1
|
Lin M, Li S, Wang Y, Zheng G, Hu F, Zhang Q, Song P, Zhou H. Machine learning-based diagnostic model of lymphatics-associated genes for new therapeutic target analysis in intervertebral disc degeneration. Front Immunol 2024; 15:1441028. [PMID: 39697339 PMCID: PMC11652530 DOI: 10.3389/fimmu.2024.1441028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Background Low back pain resulting from intervertebral disc degeneration (IVDD) represents a significant global social problem. There are notable differences in the distribution of lymphatic vessels (LV) in normal and pathological intervertebral discs. Nevertheless, the molecular mechanisms of lymphatics-associated genes (LAGs) in the development of IVDD remain unclear. An in-depth exploration of this area will help to reveal the biological and clinical significance of LAGs in IVDD and may lead to the search for new therapeutic targets for IVDD. Methods Data sets were obtained from the Gene Expression Omnibus (GEO) database. Following quality control and normalization, the datasets (GSE153761, GSE147383, and GSE124272) were merged to form the training set, with GSE150408 serving as the validation set. LAGs from GeneCards, MSigDB, Gene Ontology, and KEGG database. The Venn diagram was employed to identify differentially expressed lymphatic-associated genes (DELAGs) that were differentially expressed in the normal and IVDD groups. Subsequently, four machine learning algorithms (SVM-RFE, Random Forest, XGB, and GLM) were used to select the method to construct the diagnostic model. The receiver operating characteristic (ROC) curve, nomogram, and Decision Curve Analysis (DCA) were used to evaluate the model effect. In addition, we constructed a potential drug regulatory network and competitive endogenous RNA (ceRNA) network for key LAGs. Results A total of 15 differentially expressed LAGs were identified. By comparing four machine learning methods, the top five genes of importance in the XGB model (MET, HHIP, SPRY1, CSF1, TOX) were identified as lymphatics-associated gene diagnostic signatures. This signature was used to predict the diagnosis of IVDD with strong accuracy and an area under curve (AUC) value of 0.938. Furthermore, the diagnostic model was validated in an external dataset (GSE150408), with an AUC value of 0.772. The nomogram and DCA further prove that the diagnosis model has good performance and predictive value. Additionally, drug regulatory networks and ceRNA networks were constructed, revealing potential therapeutic drugs and post-transcriptional regulatory mechanisms. Conclusion We developed and validated a lymphatics-associated genes diagnostic model by machine learning algorithms that effectively identify IVDD patients. These five key LAGs may be potential therapeutic targets for IVDD patients.
Collapse
Affiliation(s)
- Maoqiang Lin
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Shaolong Li
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Yabin Wang
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Guan Zheng
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Fukang Hu
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Qiang Zhang
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Pengjie Song
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Haiyu Zhou
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Dong L, He H, Chen Z, Wang X, Li Y, Lü G, Wang B, Kuang L. Pharmacological Network Analysis of the Functions and Mechanism of Quercetin From Jisuikang (JSK) in Spinal Cord Injury (SCI). J Cell Mol Med 2024; 28:e70269. [PMID: 39679746 DOI: 10.1111/jcmm.70269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 10/17/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Neuroinflammation, especially microglia/macrophage activation, is a hallmark of spinal cord injury (SCI). Jisuikang (JSK) is a clinical experiential Chinese herbal formula for SCI therapy containing Huangqi (Astragali Radix), Danggui (Angelica sinensis Radix), Chishao (Paeoniae Radix Rubra), Dilong (earthworm, Pheretima aspergillum), Chuanxiong (Chuanxiong Rhizoma), Taoren (Persicae Seman) and Honghua (Carthami Flos). Eighteen active ingredients in 6 herbs of JSK were found to be correlated with inflammation, spinal injury and other diseases. These 18 active ingredients target 5464 genes according to the PubChem database. Through comparing differentially expressed genes between SCI and normal samples using GSE datasets, 50 hub genes were identified. These hub-genes were enriched in oxidative stress response and inflammation response. The herb-compound-target, herb-compound-signalling and compound-target-signalling networks were generated and quercetin was identified as the hub compound. A concentration of 25 μM quercetin showed no cytotoxicity but significantly protected microglial cells from LPS-induced inhibition of cell viability. LPS stimulation elevated the levels of iNOS, IL-1β and TNF-α but decreased IL-10 levels, whereas quercetin significantly attenuated LPS-induced alterations in these factors. Moreover, quercetin targeted gene, IL1R1 was reduced by quercetin as predicted. Overexpression of IL1R1 further increased LPS-induced inflammation, which could be partly reversed by quercetin treatment. In vivo, quercetin improved histopathological alterations, inflammation and promoted M2 macrophage polarisation post-injury, whereas IL1R1 overexpression partially attenuated the beneficial effects of quercetin on the rat SCI model. Collectively, quercetin, the main ingredient compound of JSK, protects against LPS-induced cell viability inhibition and cellular inflammation, which could be partially attenuated by IL1R1 overexpression.
Collapse
Affiliation(s)
- Lini Dong
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haoyu He
- Department of Spinal Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zejun Chen
- Department of Spinal Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoxiao Wang
- Department of Spinal Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yunchao Li
- Department of Spinal Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guohua Lü
- Department of Spinal Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bing Wang
- Department of Spinal Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Kuang
- Department of Spinal Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Wang N, Chen S, Xie Y, Liu X, Xi Z, Li J, Xue C, Deng R, Min W, Kang R, Xie L. The Sanbi Decoction alleviates intervertebral disc degeneration in rats through intestinal flora and serum metabolic homeostasis modulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155480. [PMID: 38484462 DOI: 10.1016/j.phymed.2024.155480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is an essential cause of low back pain (LBP), the incidence of which has risen in recent years and is progressively younger, but treatment options are limited, placing a serious economic burden on society. Sanbi decoction (SBD) is an important classical formula for the treatment of IVDD, which can significantly improve patients' symptoms and is a promising alternative therapy. PURPOSE The aim of this study is to investigate the safety and efficacy of SBD in the treatment of IVDD and to explore the underlying mechanisms by using an integrated analytical approach of microbiomics and serum metabolomics, as well as by using molecular biology. METHODS A rat IVDD puncture model was established and treated by gavage with different concentrations of SBD, and clean faeces, serum, liver, kidney, and intervertebral disc (IVD) were collected after 4 weeks. We assessed the safety by liver and kidney weighing, functional tests and tissue staining, the expression of tumor necrosis factor-alpha (TNF-ɑ), interleukin 1β (IL-1β) and interleukin 6 (IL-6) inflammatory factors in serum was detected by ELISA kits, and X-ray test, magnetic resonance imaging (MRI) examination, immunohistochemistry (IHC), western blotting (WB), hematoxylin-eosin (HE) staining and safranin O-fast green (SO/FG) staining were used to assess the efficacy. Finally, we performed 16S rRNA sequencing analysis on the faeces of different groups and untargeted metabolomics on serum and analyzed the association between them. RESULTS SBD can effectively reduce the inflammatory response, regulate the metabolic balance of extracellular matrix (ECM), improve symptoms, and restore IVD function. In addition, SBD can significantly improve the diversity of intestinal flora and maintain the balance. At the phylum level, SBD greatly increased the relative abundance of Patescibacteria and Actinobacteriota and decreased the relative abundance of Bacteroidota. At the genus level, SBD significantly increased the relative abundance of Clostridia_UCG-014, Enterorhabdus, and Adlercreutzia, and decreased the relative abundance of Ruminococcaceae_UCG-005 (p < 0.05). Untargeted metabolomics indicated that SBD significantly improved serum metabolites and altered serum expression of 4alpha-phorbol 12,13-didecanoate (4alphaPDD), euscaphic acid (EA), alpha-muricholic acid (α-MCA), 5-hydroxyindoleacetic acid (5-HIAA), and kynurenine (Kyn) (p < 0.05), and the metabolic pathways were mainly lipid metabolism and amino acid metabolism. CONCLUSIONS This study demonstrated that SBD can extensively regulate intestinal flora and serum metabolic homeostasis to reduce inflammatory response, inhibit the degradation of ECM, restore IVD height and water content to achieve apparent therapeutic effect for IVDD.
Collapse
Affiliation(s)
- Nan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, China
| | - Shuang Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, China
| | - Yimin Xie
- Department of Orthopedics, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210029, China
| | - Xin Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, China
| | - Zhipeng Xi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, China
| | - Jingchi Li
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Congyang Xue
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, China
| | - Rongrong Deng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, China
| | - Wen Min
- Department of Orthopedics, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210029, China.
| | - Ran Kang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, China.
| | - Lin Xie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, China.
| |
Collapse
|
4
|
Peng Y, Huang Y, Li H, Li C, Wu Y, Wang X, Wang Q, He J, Miao C. Associations between rheumatoid arthritis and intestinal flora, with special emphasis on RA pathologic mechanisms to treatment strategies. Microb Pathog 2024; 188:106563. [PMID: 38331355 DOI: 10.1016/j.micpath.2024.106563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/01/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune inflammatory disease that primarily affects the joints. Individuals at risk for RA and people with RA develop intestinal dysbiosis. The changes in intestinal flora composition in preclinical and confirmed RA patients suggest that intestinal flora imbalance may play an important role in the induction and persistence of RA. METHODS Based on the current research on the interaction between RA and intestinal microbiota, intestinal microbiota metabolites and intestinal barrier changes. This paper systematically summarized the changes in intestinal microbiota in RA patients, the metabolites of intestinal flora, and the influence mechanism of intestinal barrier on RA, and further discussed the influence of drugs for RA on intestinal flora and its mechanism of action. RESULTS Compared with healthy controls, α diversity analysis of intestinal flora showed no significant difference, β diversity analysis showed significant differences. The intestinal flora produces bioactive metabolites, such as short-chain fatty acids and aromatic amino acids, which have anti-inflammatory effects. Abnormal intestinal flora leads to impaired barrier function and mucosal immune dysfunction, promoting the development of inflammation. Traditional Chinese medicine (TCM) and chemical drugs can also alleviate RA by regulating intestinal flora, intestinal flora metabolites, and intestinal barrier. Intestinal flora is closely related to the pathogenesis of RA and may become potential biomarkers for the diagnosis and treatment of RA. CONCLUSIONS Intestinal flora and its metabolites play an important role in the pathogenesis of autoimmune diseases such as RA, and are expected to become a new target for clinical diagnosis and treatment, providing a new idea for targeted treatment of RA.
Collapse
Affiliation(s)
- Yanhui Peng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hui Li
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chen Li
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yajie Wu
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiaomei Wang
- Department of Humanistic Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Qiang Wang
- Department of Pharmaceutical Preparation, Anhui University of Science and Technology, Fengyang, Anhui, China
| | - Juan He
- Department of Gynecology, Anhui Maternal and Child Health Hospital, Hefei, Anhui, China
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| |
Collapse
|
5
|
Li S, Chen T, Zhou Y, Li X. Palmitic acid and trans-4-hydroxy-3-methoxycinnamate, the active ingredients of Yaobishu formula, reduce inflammation and pain by regulating gut microbiota and metabolic changes after lumbar disc herniation to activate autophagy and the Wnt/β-catenin pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166972. [PMID: 38016505 DOI: 10.1016/j.bbadis.2023.166972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
The imbalance in gut microbiota triggers an inflammatory response that spreads from the gut to the discs and is associated with lumbar disc herniation (LDH). In this study, we investigated the mechanism of palmitic acid (PA) and trans-4-hydroxy-3-methoxycinnamic acid (THMC) on microbiota, metabolic homeostasis, and autophagy after LDH. The LDH rat model was established by puncturing the exposed intervertebral disc. 16S rDNA was used to assess the gut microbiome composition. The microbial metabolites were analyzed by UPLC-MS. The mechanism of PA and THMC in LDH was explored by fecal microbiota transplantation (FMT). We found that Yaobishu, PA, THMC, and the positive control drug Celebrex attenuated intervertebral disc damage in LDH rats and downregulated TRPV1, IL-1β, and IL-18 expression. In addition, Yaobishu reduced Oscillospirales and Ruminococcaceae abundances after LDH. PA increased Bacilli's abundance while decreasing Negativicutes and Ruminococcaceae abundances. Metabolomics showed that Yaobishu increased 2-hexanone, methyl isobutyl ketone, 2-methylpentan-3-one, and nonadecanoic acid levels but decreased pantetheine and urocanate levels. PA and THMC reduced uridine and urocanate levels. Yaobishu, PA, and THMC activated autophagy and the Wnt/β-catenin pathway in LDH rats. Moreover, antibiotics abrogated these effects. FMT-PA and FMT-THMC activated autophagy and decreased IL-1β, IL-18, Wnt1, β-catenin, and TRPV1 expression. FMT-PA and FMT-THMC partially reversed the effects of 3-MA. Taken together, our data suggest that Yaobishu, PA, and THMC relieve inflammation and pain by remodeling the gut microbiota and restoring metabolic homeostasis after LDH to activate autophagy and the Wnt/β-catenin pathway, which provide a new therapeutic target for LDH in the clinic.
Collapse
Affiliation(s)
- ShuoQi Li
- Department of Orthopaedics, Hunan Provincial People's Hospital, Changsha, Hunan, 410001, China
| | - TieZhu Chen
- Department of Orthopaedics, Hunan Provincial People's Hospital, Changsha, Hunan, 410001, China
| | - YiZhao Zhou
- Department of Orthopaedics, Hunan Provincial People's Hospital, Changsha, Hunan, 410001, China
| | - XiaoSheng Li
- Department of Orthopaedics, Hunan Provincial People's Hospital, Changsha, Hunan, 410001, China.
| |
Collapse
|
6
|
Guo D, Yu M, Guo H, Zeng M, Shao Y, Deng W, Qin Q, Li Y, Zhang S. Panax notoginseng saponins inhibits oxidative stress- induced human nucleus pulposus cell apoptosis and delays disc degeneration in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117166. [PMID: 37716491 DOI: 10.1016/j.jep.2023.117166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/30/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng (Burk) F. H. Chen has been a popular traditional Chinese medicine with a long history of treating low back pain. Its main active ingredient, Panax notoginseng saponins (PNS), can be found in several Chinese patent medicines that are frequently used to treat blood stasis type low back pain. Intervertebral disc degeneration (IDD) is the most common cause of back pain, and the injection of PNS has been used to relieve IDD-induced back pain in clinical practice. Despite its effectiveness, the exact mechanisms of action for PNS injections remain unclear. AIM OF THE STUDY IDD as a consequence of aging involves apoptosis of nucleus pulposus (NP) cells and imbalanced degradation of extracellular matrix (ECM) induced by several factors including oxidative stress. We hypothesized that PNS may have a therapeutic effect on IDD via inhibiting apoptosis of NP cells and degradation of ECM under oxidative stress. MATERIALS AND METHODS In this study, network pharmacology was initially employed to predict the targets of PNS against IDD. Subsequently, commercial PNS was analyzed by high-performance liquid chromatography to confirm the ingredients for in vitro and in vivo experiments. In vitro experiments were conducted on human nucleus pulposus (HNP) cells, including CCK-8, RT-PCR, Western blot, immunofluorescence staining, autophagic flux detection, and TUNEL assay. In vivo experiments were also performed on rats with IDD of tail discs induced by annular fibrosus needle puncture, which involved MRI, HE staining, and immunohistochemistry. RESULTS Our study demonstrated the theoretical targets of PNS against IDD, including Caspase 3, MMP13, Akt, and autophagy, based on network pharmacology. Subsequently, in vitro experiments revealed that PNS attenuated cellular apoptosis of NP by suppressing the expression of cleaved-caspase 3 and the ratio of Bax/Bcl-2 under H2O2 stimulation. Autophagy was also inhibited by PNS treatment, and the protective effect was abolished with rapamycin, an autophagy inducer, indicating that autophagy inhibition was involved in the protective effect of PNS on IDD. Furthermore, Akt/mTOR pathway activation was observed in HNP cells responding to H2O2 with PNS treatment, which played a role in autophagy downregulation. PNS was also shown to promote the expression of anabolic genes such as COL2A1 and ACAN while inhibiting the expression of catabolic gene MMP13 in HNP cells. In addition, the in vivo study revealed that PNS treatment could ameliorate IDD in a puncture-induced rat tail model. The development of IDD was significantly reduced, and there was decreased MMP13 expression, as well as increased COL2A1 protein expression in NP tissues. CONCLUSION Our study showed that PNS could protect HNP cells against apoptosis via autophagy inhibition and ameliorate disc degeneration in vivo, indicating its potential to be a therapeutic agent for IDD.
Collapse
Affiliation(s)
- Danqing Guo
- Institute of Orthopaedics and Traumatology, The 8th Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China.
| | - Miao Yu
- Spinal Surgery Department, The 8th Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Huizhi Guo
- Spinal Surgery Department, The 1st Affiliation Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Min Zeng
- Pathology Department, The 8th Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yang Shao
- The 1st Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wei Deng
- The 1st Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qiuli Qin
- The 1st Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yongxian Li
- Spinal Surgery Department, The 1st Affiliation Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shuncong Zhang
- Spinal Surgery Department, The 1st Affiliation Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Wang M, Pei S, Xie L, Li H, Tang S, Li Y, Chen Z, Liu S, Liu Z. An integrated approach based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, network pharmacology, and molecular docking to study the key effective compounds and mechanism of action of Platycodi Radix in the treatment of chronic obstructive pulmonary disease. J Sep Sci 2023; 46:e2300398. [PMID: 37688352 DOI: 10.1002/jssc.202300398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
Platycodi Radix (PR) is a valuable herb that is widely used in the treatment of chronic obstructive pulmonary disease in clinics. However, the mechanism of action for the treatment of chronic obstructive pulmonary disease remains unclear due to the lack of in vivo studies. Our study established a novel integrated strategy based on ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry, network pharmacology, and molecular docking to systematically analyze the tissue distribution and active compounds of PR in vivo and the therapeutic mechanism of chronic obstructive pulmonary disease. First, tissue distribution studies have shown that the lung is the organ with the highest distribution of PR compounds. Subsequently, network pharmacology results showed that the tumor necrosis factor signaling pathway, interleukin-17 signaling pathway, and mitogen-activated protein kinase signaling pathway were the critical mechanisms of PR against chronic obstructive pulmonary disease. Ultimately, molecular docking results showed that the key targets were stably bound to the corresponding active compounds of PR. Our study is of great significance for the screening of the key effective compounds and the study of the mechanism of action in traditional Chinese medicine and provides data to support the further development and utilization of PR.
Collapse
Affiliation(s)
- Meiyuan Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Shuhua Pei
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Luyao Xie
- Chengdu Meishi International School, Chengdu, China
| | - Hanlin Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Shoufang Tang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yuwen Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Ziyi Chen
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Shu Liu
- National Center of Mass Spectrometry, Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhongying Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| |
Collapse
|
8
|
Guo J, Xue J, He Z, Jia H, Yang X. The mechanism by which Naru 3 pill protects against intervertebral disc cartilage endplate degeneration based on network pharmacology and experimental verification. J Orthop Surg Res 2023; 18:552. [PMID: 37525208 PMCID: PMC10388481 DOI: 10.1186/s13018-023-04014-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/14/2023] [Indexed: 08/02/2023] Open
Abstract
CONTEXT Naru 3 pill is a traditional Mongolian medicine for the treatment of intervertebral disc degeneration (IDD), but the mechanism is not yet clear. OBJECTIVE This study investigated the mechanism of Naru 3 pill in the treatment of IDD. MATERIALS AND METHODS Active ingredients and related targets of Naru 3 pill, as well as IDD-related genes, were collected from public databases. The analysis was performed by protein‒protein interaction network analysis, gene ontology and Kyoto Gene and Genome Encyclopedia (KEGG) functional enrichment analysis, molecular docking and molecular dynamics simulations. Finally, the network pharmacology results were validated by in vitro experiments. RESULTS Network analysis showed that sesamin, piperine and ellagic acid were potential key components and CASP3, BAX and BCL2 were key targets. KEGG analysis indicated the apoptotic pathway as a potential pathway. Molecular docking showed that sesamin interacted better with the targets than the other components. The results of molecular dynamics simulations indicated that the three systems BAX-sesamin, BCL2-sesamin and CASP3-sesamin were stable and reasonable during the simulation. In vitro experiments showed that sesamin had the least effect on cell growth and the most pronounced proliferation-promoting effect, and so sesamin was considered the key component. The experiments confirmed that sesamin had antiapoptotic effects and reversed the expression of CASP3, BAX and BCL2 in degeneration models, which was consistent with the network pharmacology results. Furthermore, sesamin alleviated extracellular matrix (ECM) degeneration and promoted cell proliferation in the IDD model. CONCLUSION The present study suggested that Naru 3 pill might exert its therapeutic and antiapoptotic effects on IDD by delaying ECM degradation and promoting cell proliferation, which provides a new strategy for the treatment of IDD.
Collapse
Affiliation(s)
- Jialin Guo
- Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Jianmin Xue
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010010, Inner Mongolia, China
| | - Zhiwei He
- Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Haiyu Jia
- The Affiliated Hospital of Inner Mongolia Medical University, NO.1 North Tongdao Road, Hohhot, 010030, Inner Mongolia, China.
| | - Xuejun Yang
- Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, NO.42 Zhaowuda Road, Hohhot, 010010, Inner Mongolia, China.
| |
Collapse
|
9
|
Gao X, Zhang Y, Li T, Li J, Su Y, Wang H, Yan Z, Qin K. Uncovering the molecular mechanisms of Fructus Choerospondiatis against coronary heart disease using network pharmacology analysis and experimental pharmacology. Anal Biochem 2023:115214. [PMID: 37353066 DOI: 10.1016/j.ab.2023.115214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/29/2023] [Accepted: 06/11/2023] [Indexed: 06/25/2023]
Abstract
Fructus Choerospondiatis (FC), a Mongolian medicine, was mainly used in Mongolian medical theory for the treatment of coronary heart disease (CHD). Nonetheless, the main components and mechanisms of action of FC in the treatment of coronary artery disease have not been studied clearly. AIM OF THE STUDY The aim of this study is to identify the components of FC and analyze the pathways affected by the targets of these components to probe into the potential mechanisms of action of FC on coronary heart disease. MATERIALS AND METHODS Identification of compounds in FC employing high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (HPLC-QTOF-MS) method, then further investigate the network pharmacology and molecular docking to obtain potential targets and elucidate the potential mechanism of action of FC in the therapy of CHD. Experimental validation was established to verify the mechanism of FC in vitro. RESULTS 21 FC components were identified and 65 overlapping targets were gained. In addition, these ingredients regulated AMPK and PPAR signaling pathway by 65 target genes including IL6, AKT1 and PPARg, etc. Molecular docking displayed that the binding ability of the key target PPARg to FC components turned out to be better. Experimental validation proved that FC treatment decreased the expression of PPARg (p < 0.05) compare with model group, which may be involved in the PPAR signaling pathway. CONCLUSIONS This study was the first to elucidate the mechanism of action of components of FC for the treatment of CHD using network pharmacology. It alleviated CHD by inhibiting the expression of PPARg to attenuate hypoxia/reoxygenation injury, and the results give a basis for elucidating the molecular mechanism of action of FC for the treatment of coronary heart disease.
Collapse
Affiliation(s)
- Xun Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222001, China; School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Yue Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222001, China; School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Tingting Li
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222001, China; School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jioajiao Li
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222001, China; School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yingying Su
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222001, China; School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Hongsen Wang
- Jiangsu Yuanchuang Pharmaceutical Research and Development Co., Ltd, China
| | - Zhankuan Yan
- Jiangsu Yuanchuang Pharmaceutical Research and Development Co., Ltd, China
| | - Kunming Qin
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222001, China; School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
10
|
Zhang J, Lu Q, Xin L, Lou Y, Xiao W, Wang Z, Zhao L, Xiong Z. A liquid chromatography-mass spectrometry untargeted urinary metabonomics combined with quantitative analysis of seven amino acids biomarkers on yaobitong capsule in the intervention of rheumatoid arthritis rats. J Sep Sci 2022; 45:4209-4223. [PMID: 36200630 DOI: 10.1002/jssc.202200654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 12/13/2022]
Abstract
Yaobitong capsule is a compound preparation of traditional Chinese medicine that has been widely applied in disease treatment. To insight into the therapeutic effects of the yaobitong capsule on rheumatoid arthritis and its mechanisms, a liquid chromatography-mass spectrometry untargeted urine metabolomics method was established and validated, combined with the quantitative analysis of seven potential amino acid biomarkers in rat urine. The results showed that 35 potential biomarkers were found in untargeted metabonomics, which was related to amino acid metabolism, lipid metabolism, energy metabolism, and purine metabolism. Moreover, seven amino acid biomarkers, including proline, methionine, glutamic acid, histidine, lysine, cysteine, and glutamine, were further separated and quantified in multiple-reaction monitoring with a positive ionization mode. Then the linearity, standard curves, accuracy, precision, limit of quantitation, recovery, stability, carryover, and matrix effect of the quantitative method were examined. Finally, the validated method was successfully applied to investigate the urine samples of the control group, adjuvant-induced rheumatoid arthritis model group, yaobitong capsule-treatment group, and positive control group in rats. The contents of seven amino acids in different groups showed significant differences. Consequently, our findings revealed that the yaobitong capsule exerted therapeutic effects on rheumatoid arthritis rats by maintaining amino acid homeostasis.
Collapse
Affiliation(s)
- Jing Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, P. R. China
| | - Qing Lu
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, P. R. China
| | - Ling Xin
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, P. R. China
| | - Yanwei Lou
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, P. R. China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, P. R. China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co. Ltd, Lianyungang, P. R. China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, P. R. China
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, P. R. China
| |
Collapse
|
11
|
Dang L, Zhang C, Su B, Ning N, Huang Q, Zhou S, Wu M, Ma W, Wang M, Cui P, Li Y, Wang S. Mechanisms of action of Zishen Yutai pills in treating premature ovarian failure determined by integrating UHPLC-Q-TOF-MS and network pharmacology analysis. BMC Complement Med Ther 2022; 22:281. [PMID: 36289509 PMCID: PMC9597968 DOI: 10.1186/s12906-022-03763-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
Background Zishen Yutai (ZSYT) pill, a patent Chinese medicine, has been widely used in the treatment of infertility, abortion, and adjunctive treatment of in vitro fertilization (IVF) for decades. Recently, the results of clinical observations showed that premature ovarian failure (POF) patients exhibited improved expression of steroids and clinical symptoms associated with hormone disorders after treatment with Zishen Yutai pills. However, the pharmacological mechanism of action of these pills remains unclear. Methods The compounds of Zishen Yutai pills found in blood circulation were identified via ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) technique in the serum of POF mice after oral administration of Zishen Yutai pills. The potential targets of compounds were screened using Traditional Chinese Medicine Systems Pharmacology Database, Traditional Chinese Medicine Database@Taiwan, Drugbank Database, PubChem, HIT, Pharmapper, and Swiss Target Prediction. The target genes associated with POF were collected from Online Mendelian Inheritance in Man Database, PharmGkb, Genecards, Therapeutic Target Database, and Genetic Association Database. The overlapping genes between the potential targets of Zishen Yutai pills’ compounds and the target genes associated with POF were clarified via protein-protein interaction (PPI), pathway, and network analysis. Results Nineteen compounds in Zishen Yutai pills were detected in the serum of POF mice after oral administration. A total of 695 Zishen Yutai (ZSYT) pill-related targets were screened, and 344 POF-related targets were collected. From the results of Zishen Yutai (ZSYT) pill-POF PPI analysis, CYP19A1, AKR1C3, ESR1, AR, and SRD5A2 were identified as key targets via network analysis, indicating their core role in the treatment of POF with Zishen Yutai pills. Moreover, the pathway enrichment results suggested that Zishen Yutai pills treated POF primarily by regulating neuroactive ligand-receptor interaction, steroid hormone biosynthesis, and ovarian steroidogenesis. Conclusions Via virtual screening, we found that regulation of neuroactive ligand-receptor interaction, steroid hormone biosynthesis, and ovarian steroidogenesis was the potential therapeutic mechanism of Zishen Yutai pills in treating POF. Our study suggested that combining the analysis of Zishen Yutai pills’ compounds in blood in vivo in the POF model and network pharmacology prediction might offer a tool to characterize the mechanism of Zishen Yutai pills in the POF. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03763-2.
Collapse
Affiliation(s)
- Lei Dang
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,Post-Doctoral Research Center of Guangzhou Pharmaceutical Holdings Ltd, Guangzhou, Guangdong China ,Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong China
| | - Chunbo Zhang
- Post-Doctoral Research Center of Guangzhou Pharmaceutical Holdings Ltd, Guangzhou, Guangdong China ,Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong China
| | - Biru Su
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong China
| | - Na Ning
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong China
| | - Qiuling Huang
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong China
| | - Su Zhou
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Meng Wu
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Wenqing Ma
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Man Wang
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Pengfei Cui
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Yan Li
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Shixuan Wang
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| |
Collapse
|
12
|
Yaobishu Regulates Inflammatory, Metabolic, Autophagic, and Apoptosis Pathways to Attenuate Lumbar Disc Herniation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3861380. [PMID: 35615578 PMCID: PMC9125431 DOI: 10.1155/2022/3861380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/18/2022] [Accepted: 04/16/2022] [Indexed: 12/03/2022]
Abstract
Objective Here, we aimed to explore the main mechanism of Yaobishu (YBS) in lumbar disc herniation (LDH). Methods and Results Eighteen compounds that might act on LDH were obtained through a combination of network pharmacology prediction and identification by high-performance liquid chromatography-mass spectrometry. The key compounds were palmitic acid and trans-4-hydroxy-3-methoxycinnamate (cinnamate). KEGG analysis demonstrated that palmitic acid target genes mainly regulate the PPAR signaling pathway, Ras signaling pathway, and fatty acid metabolism. Cinnamate target genes were primarily involved in chemical carcinogenesis-receptor activation, lipid and atherosclerosis, the HIF-1 signaling pathway, and nitrogen metabolism. The rat LDH model was constructed using autologous nucleus pulposus tissue implantation. Differential expression gene (DEGs) related to metabolism (CDKN1A and UHRF1), inflammation (S100A9 and SOCS3), autophagy (DCN and LEPR), and apoptosis (CTSW and BCL2A1) in dorsal root ganglion (DRG) tissues of the control and LDH groups was evaluated by RNA-Seq. TNF-α stimulated DRG neuronal cells were used to establish an in vitro LDH model. YBS, palmitic acid, and cinnamate reduced the expression of substance P, CGRP, S100A9, CTSW, and cleaved caspase-3, while enhancing the expression of CDKN1A, UHRF1, PCNA, Ki67, SOCS3, DCN, LEPR, and BCL2A1, as well as telomerase activity. Pearson's correlation analysis confirmed that DCN was positively correlated with BCL2A1, indicating that autophagy might be negatively correlated with apoptosis in LDH. YBS, palmitic acid, and cinnamate reduced the Siegal neurological score and serum IL-1β and IL-18 levels, while increasing changes in the hind paw mechanical withdrawal threshold. The RNA-Seq results further showed that YBS downregulated S100A9 and CTSW expression, while upregulating SOCS3, CDKN1A, UHRF1, DCN, LEPR, and BCL2A1 expression. Conclusion YBS and its compounds, palmitic acid, and cinnamate, attenuated LDH by regulating the inflammatory, metabolic, autophagic, and apoptotic pathways. Our results might improve the theoretical and experimental basis for clinical applications of LDH disease treatment.
Collapse
|
13
|
Shi W, Deng Y, Zhao C, Xiao W, Wang Z, Xiong Z, Zhao L. Integrative serum metabolomic analysis for preventive effects of Yaobitong capsule in adjuvant-induced rheumatoid arthritis rat based on RP/HILIC-UHPLC-Q-TOF MS. Anal Biochem 2022; 637:114474. [PMID: 34801482 DOI: 10.1016/j.ab.2021.114474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 12/16/2022]
Abstract
Yaobitong capsule (YBTC) has been used for the prevention and treatment of inflammation-related lumbago and leg pain. However, its intervention mechanism still remains unclear. This study was aimed to evaluate the control efficiency of YBTC on adjuvant-induced rheumatoid arthritis (RA) rats by metabonomic method and to explore its possible anti-arthritis mechanism. Taking into account the complexity of endogenous metabolites in serum samples, an integrated metabolomics method based on RP/HILIC-UHPLC-Q-TOF MS was developed, to overcome the limitations of a single chromatographic in this study. The results showed that 32 potential biomarkers of arthritis were identified, primarily related to amino acid metabolism, glucose metabolism, lipid metabolism and nucleotide metabolism. Further receiver operating characteristic analysis revealed that the area under the curve of two down-regulated metabolites (3-Hydroxy-hexadecanoic acid, 2-Oxoarginine) and one up-regulated metabolite (l-Glutamic acid) among 32 biomarkers were 0.906, 0.969 and 1.000, respectively, indicating that high predictive ability of this method for RA. In this study, an integrated serum metabolomics method based on high-resolution mass spectrometry was successfully established for the first time to study the intervention mechanism of YBTC in RA, providing evidence regarding the clinical application of YBTC and a new insight for the prevention of RA in the future.
Collapse
Affiliation(s)
- Wei Shi
- Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, 110016, Shenyang, Liaoning Province, China
| | - Yajie Deng
- Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, 110016, Shenyang, Liaoning Province, China
| | - Chenyang Zhao
- Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, 110016, Shenyang, Liaoning Province, China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China
| | - Zhenzhong Wang
- Jiangsu Kanion Parmaceutical CO. LTD, Lianyungang, Jiangsu, 222001, China
| | - Zhili Xiong
- Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, 110016, Shenyang, Liaoning Province, China.
| | - Longshan Zhao
- Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, 110016, Shenyang, Liaoning Province, China.
| |
Collapse
|
14
|
Yaobitong capsules reshape and rebalance the gut microbiota and metabolites of arthritic rats: An integrated study of microbiome and fecal metabolomics analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1190:123096. [PMID: 34998201 DOI: 10.1016/j.jchromb.2021.123096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/19/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022]
Abstract
Yaobitong capsule (YBTC), a Chinese medicine compound preparation, has been demonstrated to affect multiple pathways associated with inflammation and exhibit potential anti-arthritis effect. In this study, an integrated omic approach based on UHPLC-Q-TOF MS and 16S rRNA sequencing analyses was proposed to reveal the anti-arthritis effect and possible mechanism of YBTC. The AIA rat model showed that YBTC significantly alleviated the typical symptoms of AIA rats such as weight, spleen index and pro-inflammatory cytokines. Fecal metabolomics results identified 41 differential metabolites, which mainly referred to tryptophan, bile acid and fatty acid metabolism. The gut microbiota played a crucially important role in anti-inflammatory immunity, 16S rRNA results indicated that YBTC changed the community structure and alleviated the microecological imbalance caused by rheumatoid arthritis (RA). Further ROC curve analysis demonstrated that it was reliable to identify RA by using 5 metabolites and 3 microorganisms (AUC > 0.83). In summary, it was the first time that the preventive effect of YBTC in RA was confirmed. The secretion of the microbiota-mediated metabolites was significantly improved by YBTC, through its callback effect on the disturbed gut microbiota. Thus, we have indicated a potential novel strategy for the prevention of RA via evaluation of intervention effects of YBTC on AIA rat model.
Collapse
|
15
|
Ma TC, Ma YK, Zhang JL, Liu L, Sun J, Guo LN, Liu Q, Sun Y. Integrated Strategy of UHPLC-Q-TOF-MS and Molecular Networking for Identification of Diterpenoids from Euphorbia fischeriana Steud. and Prediction of the Anti-Breast-Cancer Mechanism by the Network Pharmacological Method. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3829434. [PMID: 34804177 PMCID: PMC8601799 DOI: 10.1155/2021/3829434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/09/2021] [Accepted: 10/15/2021] [Indexed: 11/29/2022]
Abstract
Breast cancer is one of the most common malignancies in women worldwide. Traditional Chinese medicine has been used as adjunctive or complementary therapy for breast cancer. Diterpenoids from Euphorbia fischeriana Steud. have been demonstrated to possess anti-breast-cancer activity. This research was aimed to systematically explore the diterpenoids from E. fischeriana and study the multiple mechanisms on breast cancer. The structures of diterpenoids were identified by the integrated strategy of UHPLC-Q-TOF-MS and molecular networking. A total of 177 diterpenoids belonging to 13 types were collected. In silico ADME analysis was performed on these compounds. It indicated that 130 of 177 diterpenoids completely adjusted to Lipinski's rule. The targets of compounds were obtained from PharmMapper. The targets of breast cancer were collected from GeneCards. Then, 197 compounds-related targets and 544 breast cancer-related targets were identified. After the intersection process, 58 overlapping targets between compounds-related targets and breast cancer-related targets were acquired. The STRING database was applied to predict the protein-protein interactions. The GO and KEGG pathway enrichment analysis were performed by using the KOBAS database. It indicated that these predicted pathways were closely related to breast cancer. The treatment effect of E. fischeriana on breast cancer might be performed through signaling pathways, such as IL-17 signaling pathway, MAPK signaling pathway, and PI3K-Akt signaling pathway. The predicted top genes such as EGFR, ESR, MAPK, SRC, CASP3, CDK2, and KDR were involved in cell proliferation, gene transcription, apoptosis, signal transduction, DNA damage and repair, tumor differentiation, metastasis, and cell cycle, which indicated that E. fischeriana might treat breast cancer comprehensively. A compounds-KEGG pathways-related targets network was built by using cytoHubba to analyze the hub compounds and targets. It concluded that E. fischeriana treated breast cancer not only by the main components but also by the microconstituents, which reflected the overall regulatory role of multicomponents treating breast cancer. To estimate the binding affinities, binding sites, and binding postures, molecular docking simulations between 177 diterpenoids and top 19 targets were carried out. The results are basically in line with expectations. In conclusion, these results can serve as references for researchers studying potential targets of diterpenoids from E. fischeriana on breast cancer in the future.
Collapse
Affiliation(s)
- Tian-Cheng Ma
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Road 333, Qiqihar 161006, Heilongjiang, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, China
| | - Yu-Kun Ma
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Road 333, Qiqihar 161006, Heilongjiang, China
| | - Jin-Ling Zhang
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Road 333, Qiqihar 161006, Heilongjiang, China
| | - Lei Liu
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Road 333, Qiqihar 161006, Heilongjiang, China
| | - Jia Sun
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Road 333, Qiqihar 161006, Heilongjiang, China
| | - Li-Na Guo
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Road 333, Qiqihar 161006, Heilongjiang, China
| | - Qi Liu
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Road 333, Qiqihar 161006, Heilongjiang, China
| | - Yu Sun
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Road 333, Qiqihar 161006, Heilongjiang, China
| |
Collapse
|
16
|
Lee HS, Lee IH, Kang K, Jung M, Yang SG, Kwon TW, Lee DY. Network Pharmacological Dissection of the Mechanisms of Eucommiae Cortex-Achyranthis Radix Combination for Intervertebral Disc Herniation Treatment. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211055024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Eucommiae cortex (EC) and Achyranthis radix (AR) are herbal medicines widely used in combination for the treatment of intervertebral disc herniation (IDH). The mechanisms of action of the herbal combination have not been understood from integrative and comprehensive points of view. By adopting network pharmacological methodology, we aimed to investigate the pharmacological properties of the EC-AR combination as a therapeutic agent for IDH at a systematic molecular level. Using the pharmacokinetic information for the chemical ingredients of the EC-AR combination obtained from the comprehensive herbal drug-associated databases, we determined its 31 bioactive ingredients and 68 IDH-related therapeutic targets. By analyzing their enrichment for biological functions, we observed that the targets of the EC-AR combination were associated with the regulation of angiogenesis; cytokine and chemokine activity; oxidative and inflammatory stress responses; extracellular matrix organization; immune response; and cellular processes such as proliferation, apoptosis, autophagy, differentiation, migration, and activation. Pathway enrichment investigation revealed that the EC-AR combination may target IDH-pathology-associated signaling pathways, such as those of cellular senescence and chemokine, neurotrophin, TNF, MAPK, toll-like receptor, and VEGF signaling, to exhibit its therapeutic effects. Collectively, these data provide mechanistic insights into the pharmacological activity of herbal medicines for the treatment of musculoskeletal diseases such as IDH.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - In-Hee Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Minho Jung
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Seung Gu Yang
- Kyunghee Naro Hospital, 67, Dolma-ro, Bundang-gu, Seongnam 13586, Republic of Korea
| | - Tae-Wook Kwon
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| |
Collapse
|
17
|
Zhang D, Xiong L, Fang L, Li H, Zhao X, Luan R, Zhao P, Zhang X. Systematic characterization of the absorbed components of Ligustri Lucidi Fructus and their metabolic pathways in rat plasma by ultra-high-performance liquid chromatography-Q-Exactive Orbitrap tandem mass spectrometry combined with network pharmacology. J Sep Sci 2021; 44:4343-4367. [PMID: 34687589 DOI: 10.1002/jssc.202100484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/14/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022]
Abstract
Ligustri Lucidi Fructus is a dried and mature fruit of Ligustrum lucidum Ait., which has the effects of nourishing liver and kidney. Herein, an accurate and sensitive method was established for the separation and identification of the absorbed constituents and metabolites of Ligustri Lucidi Fructus in rat plasma based on ultra-high-performance liquid chromatography-Q-Exactive Orbitrap tandem mass spectrometry. A total of 73 prototype constituents and 148 metabolites were identified or characterized in administered plasma, and the possible metabolic pathways of constituents mainly involved hydroxylation, sulfation, demethylation, and glucuronidation. Besides, the network pharmacology was further investigated to illuminate its potential mechanism of treatment for liver injury by the biological targets regulating related pathways. Network pharmacological analysis showed that target components through 399 targets regulate 220 pathways. The docking results showed that 36 key target components were closely related to liver injury. Overall, the study clearly presented the metabolic processes of Ligustri Lucidi Fructus and gave a comprehensive metabolic profile of Ligustri Lucidi Fructus in vivo first. Combining with network pharmacology and molecular docking discovered potential drug targets and disclose the biological processes of Ligustri Lucidi Fructus, which will be a viable step toward uncovering the secret mask of study for traditional Chinese medicine.
Collapse
Affiliation(s)
- Danjie Zhang
- Pharmaceutical department, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Lewen Xiong
- Pharmaceutical department, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Linlin Fang
- Pharmaceutical department, College of Pharmacy, Dalian Medical University, Dalian, P. R. China
| | - Huifei Li
- Pharmaceutical department, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Xin Zhao
- Pharmaceutical department, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Ruqiao Luan
- Pharmaceutical department, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Pan Zhao
- Pharmaceutical department, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Xuelan Zhang
- Pharmaceutical department, Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, P. R. China
| |
Collapse
|
18
|
Si L, Ni H, Pan D, Zhang X, Xu F, Wu Y, Bao L, Wang Z, Xiao W, Wu Y. Nondestructive qualitative and quantitative analysis of Yaobitong capsule using near-infrared spectroscopy in tandem with chemometrics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119517. [PMID: 33578123 DOI: 10.1016/j.saa.2021.119517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
The purpose of the study is to present a nondestructive qualitative and quantitative approach of hard-shell capsule using near-infrared (NIR) spectroscopy combined with chemometrics. The Yaobitong capsule (YBTC) was used for demonstration of the proposed approach and the NIR spectra were collected using a handheld fiber probe (FP) without the damage of capsule shell. By comparing the differences and similarities of the NIR spectra of capsule shells, contents and intact capsules, a preliminary conclusion can be drawn that the NIR spectra contained the information of the contents. Characteristic variables were selected by competitive adaptive weighted resampling (CARS) method, and least squares support vector machine (LSSVM) method based on particle swarm optimization (PSO) algorithm was applied to the construction of quantitative models. The relative standard error of prediction (RSEP) values of five saponins including notoginsenoside R1, ginsenoside Rg1, Re, Rb1, and Rd were 3.240%, 5.468%, 5.303%, 5.043%, and 3.745%, respectively. In addition, for qualitative model, three different types of adulterated capsules were designed. The model established by data driven version of soft independent modeling of class analogy (DD-SIMCA) demonstrated a satisfactory result that all adulterated capsules were identified accurately after an appropriate number of principal components (PCs) were chosen. The results indicated that although the NIR spectra collection was affected by capsule shell, sufficient content information can be obtained for quantitative and qualitative analysis after combining with chemometrics. It further proved that acquired NIR spectra do contain the effective component information of the capsule. This study provided a reference for the rapid nondestructive quality analysis of traditional Chinese medicine (TCM) capsule without damaging capsule shell.
Collapse
Affiliation(s)
- Leting Si
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongfei Ni
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dongyue Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin Zhang
- Jiangsu Kanion Pharmaceutical Co., Ltd. Lianyungang, Jiangsu 222001, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu 222001, China; National & Local Joint Engineering Research Center on Intelligent Manufacturing of Traditional Chinese Medicine, Lianyungang, Jiangsu 222001, China
| | - Fangfang Xu
- Jiangsu Kanion Pharmaceutical Co., Ltd. Lianyungang, Jiangsu 222001, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu 222001, China; National & Local Joint Engineering Research Center on Intelligent Manufacturing of Traditional Chinese Medicine, Lianyungang, Jiangsu 222001, China
| | - Yun Wu
- Jiangsu Kanion Pharmaceutical Co., Ltd. Lianyungang, Jiangsu 222001, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu 222001, China; National & Local Joint Engineering Research Center on Intelligent Manufacturing of Traditional Chinese Medicine, Lianyungang, Jiangsu 222001, China
| | - Lewei Bao
- Jiangsu Kanion Pharmaceutical Co., Ltd. Lianyungang, Jiangsu 222001, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu 222001, China; National & Local Joint Engineering Research Center on Intelligent Manufacturing of Traditional Chinese Medicine, Lianyungang, Jiangsu 222001, China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co., Ltd. Lianyungang, Jiangsu 222001, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu 222001, China; National & Local Joint Engineering Research Center on Intelligent Manufacturing of Traditional Chinese Medicine, Lianyungang, Jiangsu 222001, China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co., Ltd. Lianyungang, Jiangsu 222001, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu 222001, China; National & Local Joint Engineering Research Center on Intelligent Manufacturing of Traditional Chinese Medicine, Lianyungang, Jiangsu 222001, China.
| | - Yongjiang Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
19
|
Wei MP, Qiu JD, Li L, Xie YF, Yu H, Guo YH, Yao WR. Saponin fraction from Sapindus mukorossi Gaertn as a novel cosmetic additive: Extraction, biological evaluation, analysis of anti-acne mechanism and toxicity prediction. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113552. [PMID: 33152431 DOI: 10.1016/j.jep.2020.113552] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sapindus mukorossi Gaertn. (S. mukorossi), known as 'mu huan zi' in Chinese folklore, belongs to the family Sapindaceae and it has been traditionally used for treating coughing and excessive salivation, removing freckle, whitening skin, etc. Evidence-based medicine also verified the antimicrobial, anti-tyrosinase and anti-acne activity of S. mukorossi extract, suggesting that it has the potential to be a pharmaceutical and cosmetic additive. AIM OF THE STUDY The present study was intended to evaluate the freckle-removing and skin-whitening activities of S. mukorossi extracts, and further analyzing the potential anti-acne mechanism. METHODS Saponin fractions were purified by using the semi-preparative high-performance liquid chromatography, and their antibacterial activity was detected against Propionibacterium acnes (P. acnes), which was the leading cause of inflamed lesions in acne vulgaris. The anti-lipase and anti-tyrosinase activities were assayed using a commercial kit, while the potential anti-acne mechanism was predicted on the basis of the network pharmacology. Active components of saponin fraction were identified by HPLC-MS analysis. Furthermore, the different toxicity level of compounds was predicted according to the quantitative structure-activity relationship, and the first application of crude extract and saponin fraction to facial masks was analyzed based on the comprehensive evaluation method. RESULTS The saponin fraction (F4) purified from the fermentation liquid-based water extract (SWF) showed the best antibacterial activity against P. acnes ATCC 6919 with the MIC of 0.06 mg/mL, which was 33-fold of its parent SWF (with the MIC of 2.0 mg/mL). Compared with SWF, the application of F4 caused greater inhibition rates on lipase and tyrosinase. Chemical constituents of F4 were evaluated, from which four oleanane-type triterpenoid saponins were detected to contribute to the above biological activities of F4. The mechanism of the four compounds on anti-acne was predicted, and seven targets such as PTGS2 and F2RL1 were obtained to be important for the treatment of acne. The four compounds were also predicted to have different levels of toxicity to various species, and they were not harmful to rats. Besides, F4 and SWF were applied to facial masks and there was no significant influence on the physicochemical properties including pH, stability, and sensory characteristics. CONCLUSION This work demonstrated that oleanane-type triterpenoid saponins were speculated to contribute to the skin-whitening, freckle-removing, and anti-acne activities of F4. These findings will facilitate the development of the S. mukorossi extract and the allied products as the new and natural anti-acne agent and cosmetic additives.
Collapse
Affiliation(s)
- Min-Ping Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Jin-Dan Qiu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Lu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Yun-Fei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Ya-Hui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Wei-Rong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|