a protective effect on intestinal inflammation. The well-known Chinese medicine Wumeiwan (WMW) has been used to treat diarrhea, one of the main symptoms of colitis, for more than 2,000 years. Increasing evidence shows that WMW can inhibit intestinal inflammation and repair damaged intestinal mucosa, but its effector mechanisms are unknown. Therefore, we studied the prophylactic effects of WMW in dextran sulfate sodium (DSS)-induced UC and its effects on macrophage mechanisms and polarization. The results show that colitis was significantly alleviated in mice in the WMW group, and the secretion and expression of pro-inflammatory factors TNF-α, IL-1, and IL-6 were inhibited in the serum and colonic tissues of mice with WMW-treated colitis, whereas anti-inflammatory factors IL-10, Arg-1, and TGF-β1 were increased. Subsequent studies found that WMW could inhibit M1 polarization and promote M2 polarization in colonic macrophages in DSS-induced colitis mice. Network pharmacology was used to predict potential targets and pathways, and further studies confirmed the related targets The results showed that WMW gradually inhibits the activation of the P38MAPK and NF-κB signaling pathways and further activates the STAT6 signaling pathway. In summary, WMW interferes with the p38MAPK, NF-κB and STAT6 signaling pathways to regulate M1/M2 polarization in macrophages, thereby protecting mice against DSS-induced colitis.
Collapse
Affiliation(s)
- Shuguang Yan
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China.,Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hailiang Wei
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, China.,Department of General Surgery, The Affliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Rui Jia
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China.,Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Meijia Zhen
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China.,Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Shengchuan Bao
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China.,Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Wenba Wang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China.,Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Fanrong Liu
- Department of Gastroenterology, Yulin Hospital of Traditional Chinese Medicine in Shaanxi Province, Yulin, China
| | - Jingtao Li
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, China.,Departments of Infectious Disease, The Affliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
27
|
Bai B, Li H, Han L, Mei Y, Hu C, Mei Q, Xu J, Liu X. Molecular mechanism of the TGF‑β/Smad7 signaling pathway in ulcerative colitis. Mol Med Rep 2022; 25:116. [PMID: 35137923 PMCID: PMC8855156 DOI: 10.3892/mmr.2022.12632] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 12/03/2021] [Indexed: 11/10/2022] Open
Abstract
Aberrant TGF‑β/Smad7 signaling has been reported to be an important mechanism underlying the pathogenesis of ulcerative colitis. Therefore, the present study aimed to investigate the effects of a number of potential anti‑colitis agents on intestinal epithelial permeability and the TGF‑β/Smad7 signaling pathway in an experimental model of colitis. A mouse model of colitis was first established before anti‑TNF‑α and 5‑aminosalicyclic acid (5‑ASA) were administered intraperitoneally and orally, respectively. Myeloperoxidase (MPO) activity, histological index (HI) of the colon and the disease activity index (DAI) scores were then detected in each mouse. Transmission electron microscopy (TEM), immunohistochemical and functional tests, including Evans blue (EB) and FITC‑dextran (FD‑4) staining, were used to evaluate intestinal mucosal permeability. The expression of epithelial phenotype markers E‑cadherin, occludin, zona occludens (ZO‑1), TGF‑β and Smad7 were measured. In addition, epithelial myosin light chain kinase (MLCK) expression and activity were measured. Anti‑TNF‑α and 5‑ASA treatments was both found to effectively reduce the DAI score and HI, whilst decreasing colonic MPO activity, plasma levels of FD‑4 and EB permeation of the intestine. Furthermore, anti‑TNF‑α and 5‑ASA treatments decreased MLCK expression and activity, reduced the expression of Smad7 in the small intestine epithelium, but increased the expression of TGF‑β. In mice with colitis, TEM revealed partial epithelial injury in the ileum, where the number of intercellular tight junctions and the expression levels of E‑cadherin, ZO‑1 and occludin were decreased, all of which were alleviated by anti‑TNF‑α and 5‑ASA treatment. In conclusion, anti‑TNF‑α and 5‑ASA both exerted protective effects on intestinal epithelial permeability in an experimental mouse model of colitis. The underlying mechanism may be mediated at least in part by the increase in TGF‑β expression and/or the reduction in Smad7 expression, which can inhibit epithelial MLCK activity and in turn reduce mucosal permeability during the pathogenesis of ulcerative colitis.
Collapse
Affiliation(s)
- Bingqing Bai
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- The Key Laboratory of Digestive Diseases of Anhui Province, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Huihui Li
- The Key Laboratory of Digestive Diseases of Anhui Province, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Gastroenterology, Fuyang Cancer Hospital, Fuyang, Anhui 236010, P.R. China
| | - Liang Han
- The Key Laboratory of Digestive Diseases of Anhui Province, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Gastroenterology, Hangzhou Ninth People's Hospital, Hangzhou, Zhejiang 311225, P.R. China
| | - Yongyu Mei
- The Key Laboratory of Digestive Diseases of Anhui Province, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Gastroenterology, Wuhu Second People's Hospital, Wuhu, Anhui 241000, P.R. China
| | - Cui Hu
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- The Key Laboratory of Digestive Diseases of Anhui Province, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Qiao Mei
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- The Key Laboratory of Digestive Diseases of Anhui Province, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jianming Xu
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- The Key Laboratory of Digestive Diseases of Anhui Province, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xiaochang Liu
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- The Key Laboratory of Digestive Diseases of Anhui Province, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
28
|
Zhou HY, Yang N, Sui H, Du XN, Luo Q, Zhao YJ, Zhou YW, Guan Q, Zhou Y, Qian HJ, Liu L, Wang DP, Lin HL. WITHDRAWN: The Role of the Vascular Niche in Organ Fibrosis and COVID-19-Related Organ Damage and the Countermeasures adopted by Chinese and Western Medicine. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2022. [PMCID: PMC8960293 DOI: 10.1016/j.prmcm.2022.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
This article has been withdrawn at
the request of the author(s) and/or editor. The Publisher apologizes for
any inconvenience this may cause. The full Elsevier Policy on Article
Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
|
29
|
Wang R, Wang D, Wang H, Wang T, Weng Y, Zhang Y, Luo Y, Lu Y, Wang Y. Therapeutic Targeting of Nrf2 Signaling by Maggot Extracts Ameliorates Inflammation-Associated Intestinal Fibrosis in Chronic DSS-Induced Colitis. Front Immunol 2021; 12:670159. [PMID: 34456904 PMCID: PMC8387595 DOI: 10.3389/fimmu.2021.670159] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Intestinal fibrosis is induced by excessive myofibroblast proliferation and collagen deposition, which has been regarded as a general pathological feature in inflammatory bowel disease (IBD). Therefore, identifying clinical markers and targets to treat and prevent intestinal fibrosis is urgently needed. The traditional Chinese medicine maggot, commonly known as “wu gu chong”, has been shown to reduce oxidative stress and alleviate inflammation in chronic colitis. This study investigated the mechanisms underlying the effects of maggot extract (ME) on inflammation-associated intestinal fibrosis in TGF-β1-stimulated human intestinal fibroblasts (CCD-18Co cells) and dextran sodium sulphate (DSS)-induced chronic colitis murine model. To assess the severity of inflammation and fibrosis, histological and macroscopic evaluation were carried out. The results showed that ME was a significant inhibitor of body weight loss and colon length shortening in mice with chronic colitis. In addition, ME suppressed the intestinal fibrosis by downregulating TGF-β1/SMADs pathway via upregulation of Nrf2 expression at both protein and mRNA levels. ME markedly increased the expression of Nrf2, thus resulting in a higher level of HO-1. After treatment with Nrf2 inhibitor (ML385) or siRNA-Nrf2 for deactivating Nrf2 pathway, the protective effects of ME were abolished both in vitro and in vivo. Moreover, the histopathological results for the major organs of DSS mice treated with ME showed no signs of clinically important abnormalities. Treatment with ME had no effect on the viability of CCD-18Co cells, suggesting its low in vitro cytotoxicity. Furthermore, ME could mediate intestine health by keeping the balance of the gut microbes through the enhancement of beneficial microbes and suppression of pathogenic microbes. In conclusion, this is the first ever report demonstrating that ME ameliorates inflammation-associated intestinal fibrosis by suppressing TGF-β1/SMAD pathway via upregulation of Nrf2 expression. Our findings highlight the potential of Nrf2 as an effective therapeutic target for alleviating intestinal fibrosis.
Collapse
Affiliation(s)
- Rong Wang
- State Key Laboratory of Analytacal Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Daojuan Wang
- State Key Laboratory of Analytacal Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Hongwei Wang
- State Key Laboratory of Analytacal Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Tingyu Wang
- State Key Laboratory of Analytacal Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yajing Weng
- State Key Laboratory of Analytacal Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yaling Zhang
- State Key Laboratory of Analytacal Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yongzheng Luo
- School of Chemistry and Life Sciences, Jinling College, Nanjing University, Nanjing, China
| | - Yadong Lu
- Neonatal Medical Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Wang
- State Key Laboratory of Analytacal Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
30
|
Wu F, Shao Q, Cheng Z, Xiong X, Fang K, Zhao Y, Dong R, Xu L, Lu F, Chen G. Traditional herbal formula Wu-Mei-Wan alleviates TNBS-induced colitis in mice by inhibiting necroptosis through increasing RIPK3 O-GlcNAcylation. Chin Med 2021; 16:78. [PMID: 34399822 PMCID: PMC8365910 DOI: 10.1186/s13020-021-00493-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/10/2021] [Indexed: 12/30/2022] Open
Abstract
Background Accumulating evidence indicated that necroptosis plays an essential role in the pathogenesis of inflammatory bowel disease (IBD). The O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) of necroptotic signal molecule receptor-interacting serine-threonine kinase 3 (RIPK3) was reported to exert a protective effect in gut inflammation. Our recent study suggested traditional Chinese herbal formula Wu-Mei-Wan (WMW) as an effective prescription in mouse colitis. However, the potential mechanisms are not fully understood. Considering the crucial role of necroptosis in the pathogenesis of IBD, therefore, this study was designed to explain whether the anti-colitis effect of WMW is mediated by modulating necroptosis and its related mechanisms. Methods The protective effects of WMW on colitis have been determined by detecting colitis mice body weight, disease activity index (DAI), survival rate and colon length. Colonic inflammation was examined by inflammatory cells infiltration and local cytokines levels. After then, we measured the levels of necroptosis and O-GlcNAcylation. C O-immunoprecipitation experiments were used to address whether elevated O-GlcNAcylation can inhibit necroptotic signal transduction in the treatment of WMW. Finally, the key enzymes in O-GlcNAcylation: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) were examined and molecular docking analysis was used to determine effective natural compounds in the regulation on OGT and OGA activities. Results Our results showed that WMW significantly improved mice body weight, survival rate and colon length, decreased DAI in TNBS-induced colitis. WMW obviously alleviated colonic inflammatory responses with reduced macrophages, neutrophils infiltration and local IL-1β, IL-6, TNF-α and IFN-γ levels. It was found that WMW increased colonic O-GlcNAcylation level and inhibited the activation of RIPK1, RIPK3 and MLKL. Then, further experiments revealed that WMW enhanced OGT activity and suppressed OGA activity, thereby increasing RIPK3 O-GlcNAcylation and inhibiting the binding of RIPK3 and MLKL, which led to the inhibition of necroptosis. Additionally, docking analysis demonstrated that hesperidin, coptisine and ginsenoside Rb1 may exert a major role in the regulation on OGT and OGA activities by WMW. Conclusion Our work demonstrated that WMW can alleviate TNBS-induced colitis in mice by inhibiting necroptosis through increasing RIPK3 O-GlcNAcylation.
Collapse
Affiliation(s)
- Fan Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qingqing Shao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhe Cheng
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinyu Xiong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ke Fang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Zhao
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ruolan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lijun Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Guang Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
31
|
Ma L, Wu F, Shao Q, Chen G, Xu L, Lu F. Baicalin Alleviates Oxidative Stress and Inflammation in Diabetic Nephropathy via Nrf2 and MAPK Signaling Pathway. Drug Des Devel Ther 2021; 15:3207-3221. [PMID: 34321869 PMCID: PMC8313380 DOI: 10.2147/dddt.s319260] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/30/2021] [Indexed: 11/23/2022] Open
Abstract
Background Oxidative stress and inflammation play essential roles in the development and progression of diabetic nephropathy (DN). Baicalin (BAI), a natural flavonoid, has been showed to have a renoprotective effect in various renal diseases. However, its underlying mechanisms in DN remain unclear. In this study, we explored the potential effects and underlying mechanisms of BAI on DN using a spontaneous DN model. Methods The protective effects of BAI on DN have been evaluated by detecting DN-related biochemical indicators, kidney histopathology and cell apoptosis. After that, we examined the level of renal oxidative stress and inflammation to explain BAI’s renoprotective effects. Then, Nrf2 pathway was tested to clarify its antioxidant activity, and kidney transcriptomics was conducted to elucidate its anti-inflammatory activity. Finally, Western blot was applied for final mechanism verification. Results Our results found that BAI effectively ameliorated diabetic conditions, proteinuria, renal histopathological changes and cell apoptosis in DN. BAI significantly improved the kidney levels of glutathione peroxidase (GSH-PX), superoxide dismutase (SOD) and catalase (CAT), and reduced malondialdehyde (MDA) level. Meanwhile, the infiltration of inflammatory cells including T-lymphocytes, T-helper cells, neutrophils and macrophages, and the mRNA levels of pro-inflammatory cytokines (IL-1β, IL-6, MCP-1 and TNFα) were also obviously inhibited by BAI. Afterward, Western blot found that BAI significantly activated Nrf2 signaling and increased the expression of downstream antioxidant enzymes (HO-1, NQO-1). Kidney transcriptomics revealed that the inhibition of MAPK signaling pathway may contribute to BAI’s anti-inflammatory activity, which has also been verified in later experiment. BAI treatment did obviously inhibit the activation of canonical pro-inflammatory signaling pathway MAPK family, such as Erk1/2, JNK and P38. Conclusion In summary, our data demonstrated that BAI can treat DN by alleviating oxidative stress and inflammation, and its underlying mechanisms were associated with the activation of Nrf2-mediated antioxidant signaling pathway and the inhibition of MAPK-mediated inflammatory signaling pathway.
Collapse
Affiliation(s)
- Leyi Ma
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Fan Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Qingqing Shao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Guang Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Lijun Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| |
Collapse
|
32
|
Lin XX, Qiu Y, Zhuang XJ, Liu F, Wu XM, Chen MH, Mao R. Intestinal stricture in Crohn's disease: A 2020 update. J Dig Dis 2021; 22:390-398. [PMID: 34014617 DOI: 10.1111/1751-2980.13022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/04/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022]
Abstract
Crohn's disease (CD) is a chronic and relapsing-remitting inflammatory disorder of the gastrointestinal tract. Approximately 70% of patients inevitably develop fibrosis-associated intestinal stricture after 10 years of CD diagnosis, which seriously affects their quality of life. Current therapies play limited role in preventing or reversing the process of fibrosis and no specific anti-fibrotic therapy is yet available. Nearly half of patients thus have no alternative but to receive surgery. The potential mechanisms of intestinal fibrosis remain poorly understood; extracellular matrix remodeling, aberrant immune response, intestinal microbiome imbalance and creeping fat might exert fundamental influences on the multiple physiological and pathophysiological processes. Recently, the emerging new diagnostic techniques have markedly promoted an accurate assessment of intestinal stricture by distinguishing fibrosis from inflammation, which is crucial for guiding treatment and predicting prognosis. In this review, we concisely summarized the key studies published in the year 2020 covering pathogenesis, diagnostic modalities, and therapeutic strategy of intestinal stricture. A comprehensive and timely review of the updated researches in intestinal stricture could provide insight to further elucidate its pathogenesis and identify novel drug targets with anti-fibrotic potentiality.
Collapse
Affiliation(s)
- Xiao Xuan Lin
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yun Qiu
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiao Jun Zhuang
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Fen Liu
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiao Min Wu
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Min Hu Chen
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ren Mao
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
33
|
Wenxiu J, Mingyue Y, Fei H, Yuxin L, Mengyao W, Chenyang L, Jia S, Hong Z, Shih DQ, Targan SR, Xiaolan Z. Effect and Mechanism of TL1A Expression on Epithelial-Mesenchymal Transition during Chronic Colitis-Related Intestinal Fibrosis. Mediators Inflamm 2021; 2021:5927064. [PMID: 34257516 PMCID: PMC8253633 DOI: 10.1155/2021/5927064] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 03/30/2021] [Accepted: 05/28/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND AIMS Recent evidences reveal that epithelial to mesenchymal transition (EMT) exacerbates the process of intestinal fibrosis. Tumor necrosis factor-like ligand 1A (TL1A) is a member of the tumor necrosis family (TNF), which can take part in the development of colonic inflammation and fibrosis by regulating immune response or inflammatory factors. The purpose of this study was to elucidate the possible contribution of TL1A in onset and progression of intestinal inflammation and fibrosis through EMT. METHODS Colonic specimens were obtained from patients with inflammatory bowel disease (IBD) and control individuals. The expression levels of TL1A and EMT-related markers in intestinal tissues were evaluated. Furthermore, the human colorectal adenocarcinoma cell line, HT-29, was stimulated with TL1A, anti-TL1A antibody, or BMP-7 to assess EMT process. In addition, transgenic mice expressing high levels of TL1A in lymphoid cells were used to further investigate the mechanism of TL1A in intestinal fibrosis. RESULTS High levels of TL1A expression were detected in the intestinal specimens of patients with ulcerative colitis and Crohn's disease and were negatively associated with the expression of an epithelial marker (E-cadherin), while it was positively associated with the expression of interstitial markers (FSP1 and α-SMA). Transgenic mice with high expression of TL1A were more sensitive to dextran sodium sulfate and exhibited severe intestinal inflammation and fibrosis. Additionally, the TGF-β1/Smad3 pathway may be involved in TL1A-induced EMT, and the expression of IL-13 and EMT-related transcriptional molecules (e.g., ZEB1 and Snail1) was increased in the intestinal specimens of the transgenic mice. Furthermore, TL1A-induced EMT can be influenced by anti-TL1A antibody or BMP-7 in vitro. CONCLUSIONS TL1A participates in the formation and process of EMT in intestinal fibrosis. This new knowledge enables us to better understand the pathogenesis of intestinal fibrosis and identify new therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Jia Wenxiu
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, Hebei, China
| | - Yang Mingyue
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, Hebei, China
| | - Han Fei
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, Hebei, China
| | - Luo Yuxin
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, Hebei, China
| | - Wu Mengyao
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, Hebei, China
| | - Li Chenyang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, Hebei, China
| | - Song Jia
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, Hebei, China
| | - Zhang Hong
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, Hebei, China
| | - David Q. Shih
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephan R. Targan
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zhang Xiaolan
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, Hebei, China
| |
Collapse
|
34
|
Wu F, Zhao Y, Shao Q, Fang K, Dong R, Jiang S, Lu F, Luo J, Chen G. Ameliorative Effects of Osthole on Experimental Renal Fibrosis in vivo and in vitro by Inhibiting IL-11/ERK1/2 Signaling. Front Pharmacol 2021; 12:646331. [PMID: 34054526 PMCID: PMC8155534 DOI: 10.3389/fphar.2021.646331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/28/2021] [Indexed: 12/28/2022] Open
Abstract
Objectives: Natural product, osthole, has been proven to have a protective effect on organ fibrosis, including renal fibrosis. All of these studies are mainly focused on the regulation of TGF-β/Smad signaling pathway. However, due to the pleiotropic roles of TGF-β/Smad signaling, direct TGF-β-targeted treatments are unlikely to be therapeutically feasible in clinic. Recently, the downstream IL-11/ERK1/2 signaling of TGF-β has become an attractive therapeutic target without upstream disadvantages. Based on that, this study was designed to identify the potential effects of osthole on IL-11/ERK1/2 signaling pathway in renal fibrosis. Methods: The renal fibrosis model was established in vivo and in vitro, we investigated the effects of osthole on unilateral ureteral obstruction (UUO)-induced renal fibrosis and TGF-β-induced HK-2 cells. After preliminarily confirming the antifibrogenic effects of osthole and the link between its antifibrogenic effects and the inhibition of IL-11/ERK1/2 signaling, we applied a direct IL-11-induced HK-2 cells fibrosis model to further explore the inhibitory effects of osthole on IL-11/ERK1/2 signaling pathway. Results: Our results confirmed that osthole can decrease the secretion of fibrosis proteins, such as α-smooth muscle actin (α-SMA), collagen I, and fibronectin, ameliorate experimental renal fibrosis in vivo and in vitro, and the effect was associated with suppressing TGF-β1/Smad signaling. More importantly, we found that IL-11/ERK1/2 signaling in UUO-induced renal fibrosis and TGF-β-induced HK-2 cell model was obviously upregulated, and osthole treatment also significantly inhibited the abnormal IL-11/ERK1/2 signaling activation. Given the direct link between TGF-β/Smad signaling and IL-11/ERK1/2 signaling pathway, we have verified that osthole has a direct inhibitory effect on IL-11/ERK1/2 signaling independent of TGF-β signaling by using an IL-11-induced HK-2 cells fibrosis model. Osthole treatment decreased the protein expression of α-SMA, collagen I and fibronectin without changing their mRNA levels in IL-11-induced HK-2 cells. Moreover, it was observed that the IL-11/ERK1/2 inhibitor, U0126, partly blocked the antifibrogenic effects of osthole. Conclusion: In this study, we found that osthole has a previously unrecognized role in inhibiting IL-11/ERK1/2 signaling pathway. Our work demonstrated that the antifibrogenic effect of osthole is not only mediated by TGF-β/Smad2/3 signaling, but also directly mediated by IL-11/ERK1/2 signaling pathway independent of TGF-β1 signaling.
Collapse
Affiliation(s)
- Fan Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhao
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingqing Shao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Fang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruolan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shujun Jiang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinlong Luo
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guang Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Sleiman J, Ouali SE, Qazi T, Cohen B, Steele SR, Baker ME, Rieder F. Prevention and Treatment of Stricturing Crohn's Disease - Perspectives and Challenges. Expert Rev Gastroenterol Hepatol 2021; 15:401-411. [PMID: 33225766 PMCID: PMC8026566 DOI: 10.1080/17474124.2021.1854732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Fibrostenosis is a hallmark of Crohn's disease (CD), remains a challenge in today's clinical management of inflammatory bowel disease patients and represents a key event in the disease course necessitating improved preventative strategies and a multidisciplinary approach to diagnosis and management. With the advent of anti-fibrotic therapies and well-defined clinical endpoints for stricturing CD, there is promise to impact the natural history of disease.Areas covered: This review summarizes current evidence in the natural history of stricturing Crohn's disease, discusses management approaches as well as future perspectives on intestinal fibrosis.Expert opinion: Currently, there are no specific therapies to prevent progression to fibrosis or to treat it after it becomes clinically apparent. In addition to the international effort by the Stenosis Therapy and Anti-Fibrotic Research (STAR) consortium to standardize definitions and propose endpoints in the management of stricturing CD, further research to improve our understanding of mechanisms of intestinal fibrosis will help pave the way for the development of future anti-fibrotic therapies.
Collapse
Affiliation(s)
- Joseph Sleiman
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Sara El Ouali
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA,Digestive Diseases Institute, Cleveland Clinic Abu Dhabi, United Arab Emirates
| | - Taha Qazi
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Benjamin Cohen
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Scott R. Steele
- Department of Colorectal Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Mark E. Baker
- Section Abdominal Imaging, Imaging Institute, Digestive Diseases and Surgery Institute, Cleveland, Ohio, USA
| | - Florian Rieder
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA,Corresponding author: Florian Rieder, Address: Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, 9500 Euclid Avenue – NC22, Cleveland, OH, 44195,
| |
Collapse
|