1
|
Lobach AR, Schmidt F, Fedrizzi D, Müller S. Toxicological safety evaluation of an aqueous lemon balm (Melissa officinalis) extract. Food Chem Toxicol 2024; 187:114565. [PMID: 38461950 DOI: 10.1016/j.fct.2024.114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
Melissa officinalis (lemon balm) has a long history of safe use as an aromatic herb, flavoring, tea, food supplement, and traditional medicine. An aqueous extract of the leaves of M. officinalis is intended for use as a food ingredient, however the existing safety database does not contain any high quality toxicological studies to support safe consumer exposure. Therefore, a standard tier 1 genotoxicity battery (bacterial reverse mutation and in vitro mammalian cell micronucleus tests) and a 90-day repeated dose oral toxicity study in rats were conducted in accordance with GLP and OECD guidelines. The genotoxicity studies confirmed that aqueous lemon balm extract is not genotoxic at up to the highest concentrations tested (5000 μg/plate or 5000 μg/mL). A non-GLP 14-day dose range finding study was conducted prior to the 90-day study to confirm dietary administration of aqueous lemon balm extract at concentrations of 0, 0.5, 1.6, or 5.0%. The 90-day study was conducted using the established dietary concentrations and no test substance-related adverse effects on clinical, hematological, biochemical, macroscopic, or histopathologic parameters were reported. Thus, the no-observed-adverse-effect-level was determined to be at least 3046.1 and 3720.9 mg/kg body weight/day (the highest doses tested) for male and female rats, respectively.
Collapse
Affiliation(s)
- Alexandra R Lobach
- Givaudan Canada Co., 2855 Argentia Road, Unit #1, Mississauga, ON, L5N 8G6, Canada.
| | - Florian Schmidt
- Givaudan International SA, Kemptpark 50, 8310, Kemptthal, Switzerland
| | - Davide Fedrizzi
- Givaudan International SA, Kemptpark 50, 8310, Kemptthal, Switzerland
| | - Severin Müller
- Givaudan International SA, Kemptpark 50, 8310, Kemptthal, Switzerland
| |
Collapse
|
2
|
Kim GA, Cho HC, Jeong SW, Kang BK, Kim M, Jung S, Hwang J, Yoon EL, Jun DW. A Phase 2a, Randomized, Double-Blind, Placebo-Controlled Study to Assess the Efficacy and Safety of ALS-L1023 in Non-Alcoholic Fatty Liver Disease. Pharmaceuticals (Basel) 2023; 16:ph16040623. [PMID: 37111380 PMCID: PMC10142612 DOI: 10.3390/ph16040623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Preclinical data have shown that the herbal extract, ALS-L1023, from Melissa officinalis reduces visceral fat and hepatic steatosis. We aimed to assess the safety and efficacy of ALS-L1023 as the treatment of non-alcoholic fatty liver disease (NAFLD). We conducted a 24-week randomized, double-blind, placebo-controlled 2a study in patients with NAFLD (MRI-proton density fat fraction [MRI-PDFF] ≥ 8% and liver fibrosis ≥ 2.5 kPa on MR elastography [MRE]) in Korea. Patients were randomly assigned to 1800 mg ALS-L1023 (n = 19), 1200 mg ALS-L1023 (n = 21), or placebo (n = 17) groups. Efficacy endpoints included changes in liver fat on MRI-PDFF, liver stiffness on MRE, and liver enzymes. For the full analysis set, a relative hepatic fat reduction from baseline was significant in the 1800 mg ALS-L1023 group (-15.0%, p = 0.03). There was a significant reduction in liver stiffness from baseline in the 1200 mg ALS-L1023 group (-10.7%, p = 0.03). Serum alanine aminotransferase decreased by -12.4% in the 1800 mg ALS-L1023 group, -29.8% in the 1200 mg ALS-L1023 group, and -4.9% in the placebo group. ALS-L1023 was well tolerated and there were no differences in the incidence of adverse events among the study groups. ALS-L1023 could reduce hepatic fat content in patients with NAFLD.
Collapse
Affiliation(s)
- Gi-Ae Kim
- Department of Internal Medicine, Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul 02447, Republic of Korea
| | - Hyun Chin Cho
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
| | - Soung Won Jeong
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
| | - Bo-Kyeong Kang
- Department of Radiology, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Mimi Kim
- Department of Radiology, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Seungwon Jung
- Graduate School for Biomedical Science & Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jungwook Hwang
- Graduate School for Biomedical Science & Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea
| | - Eileen L Yoon
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Dae Won Jun
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| |
Collapse
|
3
|
Lee EJ, Kim Y, Kim JE, Yoon EL, Lee SR, Jun DW. ALS-L1023 from Melissa officinalis Alleviates Liver Fibrosis in a Non-Alcoholic Fatty Liver Disease Model. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010100. [PMID: 36676050 PMCID: PMC9863634 DOI: 10.3390/life13010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/30/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
ALS-L1023 is an ingredient extracted from Melissa officinalis L. (Labiatae; lemon balm), which is known as a natural medicine that suppresses angiogenesis. Herein, we aimed to determine whether ALS-L1023 could alleviate liver fibrosis in the non-alcoholic fatty liver disease (NAFLD) model. C57BL/6 wild-type male mice (age, 6 weeks old) were fed a choline-deficient high-fat diet (CDHFD) for 10 weeks to induce NAFLD. For the next 10 weeks, two groups of mice received the test drug along with CDHFD. Two doses (a low dose, 800 mg/kg/day; and a high dose, 1200 mg/kg/day) of ALS-L1023 were selected and mixed with feed for administration. Obeticholic acid (OCA; 10 mg/kg/day) was used as the positive control. Biochemical analysis revealed that the ALS-L1023 low-dose group had significantly decreased alanine transaminase and aspartate transaminase. The area of fibrosis significantly decreased due to the administration of ALS-L1023, and the anti-fibrotic effect of ALS-L1023 was greater than that of OCA. RNA sequencing revealed that the responder group had lower expression of genes related to the hedgehog-signaling pathway than the non-responder group. ALS-L1023 may exert anti-fibrotic effects in the NAFLD model, suggesting that it may provide potential benefits for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Eun Jeoung Lee
- Department of Translational Medical Science, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul 04763, Republic of Korea
| | - Yun Kim
- Hanyang Medicine-Engineering-Bio Collaborative & Comprehensive Center for Drug Development, Hanyang University, Seoul 04763, Republic of Korea
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Ji Eun Kim
- Department of Translational Medical Science, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul 04763, Republic of Korea
| | - Eileen Laurel Yoon
- Department of Internal Medicine, Hanyang University School of Medicine, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea
| | - Sung Ryol Lee
- Department of Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
- Correspondence: (S.R.L.); (D.W.J.)
| | - Dae Won Jun
- Department of Translational Medical Science, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul 04763, Republic of Korea
- Hanyang Medicine-Engineering-Bio Collaborative & Comprehensive Center for Drug Development, Hanyang University, Seoul 04763, Republic of Korea
- Department of Internal Medicine, Hanyang University School of Medicine, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea
- Correspondence: (S.R.L.); (D.W.J.)
| |
Collapse
|
4
|
Nutraceuticals and the Network of Obesity Modulators. Nutrients 2022; 14:nu14235099. [PMID: 36501129 PMCID: PMC9739360 DOI: 10.3390/nu14235099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Obesity is considered an increasingly widespread disease in the world population, regardless of age and gender. Genetic but also lifestyle-dependent causes have been identified. Nutrition and physical exercise play an important role, especially in non-genetic obesity. In a three-compartment model, the body is divided into fat mass, fat-free mass and water, and obesity can be considered a condition in which the percentage of total fat mass is in excess. People with a high BMI index or overweight use self-medications, such as food supplements or teas, with the aim to prevent or treat their problem. Unfortunately, there are several obesity modulators that act both on the pathways that promote adipogenesis and those that inhibit lipolysis. Moreover, these pathways involve different tissues and organs, so it is very difficult to identify anti-obesity substances. A network of factors and cells contributes to the accumulation of fat in completely different body districts. The identification of natural anti-obesity agents should consider this network, which we would like to call "obesosome". The nutrigenomic, nutrigenetic and epigenetic contribute to making the identification of active compounds very difficult. This narrative review aims to highlight nutraceuticals that, in vitro or in vivo, showed an anti-obesity activity or were found to be useful in the control of dysfunctions which are secondary to obesity. The results suggest that it is not possible to use a single compound to treat obesity, but that the studies have to be addressed towards the identification of mixtures of nutraceuticals.
Collapse
|
5
|
Seo Y, Park HS, Kim H, Kim KW, Cho JH, Chung WS, Song MY. A bibliometric analysis of research on herbal medicine for obesity over the past 20 years. Medicine (Baltimore) 2022; 101:e29240. [PMID: 35687773 PMCID: PMC9276338 DOI: 10.1097/md.0000000000029240] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The aim of this study was to analyze published papers on the use of herbal medicine in obesity research over the past 20 years using bibliometric methods and present an overview of global research trends. METHODS English articles on herbal medicine for obesity published from 2001 to 2020 were retrieved from the Web of Science Core Collection database using the search terms "herbal" AND "obesity". Microsoft Office Excel was used to sort and analyze the statistical data. Bibliographic analysis and data visualization were performed using visualization of similarities viewer based on publication year, country of publication, journal, research area, author, affiliated institution, and keywords. RESULTS A total of 463 English articles were retrieved, and we observed a trend in which the number of publications on herbal medicine for obesity has gradually increased over the past 20 years. The most productive countries and research organizations in this field were Korea and Kyunghee University, respectively. Many papers have been published in research areas, such as pharmacology pharmacy and integrative complementary medicine, and the journals with the most published articles in this field were Journal of Ethnopharmacology and Evidence-Based Complementary and Alternative Medicine. The main research keywords formed 3 clusters, and keywords with the most occurrences were "obesity," "adipose-tissue," and "insulin resistance." CONCLUSION This study presents an overview of the global research trend of herbal medicine for obesity from the bibliographic analysis. An increased understanding of the recently changing research topics provides a new perspective on future research directions. This study may help guide the research in the field of obesity in the future.
Collapse
|
6
|
Singh D, Sharma S, Choudhary M, Kaur P, Budhwar V. Role of Plant Derived Products Through Exhilarating Peroxisome Proliferator Activated Receptor-γ (ppar-γ) in the Amelioration of Obesity Induced Insulin Resistance. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401318666220217111415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Insulin resistance is an elemental facet of the etiology of diabetes mellitus and the principal relating factor between obesity and diabetes. Oxidative stress, lipotoxicity, inflammation and receptor dysfunction are the underlying determinants of insulin resistance commencement in metabolic illnesses. ppar-γ is a nuclear transcription factor whose activation or inhibition directly influences insulin resistance and controls glucose and lipid homeostasis by modulating gene expression. Synthetic ligands of ppar-γ are therapeutically employed to counter the hyper-glycaemia associated with obesity and type 2 diabetes, but they possess severe side effects. In the modern era, bioactive phytochemicals have been employed in the drug development process and a considerable investigation has recently been initiated to analyze the ppar-γ activating ability of diverse phytochemicals. In this review, we outlined the role of phytochemicals in insulin resistance treatment through ppar-γ activation.
Collapse
Affiliation(s)
- Devender Singh
- Institute of Pharmaceutical Sciences, Kurukshetra University-136118, Haryana, India
| | - Sachin Sharma
- Institute of Pharmaceutical Sciences, Kurukshetra University-136118, Haryana, India
| | - Manjusha Choudhary
- Institute of Pharmaceutical Sciences, Kurukshetra University-136118, Haryana, India
| | - Prabhjeet Kaur
- Institute of Pharmaceutical Sciences, Kurukshetra University-136118, Haryana, India
| | - Vikas Budhwar
- Department of Pharmaceutical Scinces, Maharishi Dyanand University, Rohtak-124001, Haryana, India
| |
Collapse
|
7
|
Maya MR, Ananthi V, Arun A, Kumar P, Govarthanan M, Rameshkumar K, Veeramanikandan V, Balaji P. Protective efficacy of Capsicum frutescens fruits in pancreatic, hepatic and renal cell injury and their attenuation of oxidative stress in diabetic Wistar rats. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2021.2024998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- M. R. Maya
- PG and Research Centre in Biotechnology, MGR College, Hosur, India
| | - V. Ananthi
- Department of Microbiology, Alagappa University, Karaikudi, India
- Department of Microbiology, PRIST University, Madurai Campus, India
| | - A. Arun
- Department of Microbiology, Alagappa University, Karaikudi, India
| | - P. Kumar
- Department of Animal Health and Management, Alagappa University, Karaikudi, India
| | - M. Govarthanan
- Department of Environmental Engineering, Kyungpook National University, South Korea
| | - K. Rameshkumar
- Department of Zoology, Vivekananda College, Madurai, India
| | | | - P. Balaji
- PG and Research Centre in Biotechnology, MGR College, Hosur, India
| |
Collapse
|
8
|
Negi CK, Babica P, Bajard L, Bienertova-Vasku J, Tarantino G. Insights into the molecular targets and emerging pharmacotherapeutic interventions for nonalcoholic fatty liver disease. Metabolism 2022; 126:154925. [PMID: 34740573 DOI: 10.1016/j.metabol.2021.154925] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease worldwide. With no Food and Drug Administration approved drugs, current treatment options include dietary restrictions and lifestyle modification. NAFLD is closely associated with metabolic disorders such as obesity, type 2 diabetes, and dyslipidemia. Hence, clinically various pharmacological approaches using existing drugs such as antidiabetic, anti-obesity, antioxidants, and cytoprotective agents have been considered in the management of NAFLD and nonalcoholic steatohepatitis (NASH). However, several pharmacological therapies aiming to alleviate NAFLD-NASH are currently being examined at various phases of clinical trials. Emerging data from these studies with drugs targeting diverse molecular mechanisms show promising outcomes. This review summarizes the current understanding of the pathogenic mechanisms of NAFLD and provides an insight into the pharmacological targets and emerging therapeutics with specific interventional mechanisms. In addition, we also discuss the importance and utility of new approach methodologies and regulatory perspectives for NAFLD-NASH drug development.
Collapse
Affiliation(s)
- Chander K Negi
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| | - Lola Bajard
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Julie Bienertova-Vasku
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Giovanni Tarantino
- Department of Clinical Medicine and Surgery, Federico II University Medical School of Naples, Naples, Italy
| |
Collapse
|
9
|
Sharifi-Rad J, Quispe C, Herrera-Bravo J, Akram M, Abbaass W, Semwal P, Painuli S, Konovalov DA, Alfred MA, Kumar NVA, Imran M, Nadeem M, Sawicka B, Pszczółkowski P, Bienia B, Barbaś P, Mahmud S, Durazzo A, Lucarini M, Santini A, Martorell M, Calina D. Phytochemical Constituents, Biological Activities, and Health-Promoting Effects of the Melissa officinalis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6584693. [PMID: 39071243 PMCID: PMC11283336 DOI: 10.1155/2021/6584693] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/14/2021] [Accepted: 12/01/2021] [Indexed: 07/30/2024]
Abstract
Medicinal plants are being used worldwide for centuries for their beneficial properties. Some of the most popular medicinal plants belong to the Melissa genus, and different health beneficial effects have already been identified for this genus. Among these species, in particular, the Melissa officinalis L. has been reported as having many biological activities, such as antioxidant, antimicrobial, antitumour, antiviral, antiallergic, anti-inflammatory, and also flatulence inhibiting effects. The beneficial properties of the Melissa officinalis, also known as "lemon balm herb", can be related to the bioactive compounds such as terpenoids, alcohols, rosmarinic acid, and phenolic antioxidants which are present in the plant. In this updated review, the botanical, geographical, nutritional, phytochemical, and traditional medical aspects of M. officinalis have been considered as well as in vitro and in vivo and clinically proven therapeutic properties have been reviewed with a special focus on health-promoting effects and possible perspective nutraceutical applications. To evidence the relevance of this plant in the research and completely assess the context, a literature quantitative research analysis has been performed indicating the great interest towards this plant for its beneficial properties.
Collapse
Affiliation(s)
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Pakistan
| | - Wafa Abbaass
- Department of Eastern Medicine, Government College University Faisalabad, Pakistan
| | - Prabhakar Semwal
- Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun (248002), Uttarakhand, India
- Uttarakhand State Council for Science and Technology, Vigyan Dham, Dehradun, 248007 Uttarakhand, India
| | - Sakshi Painuli
- Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun (248002), Uttarakhand, India
- Himalayan Environmental Studies and Conservation Organization, Prem Nagar, Dehradun, 248001 Uttarakhand, India
| | - Dmitry Alekseevich Konovalov
- Department of Pharmacognozy and Botany, Pyatigorsk Medical and Pharmaceutical Institute, A Branch of Volgograd State Medical University Ministry of Health of the Russian Federation, Kalinina av.11, Pyatigorsk 357532, Russia
| | - Mary Angelia Alfred
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | | | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore-Lahore, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Pakistan
| | - Barbara Sawicka
- Department of Plant Production Technology and Commodities Science, University of Life Sciences in Lublin, Poland, Akademicka 13 Str., 20-950 Lublin, Poland
| | - Piotr Pszczółkowski
- The Experimental Station for Variety Assessment of the Central Plant Research Center Uhnin, ZDOO Uhnin, 21-211 Dębowa Kłoda, Poland
| | - Bernadetta Bienia
- Department of Herbal Medicine, Carpathian State University in Krosno, Poland, Dmochowskiego 12 Str., 38-400 Krosno, Poland
| | - Piotr Barbaś
- Department of Potato Agronomy, Plant Breeding and Acclimatization Institute-National Research Institute, Jadwisin Research Center, Poland
| | - Shafi Mahmud
- Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardetina 546, 00178 Rome, Italy
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardetina 546, 00178 Rome, Italy
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Unidad De Desarrollo Tecnológico (UDT), Universidad De Concepción, Concepción, Chile
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
10
|
Lemon Balm and Corn Silk Extracts Mitigate High-Fat Diet-Induced Obesity in Mice. Antioxidants (Basel) 2021; 10:antiox10122015. [PMID: 34943118 PMCID: PMC8698494 DOI: 10.3390/antiox10122015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/31/2022] Open
Abstract
Lemon balm and corn silk are valuable medicinal herbs, which exhibit variety of beneficial effects for human health. The present study explored the anti-obesity effects of a mixture of lemon balm and corn silk extracts (M-LB/CS) by comparison with the effects of single herbal extracts in high-fat diet (HFD)-induced obesity in mice. HFD supplementation for 84 days increased the body weight, the fat mass density, the mean diameter of adipocytes, and the thickness of fat pads. However, oral administration of M-LB/CS significantly alleviated the HFD-mediated weight gain and adipocyte hypertrophy without affecting food consumption. Of the various combination ratios of M-LB/CS tested, the magnitude of the decreases in weight gain and adipocyte hypertrophy by administration of 1:1, 1:2, 2:1, and 4:1 (w/w) M-LB/CS was more potent than that by single herbal extracts alone. In addition, M-LB/CS reduced the HFD-mediated increases in serum cholesterol, triglyceride, and low-density lipoprotein, prevented the reduction in serum high-density lipoprotein, and facilitated fecal excretion of cholesterol and triglyceride. Moreover, M-LB/CS mitigated the abnormal changes in specific mRNAs associated with lipogenesis and lipolysis in the adipose tissue. Furthermore, M-LB/CS reduced lipid peroxidation by inhibiting the HFD-mediated reduction in glutathione, catalase, and superoxide dismutase. Therefore, M-LB/CS is a promising herbal mixture for preventing obesity.
Collapse
|
11
|
Natural Dietary and Medicinal Plants with Anti-Obesity Therapeutics Activities for Treatment and Prevention of Obesity during Lock Down and in Post-COVID-19 Era. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11177889] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Overweight and obesity have become global epidemics, especially during the lockdown due to the COVID-19 pandemic. The potential of medicinal plants as a better and safe option in treating obesity and overweight has gained attention in recent years. Obesity and overweight has become a major public health concern, and its incidence rising at an alarming rate. Obesity is one of the major types of metabolic syndrome, resulting in various types of problems such as hypertension, diabetes, dyslipidemia, and excess fat accumulation. The current searching was done by the keywords in main indexing systems including Scopus, PubMed/MEDLINE, the search engine of Google Scholar, and Institute for Scientific Web of Science. The keywords were traditional medicine, health benefits, pharmaceutical science, pomegranate, punicalin, punicalagin, and ellagitannins. Google Scholar was searched manually for possible missing manuscripts, and there was no language restriction in the search. This review was carried out to highlight the importance of medicinal plants which are common in traditional medicinal sciences of different countries, especially Asia to prevent and treatment of obesity and overweight during the global pandemic and the post-COVID-19 era.
Collapse
|
12
|
Peixoto Araujo NM, Arruda HS, de Paulo Farias D, Molina G, Pereira GA, Pastore GM. Plants from the genus Eugenia as promising therapeutic agents for the management of diabetes mellitus: A review. Food Res Int 2021; 142:110182. [PMID: 33773658 DOI: 10.1016/j.foodres.2021.110182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/19/2022]
Abstract
This review combined scientific data regarding the use of genus Eugenia plants for the management of diabetes. Diabetes mellitus is a chronic metabolic disease mainly characterized by hyperglycaemia, which can lead to serious health complications. Scientists have been seeking therapeutic compounds in plants, reporting the species of the genus Eugenia as a potential source of phytochemicals with antidiabetic properties. In vitro and in vivo studies have proved that the bioactive compounds in the genus Eugenia can positively affect the biomarkers of diabetes. We discussed the phytochemical profile of the genus Eugenia and its mechanism of action on diabetes, which could modulate carbohydrate metabolism, glucose homeostasis, and insulin secretion, inhibit carbohydrases and reduce oxidative stress, suppressing the formation of advanced glycation end-products and protecting/regenerating pancreatic β-cells. Therefore, plants of the genus Eugenia showed therapeutic potential to be used in the treatment of diabetes and its comorbidities.
Collapse
Affiliation(s)
- Nayara Macêdo Peixoto Araujo
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil.
| | - Henrique Silvano Arruda
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil; Nutrition and Metabolism Laboratory, Department of Food and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - David de Paulo Farias
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Gustavo Molina
- Institute of Science and Technology, Food Engineering, UFVJM, 39100-000 Diamantina, MG, Brazil
| | - Gustavo Araujo Pereira
- Institute of Technology, School of Food Engineering, Federal University of Pará (UFPA), 66075-110 Belém, PA, Brazil
| | - Glaucia Maria Pastore
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| |
Collapse
|
13
|
Shin SS, Yoon M. Regulation of Obesity by Antiangiogenic Herbal Medicines. Molecules 2020; 25:molecules25194549. [PMID: 33020443 PMCID: PMC7582783 DOI: 10.3390/molecules25194549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity is the result of an energy imbalance caused by an increased ratio of caloric intake to energy expenditure. In conjunction with obesity, related metabolic disorders, such as dyslipidemia, atherosclerosis, and type 2 diabetes, have become global health problems. Obesity progression is thought to be associated with angiogenesis and extracellular matrix (ECM) remodeling. Angiogenesis occurs in growing adult adipose tissues, which are similar to neoplastic tissues. Adipose tissue is highly vascularized, and each adipocyte is nourished by an extensive capillary network. Adipocytes produce proangiogenic factors, such as vascular endothelial growth factor A and fibroblast growth factor 2, which promote neovascularization within the adipose tissue. Furthermore, matrix metalloproteinases (MMPs), including MMP-2 and MMP-9, play important roles in adipose tissue development and microvessel maturation by modifying the ECM. Thus, modulation of angiogenesis and MMP activity provides a promising therapeutic approach for controlling human obesity and its related disorders. Over the past decade, there has been a great increase in the use of alternative treatments, such as herbal remedies, for these diseases. This review will focus on the role of angiogenesis in adipose tissue growth and the regulation of obesity by antiangiogenic herbal medicines.
Collapse
Affiliation(s)
- Soon Shik Shin
- Department of Formula Sciences, College of Oriental Medicine, Dongeui University, Busan 47340, Korea;
| | - Michung Yoon
- Department of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea;
- Correspondence: ; Tel.: +8242-829-7581; Fax: 8242-829-7580
| |
Collapse
|