1
|
Zhou Y, Yao L, Xie Y, Huang B, Li Y, Huang X, Yu L, Pan C. Metabolic and transcriptional analysis of tuber expansion in Curcuma kwangsiensis. Sci Rep 2025; 15:1588. [PMID: 39794375 PMCID: PMC11724066 DOI: 10.1038/s41598-024-84763-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
The tubers of Curcuma kwangsiensis are regarded as an important medicinal material in China. In C. kwangsiensis cultivation, tuber expansion is key to yield and quality, but the regulatory mechanisms are not well understood. In this study, metabolomic and transcriptomic analyses were conducted to elucidate the mechanism underlying tuber expansion development. The results showed that auxin (IAA), jasmonic acid (JA), gibberellin (GA3), ethylene (ETH), and brassinolide (BR) levels increased during tuber expansion development. Metabolomic analysis showed that 197 differentially accumulated metabolites (DAMs) accumulated during tuber expansion development and these also play important roles in the accumulation of carbohydrates and secondary metabolites. 6962 differentially expressed genes (DEGs) were enriched in plant hormone signal transduction, starch and sucrose metabolism, linoleic acid metabolism, MAPK signaling pathway as well as sesquiterpenoid and triterpenoid biosynthesis. Comprehensive analysis revealed that DEGs and DAMs of plant hormone signal transduction, ABC transporters and biosynthesis of phenylpropanoids and terpenoids are critical pathways in regulating tuber expansion. In addition, some transcription factors (ARF, C2H2, C3H, NAC, bHLH, GRAS and WRKY) as well as hub genes (HDS, HMGR, ARF7, PP2CA, PAL and CCOMT) are also involved in this process. This study lays a theoretical basis for the molecular mechanism of tuber expansion in C. kwangsiensis.
Collapse
Affiliation(s)
- Yunyi Zhou
- Guangxi TCM Resources General Survey and Data Collection Key Laboratory/ the Center for Phylogeny and Evolution of Medicinal Plants, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Lixiang Yao
- Guangxi TCM Resources General Survey and Data Collection Key Laboratory/ the Center for Phylogeny and Evolution of Medicinal Plants, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Yueying Xie
- Guangxi TCM Resources General Survey and Data Collection Key Laboratory/ the Center for Phylogeny and Evolution of Medicinal Plants, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Baoyou Huang
- Guangxi TCM Resources General Survey and Data Collection Key Laboratory/ the Center for Phylogeny and Evolution of Medicinal Plants, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Ying Li
- Guangxi TCM Resources General Survey and Data Collection Key Laboratory/ the Center for Phylogeny and Evolution of Medicinal Plants, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Xueyan Huang
- Guangxi TCM Resources General Survey and Data Collection Key Laboratory/ the Center for Phylogeny and Evolution of Medicinal Plants, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Liying Yu
- Guangxi TCM Resources General Survey and Data Collection Key Laboratory/ the Center for Phylogeny and Evolution of Medicinal Plants, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.
| | - Chunliu Pan
- Guangxi TCM Resources General Survey and Data Collection Key Laboratory/ the Center for Phylogeny and Evolution of Medicinal Plants, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.
| |
Collapse
|
2
|
Wei FL, Liu H, Zhang SH, Du JX, Feng T, He J. Physivitrins I-R, lanostane triterpenoids with anti-inflammatory activities from the fungus Physisporinus vitreus. PHYTOCHEMISTRY 2025; 229:114314. [PMID: 39442595 DOI: 10.1016/j.phytochem.2024.114314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
Chemical investigation on the rice fermentation of the fungus Physisporinus vitreus led to the isolation of ten previously undescribed lanostane triterpenoids, physivitrins I-R, and three known analogues. The new structures were elucidated on the basis of extensive spectroscopic methods, including 1D & 2D NMR, HRESIMS, UV and ECD. Physivitrins I and P exhibited significant inhibitory activities against NO production in LPS-activated RAW267.4 macrophages with IC50 values of 8.2 and 11.5 μM, respectively. The comprehensive data indicated that P. vitreus is rich in lanostane triterpenes and has potential anti-inflammatory application prospects.
Collapse
Affiliation(s)
- Fang-Lu Wei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Hui Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Shu-Han Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jiao-Xian Du
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Tao Feng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, Wuhan, 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central Minzu University, Wuhan, 430074, China
| | - Juan He
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
3
|
Hu W, Meng X, Wu Y, Li X, Chen H. Terpenoids, a Rising Star in Bioactive Constituents for Alleviating Food Allergy: A Review about the Potential Mechanism, Preparation, and Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26599-26616. [PMID: 39570772 DOI: 10.1021/acs.jafc.4c09124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Food allergies affect approximately 2.5% of the global population, with a notable increase in prevalence observed each year. Terpenoids, a class of natural bioactive constituents, have been widely utilized in the management of immune- and inflammation-related disorders, and their potential in alleviating food allergies is increasingly being recognized. This article summarizes various terpenoids derived from plant, fungal, and marine sources. Among them, triterpenoids, such as oleanolic acid, ursolic acid, and lupeol, possess the highest proportion and bioactivity in alleviating food allergy. Additionally, the mechanisms by which terpenoids may mitigate allergic diseases were categorically outlined, focusing on their roles in epithelial mucosal barrier function, immunomodulatory effects during the sensitization phase, inhibition of effector cells, oxidative stress, and regulation of microbial homeostasis. Finally, the advantages and limitations of natural extraction and artificial synthesis methods were compared, and the application of terpenoids in the food industry were also discussed. This article serves as a useful reference for the development of methods or functional foods based on terpenoids, which could represent a promising avenue for alleviating food allergy.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Xuanyi Meng
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Yong Wu
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
4
|
de Almada-Vilhena AO, dos Santos OVM, Machado MDA, Nagamachi CY, Pieczarka JC. Prospecting Pharmacologically Active Biocompounds from the Amazon Rainforest: In Vitro Approaches, Mechanisms of Action Based on Chemical Structure, and Perspectives on Human Therapeutic Use. Pharmaceuticals (Basel) 2024; 17:1449. [PMID: 39598361 PMCID: PMC11597570 DOI: 10.3390/ph17111449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The Amazon rainforest is an important reservoir of biodiversity, offering vast potential for the discovery of new bioactive compounds from plants. In vitro studies allow for the investigation of biological processes and interventions in a controlled manner, making them fundamental for pharmacological and biotechnological research. These approaches are faster and less costly than in vivo studies, providing standardized conditions that enhance the reproducibility and precision of data. However, in vitro methods have limitations, including the inability to fully replicate the complexity of a living organism and the absence of a complete physiological context. Translating results to in vivo models is not always straightforward, due to differences in pharmacokinetics and biological interactions. In this context, the aim of this literature review is to assess the advantages and disadvantages of in vitro approaches in the search for new drugs from the Amazon, identifying the challenges and limitations associated with these methods and comparing them with in vivo testing. Thus, bioprospecting in the Amazon involves evaluating plant extracts through bioassays to investigate pharmacological, antimicrobial, and anticancer activities. Phenolic compounds and terpenes are frequently identified as the main bioactive agents, exhibiting antioxidant, anti-inflammatory, and antineoplastic activities. Chemical characterization, molecular modifications, and the development of delivery systems, such as nanoparticles, are highlighted to improve therapeutic efficacy. Therefore, the Amazon rainforest offers great potential for the discovery of new drugs; however, significant challenges, such as the standardization of extraction methods and the need for in vivo studies and clinical trials, must be overcome for these compounds to become viable medications.
Collapse
Affiliation(s)
| | | | | | | | - Julio C. Pieczarka
- Center for Advanced Biodiversity Studies, Cell Culture Laboratory, Institute of Biological Sciences, Federal University of Pará/Guamá Science and Technology Park, Avenida Perimetral da Ciência Km 01—Guamá, Belém 66075-750, PA, Brazil; (A.O.d.A.-V.); (O.V.M.d.S.); (M.d.A.M.); (C.Y.N.)
| |
Collapse
|
5
|
Zhang Q, Xu Y, Sun Y, Dong H, Sun D, Li H, Chen L. Terpenoids from the rhizomes of Curcuma kwangsiensis S.G. Lee et C.F. Ling and their anti-inflammatory activities. Fitoterapia 2024; 178:106137. [PMID: 39053742 DOI: 10.1016/j.fitote.2024.106137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Three new sesquiterpenes, 4S-1-(3-hydroxybutyl)-7-(11-hydroxypropyl)-10-methyl- cyclohepta-7,5,10-trien-8-one (1), 8R-hydroxy-7-(4S-4,10-dimethyl-5-oxooct-1-en-7-yl)-11- methylfuran-12-one (2), (1S,5R,7S,10R)-1-hydroxy-7-(11-hydroxypropyl)-10-methyl-4- methyleneoctahydronaphthalen-8-one (3), along with 30 known terpenoids (4-33) were obtained from the rhizomes of Curcuma kwangsiensis S.G. Lee et C.F. Ling. Through comprehensive analysis of chemical evidence and spectral data including UV, ECD, IR, 1D and 2D NMR and HR-ESI-MS, as well as quantum chemical calculation, the structures of these novel compounds were successfully determined. Additionally, the inhibitory effects of compounds 1-2, 4-33 on NO production were evaluated in lipopolysaccharide (LPS)-induced RAW264.7 cells. Notably, compound 33 exhibited the most significant inhibitory effect with an IC50 value of 3.55 ± 0.55 μM.
Collapse
Affiliation(s)
- Qingqing Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Xu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanyu Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huiying Dong
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
6
|
Niu YT, Xu HN, Zhang YY, Li XZ, Li YZ, Song XM, Zhang DD, Wang W. Curcumae Radix: A Review of Traditional Use, Phytochemistry, Pharmacology, Toxicology and Quality Control. Chem Biodivers 2024; 21:e202400098. [PMID: 38462532 DOI: 10.1002/cbdv.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/12/2024]
Abstract
Curcumae Radix (CuR) is a traditional Chinese medicine that has been used in China for more than 1,000 years. It has the traditional efficacy of activating blood and relieving pain, promoting qi and relieving depression, clearing heart and cooling blood, and promoting gallbladder and removing jaundice. Based on this, many domestic and foreign scholars have conducted systematic studies on its chemical composition, pharmacological effects, toxicity and quality control. Currently, 250 compounds, mainly including terpenoids and curcuminoids, have been isolated and identified from CuR, which has pharmacological activities, including antitumor, anti-inflammatory and analgesic, antidepressant, hepatoprotective, hemostatic, hematopoietic, and treatment of diabetes mellitus. In modern clinical practice, CuR is widely used in the treatment of tumors, breast hyperplasia, hepatitis, and stroke. However, the generation of toxicity and clinical application of CuR and Caryophylli Flos, the determination of the concoction process of artifacts, the determination of specific Quality Marker, and the establishment of the quality control system of CuR, are problems that need to be solved urgently at present.
Collapse
Affiliation(s)
- Yu-Ting Niu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, People's Republic of China
| | - Hao-Nan Xu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, People's Republic of China
| | - Yu-Ying Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, People's Republic of China
| | - Xin-Zhuo Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, People's Republic of China
| | - Yu-Ze Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, People's Republic of China
- Key Laboratory of "Taibaiqiyao" Research and Applications, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, People's Republic of China
| | - Xiao-Mei Song
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, People's Republic of China
- Key Laboratory of "Taibaiqiyao" Research and Applications, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, People's Republic of China
| | - Dong-Dong Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, People's Republic of China
- Key Laboratory of "Taibaiqiyao" Research and Applications, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, People's Republic of China
| | - Wei Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, People's Republic of China
- Key Laboratory of "Taibaiqiyao" Research and Applications, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, People's Republic of China
| |
Collapse
|
7
|
Duan D, Wang L, Feng Y, Hu D, Cui D. Picroside Ⅱ attenuates neuropathic pain by regulating inflammation and spinal excitatory synaptic transmission. Can J Physiol Pharmacol 2024; 102:281-292. [PMID: 37976472 DOI: 10.1139/cjpp-2023-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Nerve injury induced microglia activation, which released inflammatory mediators and developed neuropathic pain. Picroside Ⅱ (PⅡ) attenuated neuropathic pain by inhibiting the neuroinflammation of the spinal dorsal horn; however, how it engaged in the cross talk between microglia and neurons remained ambiguous. This study aimed to investigate PⅡ in the modulation of spinal synaptic transmission mechanisms on pain hypersensitivity in neuropathic rats. We investigated the analgesia of PⅡ in mechanical and thermal hyperalgesia using the spinal nerve ligation (SNL)-induced neuropathic pain model and formalin-induced tonic pain model, respectively. RNA sequencing and network pharmacology were employed to screen core targets and signaling pathways. Immunofluorescence staining and qPCR were performed to explore the expression level of microglia and inflammatory mediator mRNA. The whole-cell patch-clamp recordings were utilized to record miniature excitatory postsynaptic currents in excitatory synaptic transmission. Our results demonstrated that the analgesic of PⅡ was significant in both pain models, and the underlying mechanism may involve inflammatory signaling pathways. PⅡ reversed the SNL-induced overexpression of microglia and inflammatory factors. Moreover, PⅡ dose dependently inhibited excessive glutamate transmission. Thus, this study suggested that PⅡ attenuated neuropathic pain by inhibiting excitatory glutamate transmission of spinal synapses, induced by an inflammatory response on microglia.
Collapse
Affiliation(s)
- Dongxia Duan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Lian Wang
- School of Medicine, Tongji University, Shanghai 200092, China
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yueyang Feng
- School of Design, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daiyu Hu
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Donghong Cui
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| |
Collapse
|
8
|
Cui T, Li BY, Liu F, Xiong L. Research Progress on Sesquiterpenoids of Curcumae Rhizoma and Their Pharmacological Effects. Biomolecules 2024; 14:387. [PMID: 38672405 PMCID: PMC11048675 DOI: 10.3390/biom14040387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Curcumae Rhizoma, a traditional Chinese medicine with a wide range of pharmacological activities, is obtained from the dried rhizomes of Curcuma phaeocaulis VaL., Curcuma kwangsiensis S. G. Lee et C. F. Liang, and Curcuma wenyujin Y. H. Chen et C. Ling. Sesquiterpenoids and curcuminoids are found to be the main constituents of Curcumae Rhizoma. Sesquiterpenoids are composed of three isoprene units and are susceptible to complex transformations, such as cyclization, rearrangement, and oxidation. They are the most structurally diverse class of plant-based natural products with a wide range of biological activities and are widely found in nature. In recent years, scholars have conducted abundant studies on the structures and pharmacological properties of components of Curcumae Rhizoma. This article elucidates the chemical structures, medicinal properties, and biological properties of the sesquiterpenoids (a total of 274 compounds) isolated from Curcumae Rhizoma. We summarized extraction and isolation methods for sesquiterpenoids, established a chemical component library of sesquiterpenoids in Curcumae Rhizoma, and analyzed structural variances among sesquiterpenoids sourced from Curcumae Rhizoma of diverse botanical origins. Furthermore, our investigation reveals a diverse array of sesquiterpenoid types, encompassing guaiane-type, germacrane-type, eudesmane-type, elemane-type, cadinane-type, carane-type, bisabolane-type, humulane-type, and other types, emphasizing the relationship between structural diversity and activity. We hope to provide a valuable reference for further research and exploitation and pave the way for the development of new drugs derived from medicinal plants.
Collapse
Affiliation(s)
- Ting Cui
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (T.C.); (B.-Y.L.)
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bo-Yu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (T.C.); (B.-Y.L.)
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fei Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (T.C.); (B.-Y.L.)
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (T.C.); (B.-Y.L.)
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
9
|
Elhawary EA, Moussa AY, Singab ANB. Genus Curcuma: chemical and ethnopharmacological role in aging process. BMC Complement Med Ther 2024; 24:31. [PMID: 38212737 PMCID: PMC10782795 DOI: 10.1186/s12906-023-04317-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024] Open
Abstract
Aging or senescence is part of human life development with many effects on the physical, mental, and physiological aspects which may lead to age-related deterioration in many organs. Genus Curcuma family Zingieraceae represents one of the well-studied and medically important genera with more than eighty species. The genus is reported to contain different classes of biologically active compounds that are mainly presented in diphenylheptanoids, diphenylpentanoids, diphenylalkanoids, phenylpropene derivatives, alkaloids, flavonoids, chromones, terpenoids, phenolic acids and volatile constituents. Rhizomes and roots of such species are rich with main phytoconstituents viz. curcumin, demethoxycurcumin and bis-demethoxycurcumin. A wide variety of biological activities were demonstrated for different extracts and essential oils of genus Curcuma members including antioxidant, anti-inflammatory, cytotoxic and neuroprotective. Thus, making them as an excellent safe source for nutraceutical products and as a continuous promising area of research on lead compounds that may help in the slowing down of the aging process especially the neurologic and mental deterioration that are usually experienced upon aging. In this review different species of the genus Curcuma were summarized with their phytochemical and biological activities highlighting their role as antiaging agents. The data were collected from different search engines viz. Pubmed®, Google Scholar®, Scopus® and Web of Science® limiting the search to the period between 2003 up till now.
Collapse
Affiliation(s)
- Esraa A Elhawary
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
10
|
Gupta R, Advani D, Yadav D, Ambasta RK, Kumar P. Dissecting the Relationship Between Neuropsychiatric and Neurodegenerative Disorders. Mol Neurobiol 2023; 60:6476-6529. [PMID: 37458987 DOI: 10.1007/s12035-023-03502-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/11/2023] [Indexed: 09/28/2023]
Abstract
Neurodegenerative diseases (NDDs) and neuropsychiatric disorders (NPDs) are two common causes of death in elderly people, which includes progressive neuronal cell death and behavioral changes. NDDs include Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and motor neuron disease, characterized by cognitive defects and memory impairment, whereas NPDs include depression, seizures, migraine headaches, eating disorders, addictions, palsies, major depressive disorders, anxiety, and schizophrenia, characterized by behavioral changes. Mounting evidence demonstrated that NDDs and NPDs share an overlapping mechanism, which includes post-translational modifications, the microbiota-gut-brain axis, and signaling events. Mounting evidence demonstrated that various drug molecules, namely, natural compounds, repurposed drugs, multitarget directed ligands, and RNAs, have been potentially implemented as therapeutic agents against NDDs and NPDs. Herein, we highlighted the overlapping mechanism, the role of anxiety/stress-releasing factors, cytosol-to-nucleus signaling, and the microbiota-gut-brain axis in the pathophysiology of NDDs and NPDs. We summarize the therapeutic application of natural compounds, repurposed drugs, and multitarget-directed ligands as therapeutic agents. Lastly, we briefly described the application of RNA interferences as therapeutic agents in the pathogenesis of NDDs and NPDs. Neurodegenerative diseases and neuropsychiatric diseases both share a common signaling molecule and molecular phenomenon, namely, pro-inflammatory cytokines, γCaMKII and MAPK/ERK, chemokine receptors, BBB permeability, and the gut-microbiota-brain axis. Studies have demonstrated that any alterations in the signaling mentioned above molecules and molecular phenomena lead to the pathophysiology of neurodegenerative diseases, namely, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, and neuropsychiatric disorders, such as bipolar disorder, schizophrenia, depression, anxiety, autism spectrum disorder, and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Divya Yadav
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India.
| |
Collapse
|
11
|
Wang Y, Cheng C, Zhao T, Cao J, Liu Y, Wang Y, Zhou W, Cheng G. Phytochemicals from Anneslea fragrans Wall. and Their Hepatoprotective and Anti-Inflammatory Activities. Molecules 2023; 28:5480. [PMID: 37513352 PMCID: PMC10384535 DOI: 10.3390/molecules28145480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Anneslea fragrans Wall., popularly known as "Pangpo tea", is an edible, medicinal, and ornamental plant of the Family Theaceae. The leaves of A. fragrans were historically applied for the treatment of liver and intestinal inflammatory diseases in China. This study aimed to explore the hepatoprotective agents from A. fragrans leaves through hepatoprotective and anti-inflammatory assessment. The phytochemical investigation of the leaves of A. fragrans resulted in the isolation and identification of a total of 18 chemical compounds, including triterpenoids, aliphatic alcohol, dihydrochalcones, chalcones, flavanols, phenolic glycoside, and lignans. Compounds 1-2, 4-6, 11-12, and 16-18 were identified from A. fragrans for the first time. Compounds 7 and 14 could significantly alleviate hepatocellular damage by decreasing the contents of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) and inhibit the hepatocellular apoptosis in the HepG2 cells induced by N-acetyl-p-aminophenol (APAP). In addition, compounds 7 and 14 inhibited reactive oxygen species (ROS) and malondialdehyde (MDA) contents and increased the catalase (CAT) superoxide dismutase (SOD), and glutathione (GSH) levels for suppressing APAP-induced oxidative stress. Additionally, compounds 7, 13, and 14 also had significant anti-inflammatory effects by inhibiting interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) productions on LPS-induced RAW246.7 cells.
Collapse
Affiliation(s)
- Yan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Changshu Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Tianrui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jianxin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yudan Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650500, China
| | - Wenbing Zhou
- Yunnan Tobacco Company, Yuxi Branch, Yuxi 653100, China
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
12
|
Teng S, He J, Wang X, Li Y, Khan A, Zhao T, Wang Y, Cheng G, Liu Y. A molecular networking-based isolation of gardneria alkaloids from Gardneria distincta and their anti-inflammatory activity. PHYTOCHEMISTRY 2023; 209:113639. [PMID: 36889562 DOI: 10.1016/j.phytochem.2023.113639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Gardneria distincta P. T. Li is traditionally applied as a herbal medicine for treatment various ailments, and is mainly distributed in Southwestern China. Under the guided separation of MS/MS-based molecular networking, eight undescribed oxindole alkaloids, gardistines A-H, as well as 17 known alkaloids were discovered from the whole parts of Gardneria distincta. Structural elucidation of these undescribed alkaloids was performed by various spectroscopic methods. Gardistine A is a rare oxindole gardneria alkaloid bearing an ester carbonyl group attached to C-18, which is the second reported alkaloid of oxindole gardneria-type. All of the identified monoterpene indole alkaloids were investigated for their anti-inflammatory activity in LPS-induced RAW 264.7 cells. Gardistines A-B and akuammidine demonstrated significant inhibitory effects on the expressions of nitric oxide, tumor necrosis factor alpha, and interleukin-6 at 20 μM.
Collapse
Affiliation(s)
- Sifan Teng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Junjie He
- Zhejiang Starry Pharmaceutical Cp., LTD, Taizhou, 317306, China
| | - Xiaoqian Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yiqian Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Tianrui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yudan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, 650500, Yunnan, China
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
13
|
Zhu Y, Yin WF, Yu P, Zhang C, Sun MH, Kong LY, Yang L. Meso-Hannokinol inhibits breast cancer bone metastasis via the ROS/JNK/ZEB1 axis. Phytother Res 2023. [PMID: 36726293 DOI: 10.1002/ptr.7732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/25/2022] [Accepted: 07/11/2022] [Indexed: 02/03/2023]
Abstract
Distal metastases from breast cancer, especially bone metastases, are extremely common in the late stages of the disease and are associated with a poor prognosis. EMT is a biomarker of the early process of bone metastasis, and MMP-9 and MMP-13 are important osteoclastic activators. Previously, we found that meso-Hannokinol (HA) could significantly inhibit EMT and MMP-9 and MMP-13 expressions in breast cancer cells. On this basis, we further explored the role of HA in breast cancer bone metastasis. In vivo, we established a breast cancer bone metastasis model by intracardially injecting breast cancer cells. Intraperitoneal injections of HA significantly reduced breast cancer cell metastasis to the leg bone in mice and osteolytic lesions caused by breast cancer. In vitro, HA inhibited the migration and invasion of breast cancer cells and suppressed the expressions of EMT, MMP-9, MMP-13, and other osteoclastic activators. HA inhibited EMT and MMP-9 by activating the ROS/JNK pathway as demonstrated by siJNK and SP600125 inhibition of JNK phosphorylation and NAC scavenging of ROS accumulation. Moreover, HA promoted bone formation and inhibited bone resorption in vitro. In conclusion, our findings suggest that HA may be an excellent candidate for treating breast cancer bone metastasis.
Collapse
Affiliation(s)
- Yuan Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Wei-Feng Yin
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Pei Yu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Ming-Hui Sun
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
14
|
Kpemissi M, Kantati YT, Veerapur VP, Eklu-Gadegbeku K, Hassan Z. Anti-cholinesterase, anti-inflammatory and antioxidant properties of Combretum micranthum G. Don: Potential implications in neurodegenerative disease. IBRO Neurosci Rep 2022; 14:21-27. [PMID: 36578633 PMCID: PMC9791815 DOI: 10.1016/j.ibneur.2022.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Background Brain damage is a severe and common pathology that leads to life-threatening diseases. Despite development in the research, the medical evidence of the effectiveness of potential neuroprotective medicines is insufficient. As a result, there is an immense and urgent demand for promising medication. For millennia, herbal remedies were a fundamental aspect of medical treatments. Combretum micranthum (CM), a plant of the family Combretaceae in sub-Saharan Africa, has been utilized in folklore medicine to cure diverse human ailments. In order to develop a neuroprotective phytomedicine, the current research was undertaken to explore the antioxidant, anti-inflammatory, anticholinesterase and neuroprotective potential of CM extract. Methods Colorimetric methods were used to determine CM antioxidant activity, in-vitro protein denaturation and membrane destabilization assays were used to evaluate its anti-inflammatory capacity, anticholinesterase activity was carried out using Ellman's method, and neuroprotective potential was assessed on brain homogenate stressed with ferric chloride and ascorbic acid (FeCl2-AA) by assessing the lipoperoxidation biomarker malondialdehyde (MDA). Results In Ferric Reducing Antioxidant Power (IC50 = 27.15 ± 0.06 µg/mL) and Total Antioxidant Capacity (IC50 = 31.13 ± 0.02 µg/mL), CM extract demonstrated strong antioxidant activity. Anti-inflammatory effect were improved in heat-induced Egg albumin and BSA denaturation (IC 50 = 46.35 ± 1.53 and 23.94 ± 1.10 µg/mL) as well as heat and hypotonia induced membrane destabilization (IC 50 = 20.96 ± 0.11 and 16.75 ± 0.94 µg/mL).CM extract showed strong anticholinesterase activity (IC 50 = 59.85 ± 0.91 µg/mL). In an ex-vivo neuroprotective model, CM extract showed substantial inhibition (p < 0.001) of oxidative damage caused by FeCl2-AA in brain tissue. Conclusion C. micranthum may be a good candidate for its probable neuroprotective potential. Its neuroprotective benefits might be attributed to its antioxidant, anti-inflammatory and anticholinesterase effects.
Collapse
Affiliation(s)
- Mabozou Kpemissi
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia,University of Lomé, Togo,Sree Siddaganga College of Pharmacy, B.H. Road, Tumkur 572 102, Karnataka, India,Correspondence to: Major in Pharmacology and Physiology Faculty of Sciences, University of Lomé, Togo.
| | | | | | | | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia,Corresponding author.
| |
Collapse
|
15
|
Wang S, Luo SX, Jie J, Li D, Liu H, Song L. Efficacy of terpenoids in attenuating pulmonary edema in acute lung injury: A meta-analysis of animal studies. Front Pharmacol 2022; 13:946554. [PMID: 36034851 PMCID: PMC9401633 DOI: 10.3389/fphar.2022.946554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/27/2022] [Indexed: 12/09/2022] Open
Abstract
Background: The clinical efficiency of terpenoids in treating human acute lung injury (ALI) is yet to be determined. The lipopolysaccharide-induced rat model of ALI is a well-established and widely used experimental model for studying terpenoids’ effects on ALI. Using a systematic review and meta-analysis, the therapeutic efficiency of terpenoid administration on the lung wet-to-dry weight ratio in rats was investigated. Methods: Using the Cochrane Library, Embase, and PubMed databases, a comprehensive literature search for studies evaluating the therapeutic efficacy of terpenoids on ALI in rats was conducted. The lung wet-to-dry weight ratio was extracted as the main outcome. The quality of the included studies was assessed using the Systematic Review Center for Laboratory Animal Experimentation’s risk of bias tool. Results: In total, 16 studies were included in this meta-analysis. In general, terpenoids significantly lowered the lung wet-to-dry weight ratio when compared with the control vehicle (p = 0.0002; standardized mean difference (SMD): −0.16; 95% confidence interval (CI): −0.24, −0.08). Subgroup analysis revealed that low dose (≤10 μmol/kg) (p < 0.0001; SMD: −0.68; 95% CI: −1.02, −0.34), intraperitoneal injection (p = 0.0002; SMD: −0.43; 95% CI: −0.66, −0.20), diterpenoid (p = 0.004; SMD: −0.13; 95% CI: −0.23, −0.04), and triterpenoid (p = 0.04; SMD: −0.28; 95% CI: −0.54, −0.01) significantly lowered the lung wet-to-dry weight ratio when compared with the control vehicle. Conclusion: A low dose of diterpenoid and triterpenoid administered intraperitoneally is effective in alleviating ALI. This systematic review and meta-analysis provides a valuable mirror for clinical research aiming at the advancement of terpenoids for preventive and therapeutic use. Systematic Review Registration: CRD42022326779
Collapse
Affiliation(s)
- Shuai Wang
- Department of Vascular Surgery, General Surgery Center, The First Hospital of Jilin University, Chasngchun, JL, China
| | - Sean X. Luo
- Department of Vascular Surgery, General Surgery Center, The First Hospital of Jilin University, Chasngchun, JL, China
| | - Jing Jie
- Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Respiratory Medicine, State Key Laboratory for Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Dan Li
- Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Respiratory Medicine, State Key Laboratory for Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Han Liu
- Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Respiratory Medicine, State Key Laboratory for Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Han Liu, ; Lei Song,
| | - Lei Song
- Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Respiratory Medicine, State Key Laboratory for Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Han Liu, ; Lei Song,
| |
Collapse
|
16
|
Xie TZ, Zhao YL, Wang H, Chen YC, Wei X, Wang ZJ, He YJ, Zhao LX, Luo XD. New steroidal alkaloids with anti-inflammatory and analgesic effects from Veratrum grandiflorum. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115290. [PMID: 35452774 DOI: 10.1016/j.jep.2022.115290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/27/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE "Li-Lu", the roots and rhizomes of Veratrum grandiflorum (Melianthiaceae), has been historically used as a traditional folk medicine for the treatment of wrist pain, fractures, sores, and inflammation in Yunnan Province, China. However, the anti-inflammatory and analgesic studies of this plant have seldom reported. AIM OF THE STUDY To evaluate the anti-inflammatory and analgesic properties related to the traditional usage of V. grandiflorum both in vitro and in vivo, and further explore the accurate bioactive compounds from the medicinal plant. MATERIALS AND METHODS Phytochemical investigation was carried out by chromatographic methods and their structures were established based on extensive spectra and comparison with corresponding data in the reported literatures. Anti-inflammatory activities were assessed by the suppression of lipopolysaccharide-activated inflammatory mediators in RAW 264.7 macrophage cells in vitro. Furthermore, anti-inflammatory and analgesic effects were evaluated based on carrageenan-induced paw edema and acetic acid-stimulated writhing in mice. RESULTS The methanol extract (ME) of V. grandiflorum significantly alleviated the paw edema caused by carrageenan and the writhing numbers induced by acetic acid. Subsequent phytochemical investigation led to isolated of 21 steroidal alkaloids, including seven new compounds, veragranines C-I (1-7). Anti-inflammatory test indicated that steroidal alkaloids could decrease the expression of cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), and tumor necrosis factor α (TNF-α) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells at a concentration of 5.0 μg/ml in vitro, comparable to DXM. Moreover, five new steroidal alkaloids (2, 4, 5, 6, and 7) and two major steroidal alkaloids (9 and 13) significantly decreased the numbers of writhing in mice at the doses of 0.5 and/or 1.0 mg/kg (p < 0.01/0.05), roughly comparable to Dolantin™ at 10.0 mg/kg. CONCLUSIONS The investigation supported the traditional use of V. grandiflorum and provided new steroidal alkaloids as potent analgesic agents.
Collapse
Affiliation(s)
- Tian-Zhen Xie
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Yun-Li Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Huan Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Yi-Chi Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Xin Wei
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Zhao-Jie Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Ying-Jie He
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Li-Xing Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Xiao-Dong Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China.
| |
Collapse
|
17
|
Ge J, Liu Z, Zhong Z, Wang L, Zhuo X, Li J, Jiang X, Ye XY, Xie T, Bai R. Natural terpenoids with anti-inflammatory activities: Potential leads for anti-inflammatory drug discovery. Bioorg Chem 2022; 124:105817. [DOI: 10.1016/j.bioorg.2022.105817] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/17/2022] [Accepted: 04/15/2022] [Indexed: 12/19/2022]
|
18
|
Pan L, Fu L, Jia XG, Jia XY, Zhang T, Zou ZM. New stilbenoligan and flavonoid from the roots of Caragana stenophylla Pojark. and their anti-inflammatory activity. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:627-636. [PMID: 33985389 DOI: 10.1080/10286020.2021.1918119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
A phytochemical investigation on the 80% ethanol extract of the roots of Caragana stenophylla Pojark. resulted in the isolation of 20 compounds, including two new ones, named kompasinol P (2) and 3,5,7,2',3'-pentahydroxy-4'-methoxyisoflavanone (3). Among them, a pair of enantiomers, (7S, 8 R, 7'R, 8'S)-kompasinol A (1a) and (7 R, 8S, 7'S, 8'R)-kompasinol A (1b), were successfully separated by the chiral-phase HPLC resolution for the first time. The absolute configurations of 1a and 1b were determined by the experimental and calculated electronic circular dichroism (ECD) data. 15 isolates were evaluated for their anti-inflammatory activity via inhibiting the production of nitric oxide (NO) in lipopolysaccharide (LPS)-stimulated murine macrophage RAW 264.7 cells. Compounds 1a/1b, 6, 7, 9, 10, 12, 14, and 16-18 showed moderate inhibition with IC50 values ranging from 11.45 to 68.54 μM.
Collapse
Affiliation(s)
- Lan Pan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Lu Fu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xiao-Guang Jia
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China
| | - Xin-Yue Jia
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China
| | - Tao Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Zhong-Mei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
19
|
Biological Activity of Selected Natural and Synthetic Terpenoid Lactones. Int J Mol Sci 2021; 22:ijms22095036. [PMID: 34068609 PMCID: PMC8126056 DOI: 10.3390/ijms22095036] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 01/23/2023] Open
Abstract
Terpenoids with lactone moieties have been indicated to possess high bioactivity. Certain terpenoid lactones exist in nature, in plants and animals, but they can also be obtained by chemical synthesis. Terpenoids possessing lactone moieties are known for their cytotoxic, anti-inflammatory, antimicrobial, anticancer, and antimalarial activities. Moreover, one terpenoid lactone, artemisinin, is used as a drug against malaria. Because of these abilities, there is constant interest in new terpenoid lactones that are both isolated and synthesized, and their biological activities have been verified. In some cases, the activity of the terpenoid lactone is specifically connected to the lactone moiety. Recent works have revealed that new terpenoid lactones can demonstrate such functions and are thus considered to be potential active agents against many diseases.
Collapse
|
20
|
Zhang Z, Jiang S, Tian H, Zeng Y, He K, Lin L, Yu F. Ethyl acetate fraction from Nymphaea hybrida Peck modulates inflammatory responses in LPS-stimulated RAW 264.7 cells and acute inflammation murine models. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113698. [PMID: 33338590 DOI: 10.1016/j.jep.2020.113698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nymphaea hybrida Peck is used as a traditional medicinal herb for treating pain and inflammatory diseases, and known for its ornamental value and as a hot drink. However, the effects of N. hybrida polar fractions on lipopolysaccharide (LPS)-induced in vitro inflammation model and acute inflammation murine models have yet to be evaluated. AIM OF THE STUDY The aim of this study was to elucidate the anti-inflammatory effects of N. hybrida ethanol extract (NHE) and its polar fractions: petroleum ether (PE), methylene chloride (MC), ethyl acetate (EA), methanol (ME), and water (WA). The underlying molecular mechanisms of active fraction in LPS-stimulated RAW 264.7 murine macrophages were further investigated. MATERIAL AND METHODS Fractions with potential anti-inflammatory effects were screened using direct nitric oxide (NO) radical scavenging and cyclooxygenase (COX)-2 inhibition assays in vitro. The anti-inflammatory properties of potential fraction were evaluated in LPS-stimulated RAW264.7 cells, xylene-induced ear edema, carrageenan-induced paw edema and xylene-induced Evans blue exudation of acute inflammation murine models. The regulation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways were investigated using western blotting and immunofluorescence. RESULTS Compared to other polar fractions, NHE-EA displayed higher phenol and flavonoid content, and exerted greater activity in direct NO radical scavenging and COX-2 inhibition assay in vitro. NHE-EA markedly decreased the levels of inflammatory mediators, NO and prostaglandin E2 (PGE2), by suppressing the over-expression of inducible nitric oxide synthase (iNOS) and COX-2 in LPS-stimulated RAW264.7 cells. The NHE-EA fraction dose-dependently alleviated over-elevation of LPS-associated intracellular calcium and decreased the abnormal secretion of pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and interferon-γ (IFN-γ). The combination with NHE-EA effectively attenuated the activation and nuclear translocation of NF-κB p65, and the phosphorylation of extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinases (JNK), and p38 kinases of MAPK pathways. NHE-EA could significantly ameliorate the degree of swelling of the mice ear and paw, the skin exudation of Evans blue and the excessive secretion of inflammatory cytokines. CONCLUSION Our results demonstrated that NHE-EA was the most active polar fraction of N. hybrida extracts. It inhibited the LPS-associated inflammatory response by blocking the activation of NF-κB and MAPKs pathways in RAW264.7 cells. It also effectively alleviated the inflammatory response of acute inflammation. These results indicated the role of NHE-EA as adjuvants and their potential role in alternative strategy for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Zhuangwei Zhang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan, 316000, People's Republic of China.
| | - Shuoqi Jiang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan, 316000, People's Republic of China.
| | - Hengqun Tian
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan, 316000, People's Republic of China.
| | - Yu Zeng
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan, 316000, People's Republic of China.
| | - Kang He
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan, 316000, People's Republic of China.
| | - Lin Lin
- ZhouShan Academy of Agriculture Sciences, Zhoushan, 316022, China
| | - Fangmiao Yu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan, 316000, People's Republic of China.
| |
Collapse
|
21
|
Wu X, Xie J, Qiu L, Zou L, Huang Y, Xie Y, Xu H, He S, Zhang Q. The anti-inflammatory and analgesic activities of the ethyl acetate extract of Viburnum taitoense Hayata. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113742. [PMID: 33359186 DOI: 10.1016/j.jep.2020.113742] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/10/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Viburnum taitoense Hayata has been used as folk medicine by the minority people in Southwestern China for a long history, especially in Guangxi Zhuang Autonomous Region. The minority in Guangxi including Zhuang, Miao and Yao people use the ethanol extract of V. taitoense Hayata to treat the fracture, kill the pain of rheumatism because of its definite therapeutic effects. AIM OF THE STUDY So far, the scientific investigation of V. taitoense Hayata is done very little. Here, we first prepared the ethyl acetate extract of V. taitoense (EEVt), secondly measured the contents of phenols, flavonoids, and terpenoids in EEVt, and thirdly, the anti-inflammatory and analgesic activities of EEVt were investigated by invitro model of RAW 264.7 cells and invivo models of inflammation and pain in rats and mice. MATERIALS AND METHODS The contents of phenols, flavonoids, and terpenoids in EEVt were determined by UV spectrophotometry, respectively. The anti-inflammatory effect of EEVt (5, 25, 50, 100, and 200 μg/mL) in vitro was tested by determining its inhibitory effect on the nitric oxide production of RAW264.7 cells activated by lipopolysaccharide (LPS). The anti-inflammatory and analgesic effects of EEVt in vivo were investigated in the following experimental rats and mice models: carrageenan-induced paw edema, corton-oil-induced ear edema, acetic acid writhing test, and formalin pain test. RESULTS The contents of total phenolic, total flavonoids, and total triterpenoids in V. taitoense were measured to be 3.46 ± 0.04%, 2.38 ± 0.04%, and 14.96 ± 0.17%, respectively. In vitro test showed that EEVt at different tested dosages (5, 25, 50, 100, and 200 μg/mL) had no significant toxicity to RAW264.7 macrophages. At dosages of 37.5 and 75 μg/mL of EEVt significant inhibitory (p < 0.001) on the productions of nitric oxide (NO). High dosage (200 μg/mL) of EEVt displayed highly significant inhibitory (p < 0.001) on the productions of proinflammatory cytokines IL-6, IL-1β, and TNF-α from the LPS-induced RAW264.7 macrophages. EEVt showed obvious anti-inflammatory activity at different time points after carrageenan injection (p < 0.05) in vivo test, and its anti-inflammatory activity reached the strongest 4 h. Similarly, through the ear swelling test, EEVt (200 mg/kg) showed significant (p < 0.05) anti-inflammatory activity. Besides, formalin and acetic acid writhing experiments also showed that EEVt has significant (p < 0.05) analgesic activity. CONCLUSION EEVt was confirmed to be definite anti-inflammatory and analgesic effects, and the phytochemicals of EEVt was disclosed to be rich in triterpenoids, which was worthy to be further investigated.
Collapse
Affiliation(s)
- Xinduo Wu
- School of Pharmaceutical Science, Guangxi Medical University, Nanning, 530021, China.
| | - Jizhao Xie
- School of Pharmaceutical Science, Guangxi Medical University, Nanning, 530021, China.
| | - Li Qiu
- School of Pharmaceutical Science, Guangxi Medical University, Nanning, 530021, China.
| | - Luhui Zou
- School of Pharmaceutical Science, Guangxi Medical University, Nanning, 530021, China.
| | - Yunfeng Huang
- Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China.
| | - Yunfeng Xie
- School of Pharmaceutical Science, Guangxi Medical University, Nanning, 530021, China.
| | - Huanji Xu
- School of Pharmaceutical Science, Guangxi Medical University, Nanning, 530021, China.
| | - Shineng He
- School of Pharmaceutical Science, Guangxi Medical University, Nanning, 530021, China.
| | - Qing Zhang
- School of Pharmaceutical Science, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
22
|
de Farias Silva D, Simões Bezerra PH, Lopes de Sousa Ribeiro L, Viana MDM, de Lima AA, da Silva Neto GJ, Teixeira CS, Machado SS, Alexandre Moreira MS, Delatorre P, Campesatto EA, Rocha BAM. Costus spiralis (Jacq.) Roscoe leaves fractions have potential to reduce effects of inflammatory diseases. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113607. [PMID: 33242625 DOI: 10.1016/j.jep.2020.113607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Since drugs currently used to manage pain and inflammatory conditions present several side effects, the investigation of new anti-inflammatory and antinociceptive agents from folk-medicine plants is an important approach. Costus spiralis (Costaceae) has been used in Brazilian medicinal teas to treat urinary infection, cough, inflammation, arthritis, among others. AIM OF THE STUDY The current study focused on investigating anti-inflammatory and antinociceptive effects of fractions from C. spiralis leaves using animal models. MATERIALS AND METHODS Adults Swiss mice were used in the following experimental models: acetic acid-induced abdominal writhing, formalin-induced nociception, hot plate, zymosan-induced peritonitis, and arthritis induced by complete Freund's adjuvant. RESULTS The presence of steroids was confirmed in all fractions. Flavonoids, condensed tannins and saponins were observed in EFL. In methanolic fraction leaves (MFL), the presence of flavonoids and pentacyclic triterpenoids was confirmed. Orally administered leaf fractions significantly reduced abdominal writhing. Fractions were ineffective in the neurogenic stage of the formalin test, but in the inflammatory stage, ethyl acetate fraction levaes (AcFL), ethanolic fraction leaves (EFL), and MFL significantly reduced paw licking time by 69.6 ± 11.9%, 58.2 ± 9.4%, and 79.6 ± 8.3%, respectively. In the hot plate test, the reaction latency was similar for treated animals and controls. However, in the peritonitis test, cell migration was significantly reduced in animals treated with chloroform fractions leaves ClFL (61.8 ± 11.4%), AcFL (58.7 ± 8.3%), EFL (39.2 ± 5.0%), and MFL (64.8 ± 4.4%). This was similar to the result observed in the chronic inflammation model, this time only the chloroform fraction was able to reduce paw edema. CONCLUSION Our results show that leaf fractions of Costus spiralis are capable of modulating peripheral nociceptive and inflammatory responses without effects on central nervous system being potential substrates for phytochemical purification, structural and mechanistic studies.
Collapse
Affiliation(s)
- Diego de Farias Silva
- Universidade Federal de Alagoas (UFAL), Campus A.C. Simões, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, Maceió, AL, Brazil
| | - Pedro Henrique Simões Bezerra
- Universidade Federal de Alagoas (UFAL), Campus A.C. Simões, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, Maceió, AL, Brazil
| | | | | | - Alyne Almeida de Lima
- Universidade Federal de Alagoas (UFAL), Campus A.C. Simões, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, Maceió, AL, Brazil
| | - Geraldo José da Silva Neto
- Universidade Federal de Alagoas (UFAL), Campus A.C. Simões, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, Maceió, AL, Brazil
| | - Claudener Souza Teixeira
- Universidade Federal do Cariri (UFCA), Av. Tenente Raimundo Rocha, 1639, Bairro Cidade Universitária, Juazeiro do Norte, CE, Brazil
| | - Sônia Salgueiro Machado
- Universidade Federal de Alagoas (UFAL), Campus A.C. Simões, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, Maceió, AL, Brazil
| | - Magna Suzana Alexandre Moreira
- Universidade Federal de Alagoas (UFAL), Campus A.C. Simões, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, Maceió, AL, Brazil
| | - Plinio Delatorre
- Universidade Federal da Paraíba (UFPB), Cidade Universitária, João Pessoa, PB, Brazil
| | - Eliane Aparecida Campesatto
- Universidade Federal de Alagoas (UFAL), Campus A.C. Simões, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, Maceió, AL, Brazil
| | | |
Collapse
|
23
|
Lee SM, Kim HS, Park HJ, Oh KY, Kim JY, Lee SH, Jang JS, Lee MH. Comparison of Antioxidant Properties of Evening Primrose Seeds by Different Processing Methods, and Physiological Properties of Evening Primrose Seed Powder. Prev Nutr Food Sci 2020; 25:422-431. [PMID: 33505936 PMCID: PMC7813601 DOI: 10.3746/pnf.2020.25.4.422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/15/2020] [Indexed: 11/22/2022] Open
Abstract
This study proposes the processing method that could maximize the functional properties of evening primrose seeds (EPS) and its various nutritional components. EPS can be prepared by different methods, such as being left raw, roasting, steaming, and powdering. Processing of EPS to create EPS powder (EPSP) resulted in higher levels of vitamin E, fatty acids, total phenolic contents, and antioxidant activity, compared with the other processing methods. Also, EPSP maintained lipid peroxidation inhibitory activity for 49 days. In particular, the EPSP ethyl acetate (EtOAc) fraction exhibited high antioxidant, antidiabetic, and angiotensin I-converting enzyme inhibitory activities. The EPSP ethyl acetate fraction showed a high cytoprotective effect against H2O2-induced cell damage in both RAW264.7 and EA.hy926 cells. In addition, the EtOAc fraction showed anti-inflammatory activity by the inhibitory activity of nitric oxide (NO) in RAW264.7 cells, and antihypertensive activity by the activity of NO in EA.hy926 cells. These results suggest that EPSP could be useful as a food ingredient that assists the prevention of various diseases caused by oxidative stress.
Collapse
Affiliation(s)
- Song Min Lee
- Food Research Center, Angel Co., Ltd., Busan 46988, Korea
| | - Hee Sook Kim
- Food Research Center, Angel Co., Ltd., Busan 46988, Korea
| | - Hye-Jung Park
- Food Research Center, Angel Co., Ltd., Busan 46988, Korea
| | - Ka-Yoon Oh
- Food Research Center, Angel Co., Ltd., Busan 46988, Korea
| | - Ji-Youn Kim
- Food Research Center, Angel Co., Ltd., Busan 46988, Korea
| | - Sang-Hyeon Lee
- Department of Pharmaceutical Engineering, Silla University, Busan 46958, Korea
| | - Jeong Su Jang
- Food Research Center, Angel Co., Ltd., Busan 46988, Korea
| | - Mun Hyon Lee
- Food Research Center, Angel Co., Ltd., Busan 46988, Korea
| |
Collapse
|
24
|
Chen WD, Zhao YL, Sun WJ, He YJ, Liu YP, Jin Q, Yang XW, Luo XD. "Kidney Tea" and Its Bioactive Secondary Metabolites for Treatment of Gout. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9131-9138. [PMID: 32786873 DOI: 10.1021/acs.jafc.0c03848] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Clerodendranthus spicatus, popularly known as "kidney tea" in China, is consumed traditionally as a functional food for treatment of renal inflammation, dysuria, and gout. We evaluated the effects of C. spicatus on gout by assessing activities of antihyperuricemia, anti-gouty arthritis, and analgesia in vivo, and the results indicated that the ethyl acetate fraction shows potential activities. Subsequent phytochemical investigation of this fraction led to the isolation of 32 compounds, consisting of 20 diterpenoids (including the new orthosiphonones E and F), 2 triterpenoids, 6 flavonoids, 2 lignanoids, and 2 phenolic acid derivatives. Pharmacological investigation of the pure compounds in the cellular model of hyperuricemia indicated that 12 compounds could promote the excretion of uric acid at 10 μg/mL, and compounds 3, 4, 5, and 21 had better effects than that of benzbromarone, a famous uricosuric drug. Furthermore, compounds 4, 6, 7, 9, 14, 15, 23, 26, and 31 showed significant anti-gouty arthritis activity in monosodium urate (MSU)-induced joint swelling at the dose of 50 mg/kg, while compounds 4, 5, 7, 9, and 26 exhibited significant inhibition of pain induced by acetic acid. Our findings provided scientific justification to support the traditional application of "kidney tea" for treating gout and suggested its good application prospects in the future.
Collapse
Affiliation(s)
- Wei-Di Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yun-Li Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
| | - Wen-Jie Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ying-Jie He
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
| | - Ya-Ping Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
| | - Qiong Jin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xing-Wei Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
| | - Xiao-Dong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
| |
Collapse
|
25
|
Wang Y, Peng M. Research Progress on Classical Traditional Chinese Medicine Jieyu Pills in the Treatment of Depression. Neuropsychiatr Dis Treat 2020; 16:3023-3033. [PMID: 33324063 PMCID: PMC7733407 DOI: 10.2147/ndt.s282384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022] Open
Abstract
Depression is a common clinical psychological disease, which is called "yu zheng" in traditional Chinese medicine (TCM). TCM has a long history in the treatment of depression (yu zheng), which has unique advantages. Jieyu pill (JYP), a classical TCM formula, has been widely used for treating depression because of its clear clinical efficacy, low side effects, and high compliance. In this review, we systematically introduce recent clinical and animal experimental studies on JYP and depression, and review the pharmacological mechanism and active ingredients of JYP, as well as its clinical application in depression therapy. This systematic review provides a deep understanding of TCM prescriptions, pharmacological mechanisms, and disease-medicine interactions, and lays the foundation for developing new treatments for depression.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Psychiatry, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Miao Peng
- Department of Psychiatry, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|