1
|
Wubuli A, Abdulla R, Zhao J, Wu T, Aisa HA. Exploring anti-inflammatory and antioxidant-related quality markers of Artemisia absinthium L. based on spectrum-effect relationship. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1152-1173. [PMID: 38591190 DOI: 10.1002/pca.3350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024]
Abstract
INTRODUCTION Artemisia absinthium L. is a well-known medicinal, aromatic, and edible plant with important medicinal and economic properties and a long history of use in treating liver inflammation and other diseases; however, there has been insufficient progress in quality control. OBJECTIVE This study aimed to investigate the quality markers for the anti-inflammatory and antioxidant activities of A. absinthium based on spectrum-effect relationship analysis. MATERIALS AND METHODS Eighteen batches of A. absinthium from different origins were used. Chemical fingerprints were obtained by ultra-performance liquid chromatography (UPLC). The chemical compositions were identified by quadrupole-Orbitrap high-resolution mass spectrometry. Anti-inflammatory activity was assessed by inhibition of cyclooxygenase-2 and 15-lipoxygenase in vitro and inhibition of nitric oxide release in lipopolysaccharide-induced BV-2 cells. Antioxidant activity was assessed by DPPH and ABTS radical scavenging assays. The relationship between bioactivity and chemical fingerprints was then analyzed using chemometrics including gray relational analysis, bivariate correlation analysis, and orthogonal partial least squares analysis. RESULTS Different batches of A. absinthium extracts possessed significant anti-inflammatory and antioxidant activities to varying degrees. Eighty compounds were identified from A. absinthium, and 12 main common peaks were obtained from the UPLC fingerprints. P3 (chlorogenic acid), P5 (isochlorogenic acid A), and P6 (isochlorogenic acid C) were screened as the most promising active compounds by correlation analysis and further validated for their remarkable anti-inflammatory effects. CONCLUSION This is the first study to screen the quality markers of A. absinthium by establishing the spectrum-effect relationship, which can provide a reference for the development of quality standards and further research on A. absinthium.
Collapse
Affiliation(s)
- Ayixiamuguli Wubuli
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rahima Abdulla
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Jiangyu Zhao
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Tao Wu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Li J, Lin M, Xie Z, Chen L, Qi J, Yu B. Target Cell Extraction and Spectrum-Effect Relationship Coupled with BP Neural Network Classification for Screening Potential Bioactive Components in Ginseng Extract with a Protective Effect against Myocardial Damage. Molecules 2024; 29:2028. [PMID: 38731522 PMCID: PMC11085743 DOI: 10.3390/molecules29092028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Cardiovascular disease has become a common ailment that endangers human health, having garnered widespread attention due to its high prevalence, recurrence rate, and sudden death risk. Ginseng possesses functions such as invigorating vital energy, enhancing vein recovery, promoting body fluid and blood nourishment, calming the nerves, and improving cognitive function. It is widely utilized in the treatment of various heart conditions, including palpitations, chest pain, heart failure, and other ailments. Although numerous research reports have investigated the cardiovascular activity of single ginsenoside, there remains a lack of systematic research on the specific components group that predominantly contribute to cardiovascular efficacy in ginseng medicinal materials. In this research, the spectrum-effect relationship, target cell extraction, and BP neural network classification were used to establish a rapid screening system for potential active substances. The results show that red ginseng extract (RGE) can improve the decrease in cell viability and ATP content and inhibit the increase in ROS production and LDH release in OGD-induced H9c2 cells. A total of 70 ginsenosides were identified in RGE using HPLC-Q-TOF-MS/MS analysis. Chromatographic fingerprints were established for 12 batches of RGE by high-performance liquid chromatography (HPLC). A total of 36 common ingredients were found in 12 batches of RGE. The cell viability, ATP, ROS, and LDH of 12 batches RGE were tested to establish gray relationship analysis (GRA) and partial least squares discrimination analysis (PLS-DA). BP neural network classification and target cell extraction were used to narrow down the scope of Spectral efficiency analysis and screen the potential active components. According to the cell experiments, RGE can improve the cell viability and ATP content and reduce the oxidative damage. Then, seven active ingredients, namely, Ginsenoside Rg1, Rg2, Rg3, Rb1, Rd, Re, and Ro, were screened out, and their cardiovascular activity was confirmed in the OGD model. The seven ginsenosides were the main active substances of red ginseng in treating myocardial injury. This study offers a reference for quality control in red ginseng and preparations containing red ginseng for the management of cardiovascular diseases. It also provides ideas for screening active ingredients of the same type of multi-pharmacologically active traditional Chinese medicines.
Collapse
Affiliation(s)
- Junyi Li
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (J.L.); (M.L.); (Z.X.); (L.C.)
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Min Lin
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (J.L.); (M.L.); (Z.X.); (L.C.)
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zexin Xie
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (J.L.); (M.L.); (Z.X.); (L.C.)
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Liwenyu Chen
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (J.L.); (M.L.); (Z.X.); (L.C.)
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jin Qi
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (J.L.); (M.L.); (Z.X.); (L.C.)
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Boyang Yu
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (J.L.); (M.L.); (Z.X.); (L.C.)
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
3
|
Li S, Huang X, Li Y, Ding R, Wu X, Li L, Li C, Gu R. Spectrum-Effect Relationship in Chinese Herbal Medicine: Current Status and Future Perspectives. Crit Rev Anal Chem 2023:1-22. [PMID: 38127670 DOI: 10.1080/10408347.2023.2290056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The quality of Chinese herbal medicine (CHM) directly impacts clinical efficacy and safety. Fingerprint technology is an internationally recognized method for evaluating the quality of CHM. However, the existing quality evaluation models based on fingerprint technology have blocked the ability to assess the internal quality of CHM and cannot comprehensively reflect the correlation between pharmacodynamic information and active constituents. Through mathematical methods, a connection between the "Spectrum" (fingerprint) and the "Effect" (pharmacodynamic data) was established to conduct a spectrum-effect relationship (SER) of CHM to unravel the active component information associated with the pharmacodynamic activity. Consequently, SER can efficiently address the limitations of the segmentation of chemical components and pharmacodynamic effect in CHM and further improve the quality evaluation of CHM. This review focuses on the recent research progress of SER in the field of CHM, including the establishment of fingerprint, the selection of data analysis methods, and their recent applications in the field of CHM. Various advanced fingerprint techniques are introduced, followed by the data analysis methods used in recent years are summarized. Finally, the applications of SER based on different research subjects are described in detail. In addition, the advantages of combining SER with other data are discussed through practical applications, and the research on SER is summarized and prospected. This review proves the validity and development potential of the SER and provides a reference for the development and application of quality evaluation methods for CHM.
Collapse
Affiliation(s)
- Si Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuemei Wu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Canlin Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Rui G, Qin ZY, Chang YQ, Zheng YG, Zhang D, Yao LM, Guo L. Chemical Comparison and Identification of Xanthine Oxidase Inhibitors of Dioscoreae Hypoglaucae Rhizoma and Dioscoreae Spongiosae Rhizoma by Chemometric Analysis and Spectrum-Effect Relationship. Molecules 2023; 28:8116. [PMID: 38138603 PMCID: PMC10745721 DOI: 10.3390/molecules28248116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Dioscoreae hypoglaucae Rhizoma (DH) and Dioscoreae spongiosae Rhizoma (DS) are two similar Chinese herbal medicines derived from the Dioscorea family. DH and DS have been used as medicines in China and other Asian countries for a long time, but study on their phytochemicals and bioactive composition is limited. This present study aimed to compare the chemical compositions of DH and DS, and explore the anti-xanthine oxidase components based on chemometric analysis and spectrum-effect relationship. Firstly, an HPLC method was used to establish the chemical fingerprints of DH and DS samples, and nine common peaks were selected. Then, hierarchical clustering analysis, principal component analysis and orthogonal partial least squares discriminant analysis were employed to compare and discriminate DH and DS samples based on the fingerprints data, and four steroidal saponins compounds (protodioscin, protogracillin, dioscin, gracillin) could be chemical markers responsible for the differences between DH and DS. Meanwhile, the anti-xanthine oxidase activities of these two herbal medicines were evaluated by xanthine oxidase inhibitory assay in vitro. Pearson correlation analysis and partial least squares regression analysis were subsequently used to investigate the spectrum-effect relationship between chemical fingerprints and xanthine oxidase inhibitory activities. The results showed that four steroidal saponins, including protodioscin, protogracillin, methyl protodioscin and pseudoprogracillin could be potential anti-xanthine oxidase compounds in DH and DS. Furthermore, the xanthine oxidase inhibitory activities of the four selected inhibitors were validated by anti-xanthine oxidase inhibitory assessment and molecular docking experiments. The present work provided evidence for understanding of the chemical differences and the discovery of the anti-xanthine oxidase constituent of DH and DS, which could be useful for quality evaluation and bioactive components screening of these two herbal medicines.
Collapse
Affiliation(s)
- Guo Rui
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (G.R.); (Z.-Y.Q.); (Y.-Q.C.); (Y.-G.Z.); (D.Z.)
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Zhang-Yi Qin
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (G.R.); (Z.-Y.Q.); (Y.-Q.C.); (Y.-G.Z.); (D.Z.)
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Ya-Qing Chang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (G.R.); (Z.-Y.Q.); (Y.-Q.C.); (Y.-G.Z.); (D.Z.)
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yu-Guang Zheng
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (G.R.); (Z.-Y.Q.); (Y.-Q.C.); (Y.-G.Z.); (D.Z.)
- Department of Pharmaceutical Engineering, Hebei Chemical & Pharmaceutical College, Shijiazhuang 050026, China
| | - Dan Zhang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (G.R.); (Z.-Y.Q.); (Y.-Q.C.); (Y.-G.Z.); (D.Z.)
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Li-Min Yao
- Bethune International Peace Hospital, Shijiazhuang 050082, China
| | - Long Guo
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (G.R.); (Z.-Y.Q.); (Y.-Q.C.); (Y.-G.Z.); (D.Z.)
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| |
Collapse
|
5
|
Jiang N, Lin B, Song L, Tan G, Zhang Z, Yu K. Integrated transcriptome and proteome analyses unravel a series of early defence responses in Sarcandra glabra against Colletotrichum gloeosporioides. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:1047-1061. [PMID: 37814360 DOI: 10.1071/fp23084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023]
Abstract
Anthracnose caused by Colletotrichum gloeosporioides critically threatens the growth and commercial cultivation of Sarcandra glabra . However, the defence responses and underlying mechanisms remain unclear. Herein, we aimed to investigate the molecular reprogramming in S. glabra leaves infected with C. gloeosporioides . Leaf tissues at 0, 24 and 48h post-inoculation (hpi) were analysed by combining RNA sequencing and Tandem Mass Tag-based liquid chromatography with tandem mass spectrometry. In total, 18 441 and 25 691 differentially expressed genes were identified at 24 and 48hpi compared to 0hpi (uninoculated control), respectively. In addition, 1240 and 1570 differentially abundant proteins were discovered at 24 and 48hpi compared to 0hpi, respectively. Correlation analysis revealed that transcription and translation levels were highly consistent regarding repeatability and expression. Analyses using databases KEGG and iPATH revealed tricitric acid cycle, glycolysis/gluconeogenesis and phenylpropanoid biosynthesis were induced, whereas photosynthesis and tryptophan were suppressed. Enzymatic activity assay results were consistent with the upregulation of defence-related enzymes including superoxide dismutases, catalases, peroxidases and chitinases. The transcriptome expression results were additionally validated by quantitative real-time polymerase chain reaction analyses. This study provides insights into the molecular reprogramming in S. glabra leaves during infection, which lay a foundation for investigating the mechanisms of host-Colletotrichum interactions and breeding disease-resistant plants.
Collapse
Affiliation(s)
- Ni Jiang
- College of Agriculture, Guangxi University, Nanning 530004, China; and Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Birun Lin
- College of Agriculture, Guangxi University, Nanning 530004, China; and Guangdong Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Lisha Song
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Guiyu Tan
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Zhanjiang Zhang
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Kai Yu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; and Department of Omics Technology, Nanning Current Science Biotechnology Co., Ltd., Nanning 530005, China
| |
Collapse
|
6
|
Chu JN, Krishnan P, Lim KH. A comprehensive review on the chemical constituents, sesquiterpenoid biosynthesis and biological activities of Sarcandra glabra. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:53. [PMID: 38010490 PMCID: PMC10682397 DOI: 10.1007/s13659-023-00418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Sarcandra glabra (Thunb.) Nakai is a perennial evergreen herb categorised within the Sarcandra Gardner genus under the Chloranthaceae family. Indigenous to tropical and subtropical regions of East Asia and India, this species is extensively distributed across China, particularly in the southern regions (Sichuan, Yunnan, and Jiangxi). In addition to its high ornamental value, S. glabra has a rich history of use in traditional Chinese medicine, evident through its empirical prescriptions for various ailments like pneumonia, dysentery, fractures, bruises, numbness, amenorrhea, rheumatism, and other diseases. Besides, modern pharmacological studies have revealed various biological activities, such as antitumour, anti-bacterial, anti-viral anti-inflammatory and immunomodulatory effects. The diverse chemical constituents of S. glabra have fascinated natural product researchers since the 1900s. To date, over 400 compounds including terpenoids, coumarins, lignans, flavonoids, sterols, anthraquinones, organic acids, and organic esters have been isolated and characterised, some featuring unprecedented structures. This review comprehensively examines the current understanding of S. glabra's phytochemistry and pharmacology, with emphasis on the chemistry and biosynthesis of its unique chemotaxonomic marker, the lindenane-type sesquiterpenoids.
Collapse
Affiliation(s)
- Jin-Ning Chu
- School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Premanand Krishnan
- Foundation in Science, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Kuan-Hon Lim
- School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
7
|
Feng Q, Si Y, Zhu L, Wang F, Fang J, Pan C, Gao X, Liu W. Anti-inflammatory effects of a SERP 30 polysaccharide from the residue of Sarcandra glabra against lipopolysaccharide-induced acute respiratory distress syndrome in mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115262. [PMID: 35398243 DOI: 10.1016/j.jep.2022.115262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sarcandra glabra (Thunb.) Nakai, a valuable dietetic Chinese herb, is still widely used today. Multiple ingredients of S. glabra with a variety of activities such as anti-inflammatory, antiviral, and antitumor were studied. However, the Sarcandra glabra (Thunb.) Nakai polysaccharide hasn't been reported for its anti-inflammatory effect. AIM OF THE STUDY In this study, the anti-inflammatory activity of Sarcandra glabra (Thunb.) Nakai polysaccharide was assessed in LPS-induced ARDS mice. MATERIALS AND METHODS A polysaccharide coded as SERP 30 was obtained by water extraction, alcohol precipitation, and gel filtration. After the physicochemical properties determination and structural characterization, LPS induced-mice ARDS model was used to evaluate the anti-inflammatory and associated antioxidant activities of SERP 30. H&E staining was used to observe the seriousness of lung injury in mice. The ELISA method was used to measure the expression of inflammatory factors (TNF-α and IL-6) in the serum of the mice. The TBA method and the WST-1 method were used to evaluate the oxidative stress injury. Immunohistochemistry was used to distinguish the expression of metalloproteinase-9 (MMP-9), heparinase (HPA), syndecan-1, and decorin in ARDS-mice lung tissue. Western blotting was used to confirm the expression of related proteins in mouse lung tissue. RESULTS SERP 30 had a potential role in improving lung damage, reducing inflammation, and preventing oxidative stress. Moreover, SERP 30 significantly attenuated the damage to the endothelial glycocalyx and maintained the integrity of the glycocalyx. The western blotting result implied that the main anti-inflammatory mechanism is directed towards NF-κB and MAPK signaling pathways with inhibiting the activation of associated proteins. CONCLUSION This research provides a theoretical basis for treating ARDS by using a byproduct from food resource.
Collapse
Affiliation(s)
- Qi Feng
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yu Si
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Lingling Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Feng Wang
- Simcere Pharmaceutical Group Limited, Nanjing, 210042, PR China
| | - Junqiang Fang
- Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, 250000, PR China
| | - Chun Pan
- Department of Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, PR China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Wei Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
8
|
He FQ, Li YJ, Guo ZH, Chen J. -Glucosidase inhibitors screening from Cyclocarya paliurus based on spectrum-effect relationship and UPLC-MS/MS. Biomed Chromatogr 2022; 36:e5313. [PMID: 34981537 DOI: 10.1002/bmc.5313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/25/2021] [Accepted: 12/13/2021] [Indexed: 11/12/2022]
Abstract
Cyclocarya paliurus is an edible and medicinal plant exhibiting significant hypoglycemic effect. However, its active components are still unclear and need further elucidation. In this research, the active components of the leaves of C. paliurus responsible for α-glucosidase inhibitory activity were screened and identified based on spectrum-effect relationship study in combination with ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) analysis. The 70% ethanol eluate fraction of the leaves of C. paliurus with the strongest α-glucosidase inhibitory activity was obtained after extraction and purification with macroporous resin. Their chromatographic fingerprints (15 batches) were established by UPLC analysis and 32 common peaks were specified by similarity analysis. Their IC50 values for α-glucosidase inhibition were measured by an enzymatic reaction. Several multivariate statistical analysis methods including hierarchical cluster analysis, principal component analysis, partial least square analysis and grey relational analysis were applied to explore the spectrum-effect relationship between common peaks and IC50 values, and the chromatographic peaks making great contribution to efficacy were screened out. To further elucidate the active components of leaves of C. paliurus, the 70% ethanol eluate fraction was characterized by UPLC-MS/MS analysis, and 10 compounds were identified. This study provided a valuable reference for further research and development of hypoglycemic active components of C. paliurus.
Collapse
Affiliation(s)
- Fu-Qin He
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Yan-Jun Li
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Zhao-Hui Guo
- Gansu Institute for Drug Control, Lanzhou, P. R. China.,State Drug Administration-Key Laboratory of Quality Control of Chinese Medicinal Materials and Decoction Pieces, Lanzhou, P. R. China
| | - Juan Chen
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| |
Collapse
|
9
|
Yang X, Li J, Lai JL, Zhang Y, Luo XG. Adsorption and enrichment of U in a cellulase-producing Trichoderma sp. and its physiological response mechanism. CHEMOSPHERE 2022; 287:132173. [PMID: 34509764 DOI: 10.1016/j.chemosphere.2021.132173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/21/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The cellulase produced by Trichoderma sp. was characterized by investigating the adsorption and enrichment of U and the physiological response to U exposure. The effects of U exposure (0 and 400 μM) on the growth, morphological characteristics, cellulase production, U adsorption, and U enrichment capacity of the Trichoderma strain were assessed. The effects of U exposure on the basic metabolism of this fungus were also analyzed by non-targeted metabolomics. Exposure to U (400 μM) for 24 h resulted in OD600 turbidity of 0.278, and activities of carboxymethyl cellulase (CMC), filter paper enzyme (FPA), and β-glucosidase of 12834 U·mL-1, 9285 U·mL-1, and 12574 U·mL-1, respectively. The measurement of the background α and β radioactivity showed an α activity concentration of 3.35 × 106 Bq·kg-1 in the fungus, a β activity concentration of 6.28 × 105 Bq·kg-1, and a U enrichment rate of 70.4 ± 4.5%. GC-MS metabolomics analysis identified a total of 319 metabolites (34 up-regulated and 30 down-regulated), which mainly caused the metabolic imbalance of organic acids and derivatives. The alanine, aspartate, and glutamate metabolic pathways were the most significantly enriched. Trichoderma sp. therefore has a strong ability to tolerate/accumulate U and continues to produce cellulase under U (400 μM) exposure. However, U interferes with the basic metabolism of this fungus.
Collapse
Affiliation(s)
- Xu Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jie Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jin-Long Lai
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China; Engineering Research Center of Biomass Materials, Ministry of Education of SWUST, Mianyang, 621010, China.
| | - Yu Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
10
|
Qiao R, Zhou L, Zhong M, Zhang M, Yang L, Yang Y, Chen H, Yang W, Yuan J. Spectrum-effect relationship between UHPLC-Q-TOF/MS fingerprint and promoting gastrointestinal motility activity of Fructus aurantii based on multivariate statistical analysis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114366. [PMID: 34181960 DOI: 10.1016/j.jep.2021.114366] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nowadays, gastrointestinal motility disorders (GMD) have reduced the quality of people's daily life worldwide, but there is still a lack of effective western medicine treatment. Fructus aurantii (FA), a representative regulating-qi herbal medicine, has been widely used to treat GMD in China for thousands of years, but it is not clear that which specific components contribute to the efficacy. AIM OF THE STUDY The efficacy differences of various fractions of FA on normal mice and GMD rats were compared, so as to find out the main effective fraction of FA, and to screen the main regulating-qi components based on spectrum-effect relationship and multivariate statistical analysis. MATERIALS AND METHODS The fingerprints of different fractions of FA were established and main compounds were identified with UHPLC-Q-TOF/MS technique. The promoting gastrointestinal motility activities of FA were evaluated by defecation test, gastric emptying and intestinal propulsion test in mice, and further investigated according to the biochemical analysis of 5-HT, SP, MLT, GAS and VIP in GMD rats' plasma. One-way ANOVA was used to find out the difference of efficacy. The active components were screened through spectrum-effect relationship with PCA-X, Pearson bivariate correlation analysis and OPLS analysis. CONCLUSIONS Ethyl acetate fraction is the main active fraction, and nine compounds are the major regulating-qi components. The developed spectrum-effect analysis can be used for the screening of bioactive components in natural products with high accuracy and reliability.
Collapse
Affiliation(s)
- Rifa Qiao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Lifen Zhou
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Minyong Zhong
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Min Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China; Nanchang Key Laboratory of Quality Control and Safety Evaluation of Traditional Chinese Medicine, Nanchang Institute for Food and Drug Control, Nanchang, 330015,China.
| | - Lin Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Yuanfeng Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Haifang Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Wuliang Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Jinbin Yuan
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
11
|
Uvangoletin, extracted from Sarcandra glabra, exerts anticancer activity by inducing autophagy and apoptosis and inhibiting invasion and migration on hepatocellular carcinoma cells. PHYTOMEDICINE 2021; 94:153793. [PMID: 34736000 DOI: 10.1016/j.phymed.2021.153793] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/13/2021] [Accepted: 10/03/2021] [Indexed: 02/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Uvangoletin is a dihydrochalcone extracted from the traditional Chinese medicinal plant Sarcandra glabra. Previous research has showed that uvangoletin could induce leukemia cell death. However, the anticancer effect of uvangoletin on hepatocellular carcinoma (HCC) has not been clarified. AIM OF THE STUDY This study aimed to investigate the anti-cancer effects of uvangoletin on HCC and to explore its underlying mechanisms. MATERIALS AND METHODS We measured the anticancer activities of uvangoletin both in vitro and in vivo by MTT assay and HepG2 xenograft model. The effects of uvangoletin on apoptosis, autophagy, migration and invasion were also determined. Apoptosis was evaluated by flow cytometry method. Autophagy was assessed by immunofluorescence assay. Cell migration and invasion ability were validated by wound healing assay and cultrex® 96 well cell migration/invasion assay. The expression level of relevant proteins and pathways were examined by western blot. RESULTS The results of MTT assay and HepG2 xenograft model showed that uvangoletin could inhibit HCC cells proliferation in vitro and in vivo. Uvangoletin could induce HepG2 cell apoptosis as evidence by the increased expression of cleaved caspase 3, caspase 8 and Bax while decreased Bcl-2 expression. Wound healing assay and transwell assay showed that uvangoletin inhibited HepG2 cells migration and invasion and reduced vimentin, MMP9, MMP2 expression. Uvangoletin also promoted autophagy in HepG2 cells as confirmed by the accumulation of GFP-LC3 puncta. Autophagy inhibitors like 3-MA or CQ could suppress uvangoletin-induced apoptosis. Importantly, uvangoletin-induced anti-EMT effect was also attenuated after autophagy inhibitors added in. Mechanistically, the expressions of p-JNK, p-ERK, p-p38, p-AKT, p-p70S6k and p-mTOR were significantly decreased after uvangoletin treatment. CONCLUSION Our results showed that uvangoletin could induce apoptotic and autophagic cell death, inhibit cell proliferation and metastasis on HepG2 cells through Akt/mTOR, MAPK and TGFβ/Smad2 signal pathways.
Collapse
|
12
|
Klein-Junior LC, de Souza MR, Viaene J, Bresolin TMB, de Gasper AL, Henriques AT, Heyden YV. Quality Control of Herbal Medicines: From Traditional Techniques to State-of-the-art Approaches. PLANTA MEDICA 2021; 87:964-988. [PMID: 34412146 DOI: 10.1055/a-1529-8339] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herbal medicines are important options for the treatment of several illnesses. Although their therapeutic applicability has been demonstrated throughout history, several concerns about their safety and efficacy are raised regularly. Quality control of articles of botanical origin, including plant materials, plant extracts, and herbal medicines, remains a challenge. Traditionally, qualitative (e.g., identification and chromatographic profile) and quantitative (e.g., content analyses) markers are applied for this purpose. The compound-oriented approach may stand alone in some cases (e.g., atropine in Atropa belladonna). However, for most plant materials, plant extracts, and herbal medicines, it is not possible to assure quality based only on the content or presence/absence of one (sometimes randomly selected) compound. In this sense, pattern-oriented approaches have been extensively studied, introducing the use of multivariate data analysis on chromatographic/spectroscopic fingerprints. The use of genetic methods for plant material/plant extract authentication has also been proposed. In this study, traditional approaches are reviewed, although the focus is on the applicability of fingerprints for quality control, highlighting the most used approaches, as well as demonstrating their usefulness. The literature review shows that a pattern-oriented approach may be successfully applied to the quality assessment of articles of botanical origin, while also providing directions for a compound-oriented approach and a rational marker selection. These observations indicate that it may be worth considering to include fingerprints and their data analysis in the regulatory framework for herbal medicines concerning quality control since this is the foundation of the holistic view that these complex products demand.
Collapse
Affiliation(s)
- Luiz C Klein-Junior
- School of Health Sciences, Universidade do Vale do Itajaí - UNIVALI, Itajaí/SC, Brazil
| | - Maira R de Souza
- Laboratory of Pharmacognosy and Quality Control of Phytomedicines, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre/RS, Brazil
| | - Johan Viaene
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel - VUB, Brussels, Belgium
| | - Tania M B Bresolin
- School of Health Sciences, Universidade do Vale do Itajaí - UNIVALI, Itajaí/SC, Brazil
| | - André L de Gasper
- Herbarium Dr. Roberto Miguel Klein, Department of Natural Sciences, Universidade Regional de Blumenau - FURB, Blumenau/SC, Brazil
| | - Amélia T Henriques
- Laboratory of Pharmacognosy and Quality Control of Phytomedicines, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre/RS, Brazil
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel - VUB, Brussels, Belgium
| |
Collapse
|
13
|
Zeng Y, Liu J, Zhang Q, Qin X, Li Z, Sun G, Jin S. The Traditional Uses, Phytochemistry and Pharmacology of Sarcandra glabra (Thunb.) Nakai, a Chinese Herb With Potential for Development: Review. Front Pharmacol 2021; 12:652926. [PMID: 33967794 PMCID: PMC8100461 DOI: 10.3389/fphar.2021.652926] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/01/2021] [Indexed: 01/27/2023] Open
Abstract
Sarcandra glabra (Thunb.) Nakai is a folk medicine with a long history in China, which has been applied to treat sore throat, abscess, even tumor and so on. Meanwhile, it is also used as tea in some areas. At present, more than 200 chemical compounds have been isolated and identified from it, such as, sesquiterpenes, flavonoids, phenolic acids, coumarins and so on. Pharmacological studies have already confirmed that the extracts of S. glabra have many effects, such as antibacterial, antiviral, anti-inflammatory, anti-tumor, and anti-thrombocytopenia, especially the effects of anti-tumor and anti-thrombocytopenia are confirmed in clinic. Therefore, this paper systematically summarized the traditional uses, botany, phytochemistry, pharmacology, and toxicity of S. glabra, in order to provide a beneficial reference of its further research.
Collapse
Affiliation(s)
- Yuanlian Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junyu Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Zhang
- International Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuhua Qin
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zulun Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guojuan Sun
- International Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shenrui Jin
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Liu YQ, Xu CY, Liang FY, Jin PC, Qian ZY, Luo ZS, Qin RG. Selecting and Characterizing Tyrosinase Inhibitors from Atractylodis macrocephalae Rhizoma Based on Spectrum-Activity Relationship and Molecular Docking. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:5596463. [PMID: 33954007 PMCID: PMC8060085 DOI: 10.1155/2021/5596463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/23/2021] [Accepted: 03/21/2021] [Indexed: 05/02/2023]
Abstract
Atractylodis macrocephalae Rhizoma (AMR) is a famous classical Chinese traditional medicine (CTM), which has been used as a tonic for many diseases for thousands of years. In ancient China, it was used as a supplementary food for beauty in the palace. In preliminary studies, the function of whitening skin and the significant inhibiting effect on tyrosinase (TYR) which is the reactive enzyme in the composition of melanin of AMR were discovered, and the relevant research was rarely reported. In this study, high-performance liquid chromatography (HPLC) along with partial least squares regression analysis (PLS) was applied to survey the coherence between the chemical constituents and the inhibiting activity of 11 batches of AMR on TYR activity. The results of PLS showed that the chromatographic peaks 11 (atractylenolide III) and 15 could be important effective ingredients of the inhibition TYR activity as ascertained by spectrum-activity relationships. Furthermore, TYR inhibitory activity of atractylenolide III was validated by in vitro test by β-arbutin served as a positive control drug. The results of the in vitro test and the molecular docking showed that atractylenolide III has high TYR inhibitory activity and could link to the residues in TYR catalytic pocket. Therefore, bioassay, molecular docking, and spectrum-activity relationships are appropriate for linking the quality of samples with pharmaceutical-related active ingredients. And our studying would lay a theoretical foundation for applying the water extracts of AMR in whitening cosmetics.
Collapse
Affiliation(s)
- Yong-Qin Liu
- Pharmacy School, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chang-Yan Xu
- Pharmacy School, Guizhou Medical University, Guiyang, Guizhou, China
| | - Fang-Yu Liang
- Pharmacy School, Guizhou Medical University, Guiyang, Guizhou, China
| | - Pei-Chun Jin
- Pharmacy School, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhi-Yao Qian
- School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhong-Sheng Luo
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, Guizhou, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, China
| | - Rong-Gui Qin
- Pharmacy School, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|