1
|
Wang S, Cai M, Wang Y, Zhong L, Hu Y, Fu G. Dietary Clostridium butyricum metabolites mitigated the disturbances in growth, immune response and gut health status of Ctenopharyngodon idella subjected to high cottonseed and rapeseed meal diet. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109934. [PMID: 39357627 DOI: 10.1016/j.fsi.2024.109934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/20/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Cottonseed meal and rapeseed meal exhibit a potential for fishmeal substitute in grass carp feed, while their excessive use contribute to growth decline and weakening immunity of aquatic animals. Clostridium butyricum metabolites (CBM) was recognized as a functional additive due to its antioxidant properties and maintenance of intestinal microbiota balance. CBM was added to a high of cottonseed and rapeseed meal diet to determine its effects on growth, immunity, and intestinal microbiota alterations of grass carp (Ctenopharyngodon idella) over 56 days. Eight hundred grass carp (mean weight, around 50 g) were randomized to five treatments and fed with the basic diet (CON), CBM0 diet (28 % cottonseed and 27 % rapeseed meal), and CBM diets (CBM0.5, CBM1, and CBM2, namely CBM0 diet supplemented with 500, 1000, and 2000 mg kg-1 CBM). The results indicated that compared to CBM0, The ingestion of 1000 mg kg-1 CBM diet by grass carp significantly promoted growth as measured by intestinal lipase activity, villus height, and muscle thickness. Moreover, accompanied by a decrease in intestine MDA content, and enhance antioxidant capacity by activating Keap1/Nrf2 signaling pathway to increase enzyme activities (SOD, CAT and T-AOC) and corresponding gene expression (mnsod, cat, gsto and gpx1) in the intestine of grass crap fed CBM1 diet. The dietary CBM1 diet increased serum levels of C3 and IgM, increased ACP activity and expression of the corresponding anti-inflammatory factors (tgf-β1 and il-15), and suppressed the expression of pro-inflammatory factors (tnf-α and il-12β), resulting in enhanced immunity. The dietary CBM1 diet up-regulates gene expression of tight junction proteins (zo-1, occludin, occludin7a and occludin-c), coupled with the decreases in DAO and D-lactate contents, implying that the decreased mucosal permeability could be observed in the gut. The dietary CBM1 diet largely altered the intestinal microbial community, especially reducing the relative abundance of intestinal pathogenic bacteria (Streptococcus and Actinomyces). And it significantly increased the content of short-chain fatty acids (acetic acid, butyric acid, isobutyric acid, propionic acid and isovaleric acid). Taken above, dietary CBM supplementation improved growth in grass carp and attenuated the intestinal oxidative stress, inflammation and microflora dysbacteriosis caused by high proportions of cottonseed and rapeseed meal diets.
Collapse
Affiliation(s)
- Shao Wang
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Minglang Cai
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yan Wang
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Lei Zhong
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yi Hu
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Guihong Fu
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| |
Collapse
|
2
|
Chen D, Wang Y, Xiao S, Cheng G, Liu Y, Zhao T, Cao J, Wen Y. Investigation on the mechanism of androsta-4,6,8,14-tetraene-3,11,16-trione against acute lymphoblastic leukemia. J Steroid Biochem Mol Biol 2024; 243:106573. [PMID: 38909867 DOI: 10.1016/j.jsbmb.2024.106573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/01/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Steroids are potential anti-leukemia agents, and Epigynum auritum is a Yunnan folk medicine with high levels of androsterone, pregnane, and steroid derivatives. However, the underlying therapeutic mechanism of androsta-4,6,8,14-tetraene-3,11,16-trione (ATT), an androsterone isolated from Epigynum auritum, is not yet clear. This study aimed to explore the anti-leukemia mechanism of ATT using molecular biology, network pharmacology, and molecular docking technology. The cell viability results showed that ATT had an anti-proliferation effect in acute lymphoblastic leukemia cells (CEM/C1, MOLT-4, Jurkat, BALL-1, Nalm-6, and RS4;11). Further studies showed that ATT reduced the mitochondrial membrane potential in B-cell acute lymphoblastic leukemia cell lines (BALL-1, Nalm-6, and RS4;11) and induced cell cycle arrest in MOLT-4 and BALL-1. ATT induced BALL-1 cell apoptosis by activating Caspase 3/7 activity and causing DNA fragmentation. Network pharmacology results suggested that ATT exerts its anti-leukemia activity via the PI3K/Akt signaling pathway. In addition, molecular docking analysis showed that ATT had high scores in docking with PTGS2, NR3C1, and AR. Western blotting results showed that ATT reduced the relative protein level of P-PI3K and P-Akt, thereby increasing the relative level of pro-apoptosis protein Bax and reducing the relative level of anti-apoptosis protein Bcl-2, the apoptosis downstream protein pro-caspase3, and cell proliferation-related proteins (P-GSK3B and CyclinD1). In conclusion, these results demonstrated that ATT could be a potential candidate drug with apoptosis-induction and cell cycle arrest effects for further investigation in acute lymphoblastic leukemia therapy.
Collapse
Affiliation(s)
- Dongjie Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongpeng Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Shanshan Xiao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Tianrui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jianxin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yan Wen
- Department of Hematology, The First People's Hospital of Yunnan Province, Yunnan Province Clinical Research Center for Hematologic Disease, Yunnan Province Clinical Center for Hematologic Disease, Kunming 650032, China.
| |
Collapse
|
3
|
Múnera-Rodríguez AM, Leiva-Castro C, Sobrino F, López-Enríquez S, Palomares F. Sulforaphane-mediated immune regulation through inhibition of NF-kB and MAPK signaling pathways in human dendritic cells. Biomed Pharmacother 2024; 177:117056. [PMID: 38945082 DOI: 10.1016/j.biopha.2024.117056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024] Open
Abstract
Inflammation and immune responses are intricately intertwined processes crucial for maintaining homeostasis and combating against pathogens. These processes involve complex signaling pathways, notably the Nuclear Factor kappa-light-chain-enhancer of activated B-cells (NF-κB) and Mitogen-Activated Protein Kinase (MAPK) pathways, which play crucial roles. Sulforaphane (SFN), a nutraceutic, has emerged as a potential regulator of NF-κB and MAPK signaling pathways, exhibiting anti-inflammatory properties. However, limited knowledge exists regarding SFN's effects on immune cell modulation. This study aimed to assess the immunomodulatory capacity of SFN pretreatment in human dendritic cells (DCs), followed by exposure to a chronic inflammatory environment induced by lipopolysaccharide. SFN pretreatment was found to inhibit the NF-κB and MAPK signaling pathways, resulting in phenotypic changes in DCs characterized by a slight reduction in the expression of surface markers, as well as a decrease of TNF-α/IL-10 ratio. Additionally, SFN pretreatment enhanced the proliferation of Treg-cells and promoted the production of IL-10 by B-cells before exposure to the chronic inflammatory environment. Furthermore, these changes in DCs were found to be influenced by the inhibition of NF-κB and MAPK pathways (specifically p38 MAPK and JNK), suggesting that these pathways may play a role in the regulation of the differentiation of adaptive immune responses (proliferation of T- and IL-10-producing regulatory-cells), prior to SFN pretreatment. Our findings suggest that SFN pretreatment may induce a regulatory response by inhibiting NF-κB and MAPK signaling pathways in an inflammatory environment. SFN could be considered a promising strategy for utilizing functional foods to protect against inflammation and develop immunoregulatory interventions.
Collapse
Affiliation(s)
- Ana M Múnera-Rodríguez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, Seville 41009, Spain
| | - Camila Leiva-Castro
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, Seville 41009, Spain
| | - Francisco Sobrino
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, Seville 41009, Spain
| | - Soledad López-Enríquez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, Seville 41009, Spain; Institute of Biomedicine of Seville (IBiS)/ Virgen del Rocío University Hospital/ Virgen Macarena University Hospital/ University of Seville/ CSIC, Seville, Spain.
| | - Francisca Palomares
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, Seville 41009, Spain; Institute of Biomedicine of Seville (IBiS)/ Virgen del Rocío University Hospital/ Virgen Macarena University Hospital/ University of Seville/ CSIC, Seville, Spain.
| |
Collapse
|
4
|
Shi Y, Zhang X, Pei S, Wang Y. Ethnopharmacological study on Adenosma buchneroides Bonati inhibiting inflammation via the regulation of TLR4/MyD88/NF-κB signaling pathway. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:36. [PMID: 38833115 DOI: 10.1007/s13659-024-00458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Adenosma buchneroides Bonati, also known as fleagrass, is an important medicinal plant used by the Akha (Hani) people of China for treating inflammation-related skin swelling, acne, and diarrhoea, among other conditions. In this study, we aimed to evaluate the anti-inflammatory activities and explore the molecular mechanisms of fleagrass on treating skin swelling and acne. The results demonstrated that fleagrass inhibited the enzymatic activities of 5-LOX and COX-2 in vitro, and decreased the release of NO, IL-6, TNF-α, and IL-10 in the LPS-induced RAW264.7 macrophages. The levels of proteins associated with the nuclear factor-kappa B (NF-κB) pathway were examined by western blotting and immunofluorescence, demonstrating that fleagrass downregulated the expression of TLR4, MyD88, NF-κB/p65, and iNOS and blocked the nuclear translocation of NF-κB/p65. Furthermore, fleagrass exhibited acute anti-inflammatory activity in paw oedema models. The results confirm that fleagrass exhibits remarkable anti-inflammatory activity and can be used in alleviating inflammation, suggesting that fleagrass has the potential to be a novel anti-inflammatory agent.
Collapse
Affiliation(s)
- Yuru Shi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Heilongtan, Kunming, 650201, Yunnan, China
| | - Xiaoqian Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Heilongtan, Kunming, 650201, Yunnan, China
| | - Shengji Pei
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Heilongtan, Kunming, 650201, Yunnan, China
| | - Yuhua Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Heilongtan, Kunming, 650201, Yunnan, China.
| |
Collapse
|
5
|
Yang M, Su S, Cheng S, Wang Z, Du M. Absorption and transport properties of a codfish-derived peptide and its protective effect on bone loss in ovariectomized mice. Food Funct 2024; 15:3496-3506. [PMID: 38463011 DOI: 10.1039/d3fo04819e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
A potential osteogenic tetradecapeptide with the amino acid sequence GETNPADSKPGSIR (P-GM-2) was identified from Gadus morhua. The present study aimed to elucidate its absorption and transport properties using Caco-2/HT29-MTX co-culture monolayers and to evaluate its osteogenic activity using an ovariectomized mouse model. The results showed that P-GM-2 could cross Caco-2/HT29-MTX co-culture barriers intactly with an apparent permeability coefficient of 4.02 × 10-6 cm s-1via the TJ-mediated passive paracellular pathway. Pharmacokinetic results revealed that P-GM-2 was detectable in the blood of mice within 5 min of oral administration and reached its maximum concentration at 30 min. Furthermore, the oral administration of P-GM-2 for a duration of three months has been found to effectively regulate the secretion of key markers of bone turnover, thereby protecting against bone microstructure degeneration and bone loss in ovariectomized mice. Importantly, no toxicity related to the treatment was observed. Taken together, these findings offer valuable insights into the absorption and transport mechanisms of P-GM-2, highlighting its potential as a safe and effective active ingredient for preventing osteoporosis.
Collapse
Affiliation(s)
- Meilian Yang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China.
| | - Shengpeng Su
- Inner Mongolia Enterprise Key Laboratory of Dairy Nutrition, Health & Safety, Inner Mongolia Mengniu Dairy (Group) Co., Ltd, Huhhot 011500, P.R. China
| | - Shuzhen Cheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China.
| | - Zhenyu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China.
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
6
|
Liu C, Guo S, Liu R, Guo M, Wang Q, Chai Z, Xiao B, Ma C. Fasudil-modified macrophages reduce inflammation and regulate the immune response in experimental autoimmune encephalomyelitis. Neural Regen Res 2024; 19:671-679. [PMID: 37721300 PMCID: PMC10581551 DOI: 10.4103/1673-5374.379050] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/10/2023] [Accepted: 05/22/2023] [Indexed: 09/19/2023] Open
Abstract
Multiple sclerosis is characterized by demyelination and neuronal loss caused by inflammatory cell activation and infiltration into the central nervous system. Macrophage polarization plays an important role in the pathogenesis of experimental autoimmune encephalomyelitis, a traditional experimental model of multiple sclerosis. This study investigated the effect of Fasudil on macrophages and examined the therapeutic potential of Fasudil-modified macrophages in experimental autoimmune encephalomyelitis. We found that Fasudil induced the conversion of macrophages from the pro-inflammatory M1 type to the anti-inflammatory M2 type, as shown by reduced expression of inducible nitric oxide synthase/nitric oxide, interleukin-12, and CD16/32 and increased expression of arginase-1, interleukin-10, CD14, and CD206, which was linked to inhibition of Rho kinase activity, decreased expression of toll-like receptors, nuclear factor-κB, and components of the mitogen-activated protein kinase signaling pathway, and generation of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin-1β, and interleukin-6. Crucially, Fasudil-modified macrophages effectively decreased the impact of experimental autoimmune encephalomyelitis, resulting in later onset of disease, lower symptom scores, less weight loss, and reduced demyelination compared with unmodified macrophages. In addition, Fasudil-modified macrophages decreased interleukin-17 expression on CD4+ T cells and CD16/32, inducible nitric oxide synthase, and interleukin-12 expression on F4/80+ macrophages, as well as increasing interleukin-10 expression on CD4+ T cells and arginase-1, CD206, and interleukin-10 expression on F4/80+ macrophages, which improved immune regulation and reduced inflammation. These findings suggest that Fasudil-modified macrophages may help treat experimental autoimmune encephalomyelitis by inducing M2 macrophage polarization and inhibiting the inflammatory response, thereby providing new insight into cell immunotherapy for multiple sclerosis.
Collapse
Affiliation(s)
- Chunyun Liu
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi Province, China
| | - Shangde Guo
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi Province, China
| | - Rong Liu
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi Province, China
| | - Minfang Guo
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi Province, China
| | - Qing Wang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Zhi Chai
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Baoguo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Cungen Ma
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi Province, China
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| |
Collapse
|
7
|
Woo GE, Kim MJ, Ahn DH. In vitro and in vivo anti-inflammatory activities of ethanolic extract of Sargassum confusum. Food Sci Biotechnol 2024; 33:181-190. [PMID: 38186611 PMCID: PMC10767179 DOI: 10.1007/s10068-023-01439-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 01/09/2024] Open
Abstract
This study was to investigate the anti-inflammatory activity of ethanolic extract of Sargassum confusum (SCEE). LPS is recognized by TLR4 on the macrophage surface, which activates the NF-κB and MAPK signaling pathways, increasing the expression of inflammatory cytokine like interleukin-6 (IL-6), IL-1β, and tumor necrosis factor (TNF)-α and inflammatory mediators such as nitric oxide (NO) and cyclooxygenase-2 (COX-2). The anti-inflammatory effect of SCEE (0, 1, 10, 50 μg/mL) was identified using LPS stimulated RAW 264.7 macrophages. As a result, it was confirmed that inflammatory factors were suppressed by inhibiting expression of COX-2 and iNOS without any cytotoxicity. In addition, phosphorylation of ERK, JNK and NF-κB p65, transcription factors, were inhibited by SCEE does-dependent manner. These results suggest that SCEE has an anti-inflammatory effect and can be used as a material for health functional foods to prevent inflammatory diseases.
Collapse
Affiliation(s)
- Ga Eun Woo
- Department of Food Science & Technology, Pukyong National University, Busan, 48513 Korea
| | - Min Ji Kim
- Department of Food Science & Technology, Pukyong National University, Busan, 48513 Korea
| | - Dong-Hyun Ahn
- Department of Food Science & Technology, Pukyong National University, Busan, 48513 Korea
- Institute of Food Science, Pukyong National University, Busan, 48513 Korea
| |
Collapse
|
8
|
Raslan MA, Mounier MM. Phytochemical Profiling and Compound Isolation of Cissus rhombifolia Vahl. Leaves Aqueous Methanolic Extract with the Evaluation of Its Anti-Inflammatory Effect Using Lipopolysaccharide-Induced Inflammation in RAW 264.7 Cells. Chem Biodivers 2023; 20:e202300307. [PMID: 37204915 DOI: 10.1002/cbdv.202300307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/21/2023]
Abstract
The inflammatory disorders represent a serious health issue. Certain Cissus species possess anti-inflammatory effect. Cissus rhombifolia Vahl. leaves' anti-inflammatory activities and phytoconstituents are poorly characterized. In this study, 38 constituents were tentatively characterized in Cissus rhombifolia Vahl. leaves' aqueous methanolic extract (CRLE) using high-performance liquid chromatography combined with mass spectrometry (HPLC/MS) and Proton Nuclear Magnetic Resonance (1 H-NMR). Myricetin, β-amyrin, and alliospiroside A, were isolated from CRLE using column chromatography. The anti-inflammatory effect of CRLE and its isolated compounds were studied in lipopolysaccharide (LPS)-induced RAW 264.7 cells. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT assay) was used to assess how CRLE and its isolated compounds affected cell viability. Further, its effects on the production of intracellular NO, and inflammatory cytokines cyclooxygenase-2 (COX-2), tumor necrosis factor alpha (TNF-α), and interleukin 6 (IL-6) were assessed by the Griess test, and cytokine enzyme-linked immunosorbent assays, respectively. CRLE and its isolated compounds, myricetin, β-amyrin, and alliospiroside A decreased the NO production. Western blotting was performed to assess the protein expression levels of the inflammatory cytokines inducible nitric oxide synthase (iNOS). Alliospiroside A downregulated IL-6, TNF-α, and COX-2 and inhibited the expression of iNOS. CRLE and its compounds represent effective alternative candidate to treat inflammatory diseases.
Collapse
Affiliation(s)
- Mona A Raslan
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, Dokki, Giza, 12622, Egypt
| | - Marwa M Mounier
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, Dokki, Giza, 12622, Egypt
| |
Collapse
|
9
|
Yang M, Cheng S, Ma W, Wu D, El-Seedi HR, Wang Z, Du M. Myosin heavy chain-derived peptide of Gadus morhua promotes proliferation and differentiation in osteoblasts and bone formation and maintains bone homeostasis in ovariectomized mice. Food Funct 2023. [PMID: 37183435 DOI: 10.1039/d2fo04083b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Gadus morhua is an important commercial fish rich in nutrients required for daily metabolism. However, the regulation of G. morhua peptides (GMP) on osteoblast growth remains unclear. In order to clarify the regulatory effects of GMP on osteoblasts, the effects of GMP on the growth of MC3T3-E1 cells were investigated, and the osteogenic peptides were identified and screened. The results showed that GMP promoted the proliferation and differentiation of osteoblasts by regulating the BMP/WNT signaling pathway at concentrations of 1-100 μg mL-1. Molecular docking studies showed that a decapeptide, MNKKREAEFQ (P-GM-1), had a high affinity for integrins 3VI4 and 1L5G (-CDOCKER interaction energy: 161.30, 212.27 kcal mol-1). Additionally, the proliferation rate of MC3T3-E1 cells was increased by 27%, and ALP activity was significantly increased under P-GM-1 treatment (100 μg mL-1). Moreover, P-GM-1 promotes bone formation, maintains bone homeostasis, and prevents osteoporosis in ovariectomized mice by regulating the BMP/Smad signaling pathway. This study confirmed the potential of GMP in the regulation of bone mineral density and provided a certain theoretical basis for the development of anti-osteoporosis active factors from GMP.
Collapse
Affiliation(s)
- Meilian Yang
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic, University, Dalian 116034, China.
| | - Shuzhen Cheng
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic, University, Dalian 116034, China.
| | - Wuchao Ma
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic, University, Dalian 116034, China.
| | - Di Wu
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic, University, Dalian 116034, China.
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, SE 751 24 Uppsala, Sweden
| | - Zhenyu Wang
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic, University, Dalian 116034, China.
| | - Ming Du
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic, University, Dalian 116034, China.
| |
Collapse
|
10
|
Zhao JH, Li J, Zhang XY, Shi S, Wang L, Yuan ML, Liu YP, Wang YD. Confusoside from Anneslea fragrans Alleviates Acetaminophen-Induced Liver Injury in HepG2 via PI3K-CASP3 Signaling Pathway. Molecules 2023; 28:1932. [PMID: 36838918 PMCID: PMC9964309 DOI: 10.3390/molecules28041932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Confusoside (CF), a major chemical compound in the leaves of Anneslea fragrans Wall., is a dihydrochalcone glycoside with excellent antioxidant and anti-inflammatory effects. However, the hepatoprotective effect of CF has not been described. This study aimed to explore the hepatoprotective effect of CF against acetaminophen (APAP)-induced hepatic injury in HepG2 cells. First, the potential hepatoprotective effect mechanisms of CF were predicted by network pharmacology and were thought to involve reducing inflammation and inhibiting apoptosis. Target proteins (phosphatidylinositol3-kinase (PI3K) and caspase-3 (CASP3)) were found via molecular docking analysis. To verify the predicted results, an analysis of biological indicators was performed using commercial kits and Western blotting. The results showed that CF significantly decreased the levels of liver injury biomarkers (ALT, AST, and LDH), strongly inhibited the production of inflammatory cytokines (IL-1β, IL-6, and TNF-α) and the NO level via inhibiting the activation of the NF-κB signaling pathway, and markedly regulated the expression levels of Bcl2, Bax, and cleaved-CASP3/9 proteins by activating the PI3K-CASP3 apoptosis pathway. The results demonstrated that CF has a therapeutic effect on APAP-induced liver injury by inhibiting intracellular inflammation and cell apoptosis, indicating that CF may be used as a potential reagent for the prevention and treatment of APAP-induced liver injury.
Collapse
Affiliation(s)
- Jing-Hao Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650500, China
| | - Jing Li
- Department of Information, The First People’s Hospital of Yunnan, Kunming 650021, China
| | - Xiao-Yu Zhang
- The faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Shang Shi
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650500, China
| | - Lin Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650500, China
| | - Ming-Long Yuan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650500, China
- School of Chemistry and Environment, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China
| | - Ya-Ping Liu
- The faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yu-Dan Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650500, China
- School of Chemistry and Environment, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China
| |
Collapse
|
11
|
Zhang X, Li M, Zhen L, Wang Y, Wang Y, Qin Y, Zhang Z, Zhao T, Cao J, Liu Y, Cheng G. Ultra-High Hydrostatic Pressure Pretreatment on White Que Zui Tea: Chemical Constituents, Antioxidant, Cytoprotective, and Anti-Inflammatory Activities. Foods 2023; 12:628. [PMID: 36766156 PMCID: PMC9914134 DOI: 10.3390/foods12030628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Herbal tea has numerous biological activities and exhibits broad benefits for human health. In China, the flower buds of Lyonia ovalifolia are traditionally processed as herbal tea, namely White Que Zui tea (WQT). This study was aimed to evaluate the effect of ultra-high hydrostatic pressure (UHHP) pretreatment on the chemical constituents and biological activities of free, esterified, and insoluble-bound phenolic fractions from WQT. A total of 327 chemical constituents were identified by a quasi-targeted metabolomics analysis. UHHP pretreatment extremely inhibited reactive oxygen species (ROS) production and cell apoptosis in H2O2-induced HepG2 cells, and it increased the activities of intracellular antioxidant enzymes (SOD and CAT) and GSH content in different phenolic fractions from WQT. In addition, after UHHP pretreatment, the anti-inflammatory effects of different phenolic fractions from WQT were improved by inhibiting the production of nitric oxide (NO) and pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) in LPS-induced RAW264.7 cells. Thus, the UHHP method might be a potential pretreatment strategy for improving the bioavailability of phytochemicals from natural plants.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Mengcheng Li
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650000, China
| | - Li Zhen
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yudan Wang
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yifen Wang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650000, China
| | - Yuyue Qin
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhihong Zhang
- The Faculty of Food and Bioengineering, Jiangsu University, Zhenjiang 212013, China
| | - Tianrui Zhao
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jianxin Cao
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yaping Liu
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Guiguang Cheng
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
12
|
New mechanistic insights on Justicia vahlii Roth: UPLC-Q-TOF-MS and GC–MS based metabolomics, in-vivo, in-silico toxicological, antioxidant based anti-inflammatory and enzyme inhibition evaluation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
13
|
Gu Q, Liu Y, Zhen L, Zhao T, Luo L, Zhang J, Deng T, Wu M, Cheng G, Hu J. The structures of two glucomannans from Bletilla formosana and their protective effect on inflammation via inhibiting NF-κB pathway. Carbohydr Polym 2022; 292:119694. [PMID: 35725182 DOI: 10.1016/j.carbpol.2022.119694] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/05/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022]
Abstract
Bletilla formosana is a traditional Chinese herbal medicine and is widely consumed as foods and medicines in China. However, the chemical structure and bioactivity of its polysaccharides remain unknown. Herein, two new polysaccharides, BFP60 and BFP80, with molecular weights of 3.99 kDa and 10.07 kDa, respectively, were isolated and purified from dried tuber of B. formosana. Structural analysis suggested that BFP60 and BFP80 may have backbone consisted of →4)-β-d-Man-(1→,→4)-β-d-Glc-(1→,→4)-2-O-acetyl-β-d-Man-(1→, and →4)-3-O-acetyl-β-d-Man-(1→. Inflammation assay in LPS-induced RAW264.7 cells showed that the productions of NO and pro-inflammatory cytokines including IL-6, IL-1β, TNF-α, and IFN-γ were significantly reduced, and the expression of iNOS, COX-2, and target proteins in the NF-κB pathway were suppressed after BFP60 and BFP80 pretreatment. These findings indicated that this novel polysaccharide had significant inflammatory protective effects in vitro.
Collapse
Affiliation(s)
- Qinghui Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Li Zhen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Tianrui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Lan Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Junyin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Tuo Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyi Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Jiangmiao Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Ouyang T, Yin H, Yang J, Liu Y, Ma S. Tissue regeneration effect of betulin via inhibition of ROS/MAPKs/NF-ĸB axis using zebrafish model. Biomed Pharmacother 2022; 153:113420. [DOI: 10.1016/j.biopha.2022.113420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/02/2022] Open
|
15
|
Zhang JK, Zhou XL, Wang XQ, Zhang JX, Yang ML, Liu YP, Cao JX, Cheng GG. Que Zui tea ameliorates hepatic lipid accumulation and oxidative stress in high fat diet induced nonalcoholic fatty liver disease. Food Res Int 2022; 156:111196. [DOI: 10.1016/j.foodres.2022.111196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 12/18/2022]
|
16
|
Cheng CS, Gu QH, Zhang JK, Tao JH, Zhao TR, Cao JX, Cheng GG, Lai GF, Liu YP. Phenolic Constituents, Antioxidant and Cytoprotective Activities, Enzyme Inhibition Abilities of Five Fractions from Vaccinium dunalianum Wight. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113432. [PMID: 35684371 PMCID: PMC9181978 DOI: 10.3390/molecules27113432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
Abstract
The bud of Vaccinium dunalianum Wight has been traditionally consumed as health herbal tea by “Yi” people in Yunnan Province, China, which was locally named “Que Zui tea”. This paper studied the chemical constituents of five fractions from Vaccinium dunalianum, and their enzyme inhibitory effects of α-glucosidase and pancreatic lipase, antioxidant activity, and cytoprotective effects on H2O2-induced oxidative damage in HepG2 cells. The methanol extract of V. dunalianum was successively partitioned with petroleum ether (PF), chloroform (CF), ethyl acetate (EF), n-butanol (BF), and aqueous (WF) to obtain five fractions. The chemical profiling of the five fractions was analyzed by ultra-high-performance liquid chromatography coupled with a tandem mass spectrometry (UHPLC-MS/MS), and 18 compounds were tentatively identified. Compared to PF, CF, BF and WF, the EF revealed the highest total phenols (TPC) and total flavonoids (TFC), and displayed the strongest enzyme inhibition ability (α-glucosidase and pancreatic lipase) and antioxidant capacity (DPPH, ABTS and FRAP). Furthermore, these five fractions, especially EF, could effectively inhibit reactive oxygen species (ROS) production and cell apoptosis on H2O2-induced oxidative damage protection in HepG2 cells. This inhibitory effect might be caused by the up-regulation of intracellular antioxidant enzyme activity (CAT, SOD, and GSH). The flavonoids and phenolic acids of V. dunalianum might be the bioactive substances responsible for enzyme inhibitory, antioxidant, and cytoprotective activities.
Collapse
Affiliation(s)
- Chang-Shu Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (C.-S.C.); (Q.-H.G.); (J.-K.Z.); (J.-H.T.); (T.-R.Z.); (J.-X.C.); (G.-G.C.)
| | - Qing-Hui Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (C.-S.C.); (Q.-H.G.); (J.-K.Z.); (J.-H.T.); (T.-R.Z.); (J.-X.C.); (G.-G.C.)
| | - Jin-Ke Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (C.-S.C.); (Q.-H.G.); (J.-K.Z.); (J.-H.T.); (T.-R.Z.); (J.-X.C.); (G.-G.C.)
| | - Jun-Hong Tao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (C.-S.C.); (Q.-H.G.); (J.-K.Z.); (J.-H.T.); (T.-R.Z.); (J.-X.C.); (G.-G.C.)
| | - Tian-Rui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (C.-S.C.); (Q.-H.G.); (J.-K.Z.); (J.-H.T.); (T.-R.Z.); (J.-X.C.); (G.-G.C.)
| | - Jian-Xin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (C.-S.C.); (Q.-H.G.); (J.-K.Z.); (J.-H.T.); (T.-R.Z.); (J.-X.C.); (G.-G.C.)
| | - Gui-Guang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (C.-S.C.); (Q.-H.G.); (J.-K.Z.); (J.-H.T.); (T.-R.Z.); (J.-X.C.); (G.-G.C.)
| | - Guo-Fang Lai
- Yunnan Institute for Food and Drug Control, Kunming 650106, China
- Correspondence: (G.-F.L.); (Y.-P.L.)
| | - Ya-Ping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (C.-S.C.); (Q.-H.G.); (J.-K.Z.); (J.-H.T.); (T.-R.Z.); (J.-X.C.); (G.-G.C.)
- Correspondence: (G.-F.L.); (Y.-P.L.)
| |
Collapse
|
17
|
Prunetinoside Inhibits Lipopolysaccharide-Provoked Inflammatory Response via Suppressing NF-κB and Activating the JNK-Mediated Signaling Pathway in RAW264.7 Macrophage Cells. Int J Mol Sci 2022; 23:ijms23105442. [PMID: 35628252 PMCID: PMC9140926 DOI: 10.3390/ijms23105442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/25/2022] Open
Abstract
Inflammation is a multifaceted response of the immune system at the site of injury or infection caused by pathogens or stress via immune cells. Due to the adverse effects of chemical drugs, plant-based compounds are gaining interest in current research. Prunetinoside or prunetin-5-O-glucoside (PUG) is a plant-based active compound, which possesses anti-inflammatory effects on immune cells. In this study, we investigate the effect of PUG on mouse macrophage RAW264.7 cells with or without stimulation of lipopolysaccharide (LPS). Cytotoxicity results showed that PUG is non-cytotoxic to the cells and it reversed the cytotoxicity in LPS-stimulated cells. The levels of nitric oxide (NO) and interleukin-6 (IL-6) were determined using a NO detection kit and IL-6 ELISA kit, respectively, and showed a significant decrease in NO and IL-6 in PUG-treated cells. Western blot and qRT-PCR were performed for the expression of two important pro-inflammatory cytokines, COX2 and iNOS, and found that their expression was downregulated in a dose-dependent manner. Other pro-inflammatory cytokines, such as IL-1β, IL-6, and TNFα, had reduced mRNA expression after PUG treatment. Furthermore, a Western blot was performed to calculate the expression of NF-κB and MAPK pathway proteins. The results show that PUG administration dramatically reduced the phosphorylation of p-Iκbα, p-NF-κB 65, and p-JNK. Remarkably, after PUG treatment, p-P38 and p-ERK remain unchanged. Furthermore, docking studies revealed that PUG is covalently linked to NF-κB and suppresses inflammation. In conclusion, PUG exerted the anti-inflammatory mechanism by barring the NF-κB pathway and activating JNK. Thus, prunetinoside could be adopted as a therapeutic compound for inflammatory-related conditions.
Collapse
|
18
|
Tao J, Huang Z, Wang Y, Liu Y, Zhao T, Wang Y, Tian L, Cheng G. Ethanolic Extract from Pteris wallichiana Alleviates DSS-Induced Intestinal Inflammation and Intestinal Barrier Dysfunction by Inhibiting the TLR4/NF-κB Pathway and Regulating Tight Junction Proteins. Molecules 2022; 27:3093. [PMID: 35630568 PMCID: PMC9146006 DOI: 10.3390/molecules27103093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
The aim of the research was to determine the protective effect and mechanism of Pteris wallichiana J. Agardh extract (PWE) on DSS-induced ulcerative colitis (UC) in mice. In this research, PWE is rich in flavonoids and diterpenoids by UPLC-MS/MS analysis. In LPS-induced RAW264.7 cells, PWE reduced the productions of inflammatory factors (i.e., NO, TNF-α, IL-6, and IL-1β). In DSS-induced UC in mice, PWE improved disease activity index (DAI) score, attenuated oxidative stress by decreasing MPO and MDA activities and activating GSH and SOD levels, and inhibited TNF-α, IL-6, and IL-1β expressions in the colonic tissues. PWE also improved the intestinal barrier by upregulating the expressions of tight junction proteins, including occludin and ZO-1. Moreover, PWE extract alleviated intestinal inflammation by suppressing the TLR4/MyD88/NF-κB signaling pathway. Conclusion: PWE can alleviate DSS-induced UC in mice by increasing the expressions of intestinal tight junction proteins and inhibiting the TLR4/NF-κB inflammatory pathway.
Collapse
Affiliation(s)
- Junhong Tao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (J.T.); (Y.W.); (Y.L.); (T.Z.); (L.T.)
| | - Zhihua Huang
- Yunnan Tobacco Company, Yuxi Branch, Yuxi 653100, China;
| | - Yudan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (J.T.); (Y.W.); (Y.L.); (T.Z.); (L.T.)
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (J.T.); (Y.W.); (Y.L.); (T.Z.); (L.T.)
| | - Tianrui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (J.T.); (Y.W.); (Y.L.); (T.Z.); (L.T.)
| | - Yifen Wang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650000, China;
| | - Lei Tian
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (J.T.); (Y.W.); (Y.L.); (T.Z.); (L.T.)
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (J.T.); (Y.W.); (Y.L.); (T.Z.); (L.T.)
| |
Collapse
|
19
|
Wang K, Kong X, Du M, Yu W, Wang Z, Xu B, Yang J, Xu J, Liu Z, Cheng Y, Gan J. Novel Soy Peptide CBP: Stimulation of Osteoblast Differentiation via TβRI-p38-MAPK-Depending RUNX2 Activation. Nutrients 2022; 14:1940. [PMID: 35565907 PMCID: PMC9105634 DOI: 10.3390/nu14091940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 01/06/2023] Open
Abstract
DEDEQIPSHPPR, the calcium-binding peptide (CBP) identified in soy yogurt, was proven to be a potential cofactor in osteoporosis prevention in our previous study, but the mechanism was unknown. In this study, the activity of alkaline phosphatase (ALP) and osteocalcin (OCN), the regulation of RUNX2, and the expression of TβRI were investigated to elucidate the underlying mechanism. The results show that CBP upregulated ALP activity and OCN concentration and increased the expression of RUNX2 and the activation of the MAPK signaling pathway. Similarly, the expression of osteogenesis-related genes in osteoblasts also increased upon CBP treatment. Moreover, the CBP-induced enhancement of ALP activity and phosphorylation levels in the p38 pathway was inhibited by treatment with a p38 inhibitor (SB203538) and TβRI inhibitor (SB431542), respectively, suggesting that p38 and TβRI were involved in the osteogenic action. Based on the signaling pathways, the intracellular calcium concentration was significantly elevated by CBP, which was correlated with the increased behavioral functions and the relative fluorescence intensity of the bone mass. These findings suggest that CBP stimulates osteoblast differentiation and bone mineralization through the activation of RUNX2 via mechanisms related to the TβRI-p38-MAPK signaling pathways, further highlighting CBP's important potential for treating osteoporosis.
Collapse
Affiliation(s)
- Kuaitian Wang
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Xiao Kong
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Mengdi Du
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Wei Yu
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenhua Wang
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Bo Xu
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Jianrong Yang
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Jingru Xu
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Zhili Liu
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Yongqiang Cheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jing Gan
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| |
Collapse
|
20
|
Yang ML, Lu C, Fan ZF, Zhao TR, Cheng GG, Wang YD, Cao JX, Liu YP. Hypoglycemic and hypolipidemic effects of Epigynum auritum in high fat diet and streptozotocin-induced diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114986. [PMID: 35032587 DOI: 10.1016/j.jep.2022.114986] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/11/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epigynum auritum is mainly distributed in Southwest China, and has been used as a "dai" folk medicine with promising Besides, the leaves and barks of E. auritum have detoxifying, analgesic and relieving swelling effects. Previous studies evidenced that E. auritum was rich in pregnanes and their glycosides. However, the hypoglycemic and hypolipidemic effects of the extract from E. auritum (EAE) and its molecular mechanism are still not studied. AIM OF THE STUDY The aim of this study is to investigate the hypoglycemic and hypolipidemic effects of EAE on high-fat diet and streptozocin-induced type 2 diabetic rats. MATERIALS AND METHODS The high-fat diet and streptozocin induced type 2 diabetic model was established. The diabetic rats were treated with 70% ethanol extract of E. auritum (100 and 300 mg/kg/d) or metformin (DMBG, 100 mg/kg/d) every day for 4 weeks. Fasting blood glucose was recorded weekly. The phenotypic changes were evaluated by the measurement of biochemical indexes and immunohistochemical. The expressions of signaling-related proteins were explored by western blotting. RESULTS EAE could effectively regulate the metabolism of glucose and lipids in diabetic rats by increasing insulin sensitivity. In addition, EAE ameliorated the oxidative stress damage and further mitigated the liver, kidney, and pancreatic damage. Mechanism research results show that EAE treatment increased the phosphorylation of Akt, AMPK and GSK-3β, up-regulated the expression of GLUT-2, GLUT-4 and PPAR-α, and reduced PPAR-γ and FAS expressions. CONCLUSION EAE exhibited significant hypoglycemic and hypolipidemic effects in HFD/STZ-induced diabetes rats. The mechanism may be related to the effective upregulation of AMPK/Akt/GSK-3β pathway and the decreased expression of PPAR-γ and FAS. It could be a promising natural product with potential value for the development of drugs to prevent or treat type 2 diabetic.
Collapse
Affiliation(s)
- Mei-Lian Yang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Can Lu
- Department of Cardiology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Teco, People's Republic of China
| | - Zhi-Feng Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China; Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan Minzu University, Kunming, 650500, People's Republic of China
| | - Tian-Rui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Gui-Guang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Yu-Dan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China; Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan Minzu University, Kunming, 650500, People's Republic of China.
| | - Jian-Xin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| | - Ya-Ping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| |
Collapse
|
21
|
Yang M, Wu D, Cheng S, Dong Y, Wu C, Wang Z, Du M. Inhibitory effects of Atlantic cod ( Gadus morhua) peptides on RANKL-induced osteoclastogenesis in vitro and osteoporosis in ovariectomized mice. Food Funct 2022; 13:1975-1988. [PMID: 35089293 DOI: 10.1039/d1fo03696c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Atlantic cod (Gadus morhua) is one of the most important fishes in the world with high nutritional value and economic value. However, the impact and underlying mechanism of the G. morhua peptides (GMPs) on osteoclastogenesis and bone mineral density (BMD) regulation remain unclear. The purpose of this study was to investigate the effects of GMPs on osteoclast formation and anti-osteoporosis activity in vitro and in vivo. The results showed that GMPs significantly reduced receptor activator of nuclear factor (RANKL) induced tartrate-resistant acid phosphatase (TRAP) activity, and decreased the expression of osteoclast regulatory factors c-Fos and NFATc1 by inhibiting the activation of MAPK and NF-κB pathways, and thereby inhibiting osteoclast formation and bone resorption. In vivo, GMP protects mice against ovariectomy-induced bone loss by regulating the balance of major factors released in bone formation and resorption. Taken together, GMP could be a potential candidate or dietary supplement for the prevention of osteoporosis.
Collapse
Affiliation(s)
- Meilian Yang
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Di Wu
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Shuzhen Cheng
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yu Dong
- Dalian Feide Biological Industry Co., Ltd., Dalian 116085, China
| | - Chao Wu
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Zhenyu Wang
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Ming Du
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
22
|
Liu Y, Lu J, Dong C, Zhu L, Zhou L, Zhu K. Hydroxyethyl Starch Improves the Prognosis of Rats with Traumatic Shock via Activation of the ERK Signaling Pathway in Lymphocytes. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5262189. [PMID: 35178114 PMCID: PMC8847030 DOI: 10.1155/2022/5262189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Severe traumatic shock is one of the leading causes of death in young adults. A large number of studies have shown that effective volumetry resuscitation on the basis of controlled injury can not only increase the success rate of early resuscitation but also reduce systemic inflammatory response and improve the cure rate of severe traumatic shock. The study explored the effects of hydroxyethyl starch (HES) on the survival rate, lymphocyte function and proliferation of rats with traumatic shock, and the potential mechanisms. METHODS Traumatic shock was constructed in rats as experimental model, and liquid resuscitation was performed using HES and lactated Ringer's (LR). 24-h mortality was recorded, and lymphocytes were isolated. The expressions of signaling pathway factors was detected by qPCR and Western blot. ELISA was performed to determine the expression of interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) in cell supernatant. RESULTS HES for fluid resuscitation augmented the survival of traumatic shock rats, upregulated the expressions of MEK and ERK1/2, and downregulated the expressions of IL-6 and TNF-α. However, inhibition of ERK signaling pathway reversed the effect of HES on the immune improvement and the 24-h survival rate of the traumatic shock rats (P < 0.05). CONCLUSION HES could exert the anti-inflammatory effects on lymphocytes by mediating the phosphorylation of proteins of the ERK signaling pathway. HSE demonstrated a high efficacy in effectively treating traumatic shock, thus could be used in clinical practice.
Collapse
Affiliation(s)
- Yun Liu
- Department of General Surgery, Ningbo Zhenhai Longsai Hospital, Ningbo, Zhejiang Province 315200, China
| | - Jian Lu
- Department of General Surgery, Ningbo Zhenhai Longsai Hospital, Ningbo, Zhejiang Province 315200, China
| | - Caifu Dong
- Department of General Surgery, Ningbo Zhenhai Longsai Hospital, Ningbo, Zhejiang Province 315200, China
| | - Limin Zhu
- Department of General Surgery, Ningbo Zhenhai Longsai Hospital, Ningbo, Zhejiang Province 315200, China
| | - Li Zhou
- Department of General Surgery, Ningbo Zhenhai Longsai Hospital, Ningbo, Zhejiang Province 315200, China
| | - Kai Zhu
- Department of General Surgery, Ningbo Zhenhai Longsai Hospital, Ningbo, Zhejiang Province 315200, China
| |
Collapse
|
23
|
Saklani P, Khan H, Gupta S, Kaur A, Singh TG. Neuropeptides: Potential neuroprotective agents in ischemic injury. Life Sci 2022; 288:120186. [PMID: 34852271 DOI: 10.1016/j.lfs.2021.120186] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022]
Abstract
AIM Ischemic damage to the brain is linked to an increased rate of morbidity and mortality worldwide. In certain parts of the world, it remains a leading cause of mortality and the primary cause of long-term impairment. Ischemic injury is exacerbated when particular neuropeptides are removed, or their function in the brain is blocked, whereas supplying such neuropeptides lowers ischemic harm. Here, we have discussed the role of neuropeptides in ischemic injury. MATERIALS & METHODS Numerous neuropeptides had their overexpression following cerebral ischemia. Neuropeptides such as NPY, CGRP, CART, SP, BK, PACAP, oxytocin, nociception, neurotensin and opioid peptides act as transmitters, documented in several "in vivo" and "in vitro" studies. Neuropeptides provide neuroprotection by activating the survival pathways or inhibiting the death pathways, i.e., MAPK, BDNF, Nitric Oxide, PI3k/Akt and NF-κB. KEY FINDINGS Neuropeptides have numerous beneficial effects in ischemic models, including antiapoptotic, anti-inflammatory, and antioxidant actions that provide a powerful protective impact in neurons when combined. These innovative therapeutic substances have the potential to treat ischemia injury due to their pleiotropic modes of action. SIGNIFICANCE This review emphasizes the neuroprotective role of neuropeptides in ischemic injury via modulation of various signalling pathways i.e., MAPK, BDNF, Nitric Oxide, PI3k/Akt and NF-κB.
Collapse
Affiliation(s)
- Priyanka Saklani
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Saurabh Gupta
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | | |
Collapse
|
24
|
Yang M, Xu Z, Wu D, Dong Y, Wang Z, Du M. Characterizations and the Mechanism Underlying Osteogenic Activity of Peptides from Enzymatic Hydrolysates of Stichopus japonicus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15611-15623. [PMID: 34928143 DOI: 10.1021/acs.jafc.1c06028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sea cucumber (Stichopus japonicus) is a kind of fishery product with high nutritional value. It exhibits a wide range of biological activity and has potential application in the food, pharmaceutical, and biomedical industries. However, there are no reports available on the effects of S. japonicus peptides (SJP) on bone mineral density regulations. The purpose of this work was to analyze the composition and osteogenic activity of SJP and explore its underlying mechanism. The results showed that SJP stimulated cell proliferation, differentiation, and mineralization in a dose-dependent manner. In addition, SJP could promote the proliferation of MC3T3-E1 cells by altering the cell cycle progression and regulating the expression of Cyclins. Besides, SJP activated the WNT/β-catenin pathway and increased the nuclear level of the active form β-catenin. Furthermore, SJP also induced the expression of bone morphogenetic protein (BMP-2) and increase the phosphorylation levels of p38, JNK, and ERK, suggesting that the osteogenic activity of SJP may be achieved through the activation of WNT/β-catenin and BMP/MAPK signal pathways. In vivo, SJP significantly inhibited the serum levels of RANKL, ALP, and TRAP, whereas it increased the levels of osteocalcin and osteoprotegerin in OVX-mice. These results indicate that SJP may have the potential to stimulate bone formation and regeneration, and may be used as a functional food or nutritional supplement to prevent osteoporosis.
Collapse
Affiliation(s)
- Meilian Yang
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Zhe Xu
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian 116029, China
| | - Di Wu
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Yu Dong
- Dalian Feide Biological Industry Co., Ltd., Dalian 116085, China
| | - Zhenyu Wang
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Ming Du
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
25
|
Liang Y, Zhang T, Zhao J, Li C, Zou H, Li F, Zhang J, Ren L. Glucocorticoid receptor-mediated alleviation of inflammation by berberine: in vitro, in silico and in vivo investigations. Food Funct 2021; 12:11974-11986. [PMID: 34747965 DOI: 10.1039/d1fo01612a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As a natural dietary ingredient, berberine possesses multiple biological activities including anti-inflammatory effects. In this work, glucocorticoid receptor (GR)-mediated alleviation of inflammation by berberine was investigated by a combination of in vitro, in silico, and in vivo approaches. The fluorescence polarization assay showed that berberine bound to GR with an IC50 value of 9.14 ± 0.16 pM. Molecular docking and molecular dynamics simulation suggested that berberine bound stably to the active site of GR via hydrogen bonding and hydrophobic interactions. Berberine induced GR nuclear translocation but did not activate the glucocorticoid response element in HeLa cells. Furthermore, both gene and protein expressions of PEPCK were significantly attenuated by berberine in HepG2 cells. Interestingly, berberine downregulated CBG mRNA and protein levels without up-regulating TAT mRNA and protein levels in HepG2 cells, demonstrating its dissociated characteristics that could separate transrepression from transactivation. In addition, the in vitro and in vivo anti-inflammatory effects of berberine were confirmed in lipopolysaccharide-induced RAW 264.7 cells and in a mouse model of allergic contact dermatitis, respectively. In conclusion, berberine might serve as a potential selective GR modulator.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Chenfei Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Fangyu Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
26
|
Deng X, Wang Y, Tian L, Yang M, He S, Liu Y, Khan A, Li Y, Cao J, Cheng G. Anneslea fragrans Wall. ameliorates ulcerative colitis via inhibiting NF-κB and MAPK activation and mediating intestinal barrier integrity. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114304. [PMID: 34116185 DOI: 10.1016/j.jep.2021.114304] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/10/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anneslea fragrans Wall. is traditionally used as a folk medicine in treating indigestion, fever, dysentery, diarrhea, and liver inflammation in China, Vietnam and Cambodia. However, its anti-inflammatory activity and mechanism under a safety therapeutic dose as well as the main chemical components have not yet been fully investigated. AIM OF THE STUDY This study aimed to explore the therapeutic effect and possible molecular mechanisms of aqueous-methanol extract (AFE) of A. fragrans leaves on dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) mice and illustrate its potent anti-inflammatory chemical compounds. MATERIALS AND METHODS The AFE was obtained and then analyzed by high performance liquid chromatography (HPLC). Phytochemical investigation on the AFE was carried out to isolate and characterize its major components. The acute toxicity test was performed to provide the safety information of AFE. Subsequently, the protective effect of AFE on DSS-induced UC was evaluated by physiological changes, histopathological and immunohistochemical analysis, and the expressions of antioxidant enzyme, pro-inflammatory cytokines and anti-inflammatory cytokines. The expressions of target proteins in nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) were determined by western blot analysis. The tight junction (TJ) proteins in colon tissue were performed by immunohistochemical technique for evaluating the intestinal barrier integrity. RESULTS HPLC guided isolation of AFE resulted into two dihydrochalcones, which were elucidated as vacciniifolin (1) and confusoside (2). Acute toxicity evaluation revealed that median lethal dose (LD50) of AFE was greater than 5000 mg/kg. Furthermore, AFE significantly attenuated ulcerative colitis symptoms, suppressed myeloperoxidase activity, and increased the expression of superoxide dismutase and glutathione. AFE treatment could also reduce the levels of tumor necrosis factor-α, interleukin-1β, and interleukin-6 and increase the levels of interleukin-4 and interleukin-10 in colon tissues and serum of DSS-induced UC mice. In addition, AFE significantly increased the expression of zonula occludens-1, occludin and claudin-1, and inhibited the phosphorylation of target protein of the NF-κB and MAPK signaling pathways in colon tissue. CONCLUSION Dihydrochalcone glycosides are the major chemical constituents in AFE. AFE ameliorated DSS-induced UC in mice by inhibiting the inflammatory response via modulation of NF-κB and MAPK pathways and maintaining the intestinal barrier function, indicating that the plant A. fragrans could be used as a therapeutic candidate for ulcerative colitis.
Collapse
Affiliation(s)
- Xiaocui Deng
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yudan Wang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Lei Tian
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Meilian Yang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Shuyue He
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yaping Liu
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Yanping Li
- College of Pharmaceutic Science, Yunnan University of Traditional Chinese Medicine, Kunming, 650000, China
| | - Jianxin Cao
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Guiguang Cheng
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
27
|
Yang M, Wang Y, Fan Z, Xue Q, Njateng GSS, Liu Y, Cao J, Khan A, Cheng G. Chemical constituents and anti-inflammatory activity of the total alkaloid extract from Melodinus cochinchinensis (Lour.) Merr. and its inhibition of the NF-κB and MAPK signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153684. [PMID: 34400050 DOI: 10.1016/j.phymed.2021.153684] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/29/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Melodinus cochinchinensis (Lour.) Merr. is a medicinal plant, which is used as a folk medicine for treating meningitis and fractures. However, the anti-inflammatory activity of total alkaloid extract from M. cochinchinensis (MCTA) and its molecular mechanism are still not studied. PURPOSE The aim of this study is to investigate the main chemical constituents of MCTA and explore its anti-inflammatory potential in both in vitro and in vivo assessments. METHODS UHPLC-ESI-HRMS/MS was applied to analyze the chemical profiling. The anti-inflammatory efficacy of MCTA was evaluated on lipopolysaccharide (LPS) induced RAW 264.7 cells and two common inflammation models in mice. The production of pro-inflammatory mediator and cytokine was tested using the ELISA method. The pathological change was analyzed by histological assessment. The expression of NF-κB, MAPKs and PPAR-γ proteins was evaluated using western blot analysis. RESULTS A total of 21 monoterpenoid indole alkaloids (MIAs) were characterized by UHPLC-ESI-HRMS/MS. Aspidospermine- and quinolone-type alkaloids were found to be the major compounds. MCTA significantly decreased the production of NO, IL-1β, IL-6 and TNF-α in LPS-induced RAW 264.7 macrophages. MCTA significantly inhibited the phosphorylation of ERK1/2, JNK and p38 MAPK, suppressed the NF-κB transcriptional activation and improved the PPAR-γ expression. Moreover, the in vivo experiment exhibited that MCTA pretreatment markedly alleviated the xylene-induced ear edema and carrageenan-induced paw edema in mice and decreased the IL-1β, IL-6 and TNF-α expressions. CONCLUSION MCTA is rich in MIAs and exhibited a significant inhibitory effect on the production proinflammatory cytokines. The mechanism might be related to the inhibition of activation of NF-κB and MAPK pathways.
Collapse
Affiliation(s)
- Meilian Yang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
| | - Yudan Wang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhifeng Fan
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
| | - Qingwang Xue
- Department of Chemistry, Liaocheng University, Liaocheng 252059 Shandong, China
| | - Guy Sedar Singor Njateng
- Department of Biochemistry, Faculty of science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Yaping Liu
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
| | - Jianxin Cao
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Guiguang Cheng
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
28
|
Tian Y, Zhou S, Takeda R, Okazaki K, Sekita M, Sakamoto K. Anti-inflammatory activities of amber extract in lipopolysaccharide-induced RAW 264.7 macrophages. Biomed Pharmacother 2021; 141:111854. [PMID: 34229253 DOI: 10.1016/j.biopha.2021.111854] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/14/2021] [Accepted: 06/24/2021] [Indexed: 12/17/2022] Open
Abstract
Amber is a type of fossil tree resin with several bioactive properties and has been traced in traditional medicines used in Russia and China. However, its anti-inflammatory activities are poorly characterized. Here, the anti-inflammatory effects of the extract of amber mined from Kaliningrad, Russia was investigated in lipopolysaccharide (LPS)-induced RAW 264.7 cells. The effect of the amber extract on cell viability was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Further, its effects on the production of intracellular reactive oxygen species (ROS), NO, and inflammatory cytokines were assessed by 2',7'-dichlorodihydrofluorescein diacetate staining, Griess test, and cytokine enzyme-linked immunosorbent assays, respectively. Western blotting and real-time reverse transcription-polymerase chain reaction analysis were performed to assess the mRNA and protein expression levels of the inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) interleukin-6 (IL-6), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). The translocation of the nuclear factor-kappa B (NF-κB) p65 subunit was observed by immunofluorescent staining. Amber extract negatively regulated the LPS-induced differentiation of RAW 264.7 cells to dendritic-like cells and reduced the LPS-induced increase in ROS and NO levels. It also reduced the level of mRNA and protein expressions of TNF-α, IL-6, COX-2, and iNOS in LPS-induced RAW 264.7 macrophages, in a dose-dependent manner. Furthermore, amber extract suppressed the nuclear translocation of the NF-κB p65 subunit. These findings suggest that the potent anti-inflammatory effect of the amber extract is mediated by the inhibition of the NF-κB p65 signaling pathway. Collectively, this study renders amber extract as a potential pharmacological alternative to treat inflammation-related diseases.
Collapse
Affiliation(s)
- Yuan Tian
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Siqi Zhou
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Reiko Takeda
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan; Kohaku Bio Technology Co., Ltd., Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuma Okazaki
- Kohaku Bio Technology Co., Ltd., Tsukuba, Ibaraki 305-8572, Japan
| | - Marie Sekita
- Kohaku Bio Technology Co., Ltd., Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuichi Sakamoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
29
|
Zhang J, Zhao J, Sun Y, Liang Y, Zhao J, Zou H, Zhang T, Ren L. GR-mediated anti-inflammation of α-boswellic acid: Insights from in vitro and in silico studies. Food Chem Toxicol 2021; 155:112379. [PMID: 34197882 DOI: 10.1016/j.fct.2021.112379] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022]
Abstract
Although multiple bioactivities of α-boswellic acid have been reported, the molecular mechanism of its anti-inflammatory action is not yet clear. Hence, glucocorticoid receptor (GR)-mediated anti-inflammation of α-boswellic acid was investigated in this work. Fluorescence polarization assay suggested that α-boswellic acid bound to GR with IC50 value of 658.00 ± 0.21 μM. Upon binding to α-boswellic acid, GR translocated from cytoplasm into nucleus of HeLa cells, facilitating sequential transcriptional regulation of GR-related genes. Luciferase reporter assay suggested that α-boswellic acid lacked GR transcriptional activity, indicating its potential as a dissociative GR ligand. Interestingly, α-boswellic acid selectively modulated the anti-inflammatory gene CBG (marker for GR transrepression), while leaving the "side-effect" gene TAT (marker for GR transactivation) unaffected in HepG2 cells. Furthermore, α-boswellic acid inhibited lipopolysaccharide-stimulated cytokines production in U937 macrophages, confirming its anti-inflammation property in vitro. Molecular docking showed that both hydrogen-bonding and hydrophobic interactions helped to stabilize α-boswellic acid-GR binding. Their binding stability was further confirmed in a 70-ns dynamics simulation. In summary, α-boswellic acid could bind to and translocate GR but did not induce glucocorticoid response element-mediated transcription. Since α-boswellic acid showed the dissociated characteristic that separated transrepression from transactivation, it might be a selective GR modulator against inflammatory disorders.
Collapse
Affiliation(s)
- Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jiarui Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yantong Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
30
|
Jiang M, Xue Y, Li J, Rao K, Yan S, Li H, Chen X, Li R, Liu D. PKCδ/MAPKs and NF-κB Pathways are Involved in the Regulation of Ingenane-Type Diterpenoids from Euphorbia neriifolia on Macrophage Function. J Inflamm Res 2021; 14:2681-2696. [PMID: 34234502 PMCID: PMC8243765 DOI: 10.2147/jir.s306846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Euphorbia neriifolia Linn. has important medicinal value in the treatment of ulcers, tumors, inflammation, chronic respiratory troubles, and so on. Although many ingredients with anti-inflammatory activity have been discovered and isolated from the Euphorbia neriifolia, the current research still cannot explain its multivariate effects on the immune response. This article aims to introduce two Ingenane-type diterpenoids from Euphorbia neriifolia with macrophage regulatory effects and to investigate the mechanism of their action. METHODS The stem bark of E. neriifolia was extracted with various separation methods to obtain ingenane-type diterpenoids. The RAW264.7 cells were treated with lipopolysaccharide (LPS, 1 μg/mL) to establish an inflammatory cell model. The cell viability was detected by MTT assay. The secretion of PGE2, TNF-α, IL-1β, and IL-6 was tested with ELISA. The levels of iNOS, COX-2, IκBα, JNK, ERK, p38, p-IκBα, p-JNK, p-ERK, and p-p38 in cells were detected by Western blotting. The translocation of nuclear factor-kappa B (NF-κB)/p65 subunit were evaluated by Immunofluorescence staining. RESULTS Ingenane-type diterpenoids, eurifoloid A (Euri A) and a new compound euphorneroid E (Euph E), were isolated from the EtOAc fraction of E. neriifolia stem bark extracts. Euph E and Euri A exhibited significant inhibition on the levels of pro-inflammatory mediators NO, IL-1β, IL-6, and iNOS on LPS-induced macrophage RAW264.7. Cellular signaling pathway studies showed that they prevented the degradation of IκBα and the translocation of NF-κB/p65 subunit. Furthermore, the production of PGE2, TNFα, and COX-2 was dramatically increased under the influence of the compounds, which were closely related to the phosphorylation of protein kinase C δ (PKCδ) and activation of mitogen-activated protein kinase (MAPKs) signaling pathway. CONCLUSION These results demonstrated that Euph E and Euri A exhibited multidirectional regulation on cytokines and immune function of macrophages, in addition to a good anti-inflammatory activity, and which was closely related to the regulation of PKCδ/MAPKs and NF-κB signal pathways.
Collapse
Affiliation(s)
- Mingyan Jiang
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Yong Xue
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Jianchun Li
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Kairui Rao
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Shili Yan
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Hongmei Li
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Xuanqin Chen
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Rongtao Li
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Dan Liu
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| |
Collapse
|
31
|
Yahaya MAF, Bakar ARA, Stanslas J, Nordin N, Zainol M, Mehat MZ. Insights from molecular docking and molecular dynamics on the potential of vitexin as an antagonist candidate against lipopolysaccharide (LPS) for microglial activation in neuroinflammation. BMC Biotechnol 2021; 21:38. [PMID: 34090414 PMCID: PMC8178909 DOI: 10.1186/s12896-021-00697-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/12/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Neuroinflammation has been identified to be the key player in most neurodegenerative diseases. If neuroinflammation is left to be unresolved, chronic neuroinflammation will be establish. Such situation is due to the overly-activated microglia which have the tendency to secrete an abundance amount of pro-inflammatory cytokines into the neuron microenvironment. The abundance of pro-inflammatory cytokines will later cause toxic and death to neurons. Toll-like receptor 4 (TLR4)/MD-2 complex found on the cell surface of microglia is responsible for the attachment of LPS and activation of nuclear factor-κB (NF-κB) downstream signalling pathway. Albeit vitexin has been shown to possess anti-inflammatory property, however, little is known on its ability to bind at the binding site of TLR4/MD-2 complex of microglia as well as to be an antagonist for LPS. RESULTS The present study reveals that both vitexin and donepezil are able to bind at the close proximity of LPS binding site located at the TLR4/MD-2 complex with the binding energy of - 4.35 and - 9.14 kcal/mol, respectively. During molecular dynamic simulations, both vitexin and donepezil formed stable complex with TLR4/MD-2 throughout the 100 ns time length with the root mean square deviation (RMSD) values of 2.5 Å and 4.0 Å, respectively. The root mean square fluctuation (RMSF) reveals that both compounds are stable. Interestingly, the radius of gyration (rGyr) for donepezil shows notable fluctuations when compare with vitexin. The MM-GBSA results showed that vitexin has higher binding energy in comparison with donepezil. CONCLUSIONS Taken together, the findings suggest that vitexin is able to bind at the binding site of TLR4/MD-2 complex with more stability than donepezil throughout the course of 100 ns simulation. Hence, vitexin has the potential to be an antagonist candidate for LPS.
Collapse
Affiliation(s)
- M A F Yahaya
- Department of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - A R Abu Bakar
- Department of Chemical Engineering Technology, Faculty of Engineering Technology, Universiti Malaysia Perlis (UniMAP), 01000, Kangar, Perlis, Malaysia
| | - J Stanslas
- Department of Medicine, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - N Nordin
- Department of Obstetrics & Gynaecology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - M Zainol
- Bioassay Unit, Herbal Medicine Research Centre (HMRC), Institute for Medical Research (IMR), National Institute of Health (NIH), Jalan Setia Murni U13/52, Seksyen U13, Bandar Setia Alam, 40170, Shah Alam, Selangor, Malaysia
| | - M Z Mehat
- Department of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
32
|
Du P, Song J, Qiu H, Liu H, Zhang L, Zhou J, Jiang S, Liu J, Zheng Y, Wang M. Polyphenols Extracted from Shanxi-Aged Vinegar Inhibit Inflammation in LPS-Induced RAW264.7 Macrophages and ICR Mice via the Suppression of MAPK/NF-κB Pathway Activation. Molecules 2021; 26:molecules26092745. [PMID: 34067016 PMCID: PMC8124351 DOI: 10.3390/molecules26092745] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/27/2022] Open
Abstract
Shanxi-aged vinegar, a traditional Chinese grain-fermented food that is rich in polyphenols, has been shown to have therapeutic effects on a variety of diseases. However, there has been no comprehensive evaluation of the anti-inflammatory activity of polyphenols extracted from Shanxi-aged vinegar (SAVEP) to date. The anti-inflammatory activities of SAVEP, both in RAW 264.7 macrophages and mice, were extensively investigated for the potential application of SAVEP as a novel anti-inflammatory agent. In order to confirm the notion that polyphenols could improve inflammatory symptoms, SAVEP was firstly detected by gas chromatography mass spectrometry (GC-MS). In total, 19 polyphenols were detected, including 12 phenolic acids. The study further investigated the protective effect of SAVEP on lipopolysaccharide-induced inflammation in RAW264.7 macrophages and ICR mice. The results showed that compared with those of the model group, SAVEP could remarkably recover the inflammation of macrophage RAW264.7 and ICR mice. SAVEP can normalise the expression of related proteins via the suppression of MAPK/NF-κB pathway activation, inhibiting the expression of iNOS and COX-2 proteins, and consequently the production of inflammatory factors, thus alleviating inflammatory stress. These results suggest that SAVEP may have a potential function against inflammation.
Collapse
Affiliation(s)
- Peng Du
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China; (P.D.); (H.Q.); (H.L.); (L.Z.); (J.Z.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jia Song
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China; (P.D.); (H.Q.); (H.L.); (L.Z.); (J.Z.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Correspondence: (J.S.); (Y.Z.); (M.W.); Tel.: +86-022-60601256 (J.S.); +86-022-60601256 (Y.Z.); +86-022-60600045 (M.W.)
| | - Huirui Qiu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China; (P.D.); (H.Q.); (H.L.); (L.Z.); (J.Z.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haorui Liu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China; (P.D.); (H.Q.); (H.L.); (L.Z.); (J.Z.)
| | - Li Zhang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China; (P.D.); (H.Q.); (H.L.); (L.Z.); (J.Z.)
| | - Junhan Zhou
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China; (P.D.); (H.Q.); (H.L.); (L.Z.); (J.Z.)
| | - Shengping Jiang
- Research Center for Modern Analysis Techniques, Tianjin University of Science & Technology, Tianjin 300457, China; (S.J.); (J.L.)
| | - Jinyu Liu
- Research Center for Modern Analysis Techniques, Tianjin University of Science & Technology, Tianjin 300457, China; (S.J.); (J.L.)
| | - Yu Zheng
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China; (P.D.); (H.Q.); (H.L.); (L.Z.); (J.Z.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Correspondence: (J.S.); (Y.Z.); (M.W.); Tel.: +86-022-60601256 (J.S.); +86-022-60601256 (Y.Z.); +86-022-60600045 (M.W.)
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China; (P.D.); (H.Q.); (H.L.); (L.Z.); (J.Z.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Correspondence: (J.S.); (Y.Z.); (M.W.); Tel.: +86-022-60601256 (J.S.); +86-022-60601256 (Y.Z.); +86-022-60600045 (M.W.)
| |
Collapse
|
33
|
Zhang Z, Jiang S, Tian H, Zeng Y, He K, Lin L, Yu F. Ethyl acetate fraction from Nymphaea hybrida Peck modulates inflammatory responses in LPS-stimulated RAW 264.7 cells and acute inflammation murine models. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113698. [PMID: 33338590 DOI: 10.1016/j.jep.2020.113698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nymphaea hybrida Peck is used as a traditional medicinal herb for treating pain and inflammatory diseases, and known for its ornamental value and as a hot drink. However, the effects of N. hybrida polar fractions on lipopolysaccharide (LPS)-induced in vitro inflammation model and acute inflammation murine models have yet to be evaluated. AIM OF THE STUDY The aim of this study was to elucidate the anti-inflammatory effects of N. hybrida ethanol extract (NHE) and its polar fractions: petroleum ether (PE), methylene chloride (MC), ethyl acetate (EA), methanol (ME), and water (WA). The underlying molecular mechanisms of active fraction in LPS-stimulated RAW 264.7 murine macrophages were further investigated. MATERIAL AND METHODS Fractions with potential anti-inflammatory effects were screened using direct nitric oxide (NO) radical scavenging and cyclooxygenase (COX)-2 inhibition assays in vitro. The anti-inflammatory properties of potential fraction were evaluated in LPS-stimulated RAW264.7 cells, xylene-induced ear edema, carrageenan-induced paw edema and xylene-induced Evans blue exudation of acute inflammation murine models. The regulation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways were investigated using western blotting and immunofluorescence. RESULTS Compared to other polar fractions, NHE-EA displayed higher phenol and flavonoid content, and exerted greater activity in direct NO radical scavenging and COX-2 inhibition assay in vitro. NHE-EA markedly decreased the levels of inflammatory mediators, NO and prostaglandin E2 (PGE2), by suppressing the over-expression of inducible nitric oxide synthase (iNOS) and COX-2 in LPS-stimulated RAW264.7 cells. The NHE-EA fraction dose-dependently alleviated over-elevation of LPS-associated intracellular calcium and decreased the abnormal secretion of pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and interferon-γ (IFN-γ). The combination with NHE-EA effectively attenuated the activation and nuclear translocation of NF-κB p65, and the phosphorylation of extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinases (JNK), and p38 kinases of MAPK pathways. NHE-EA could significantly ameliorate the degree of swelling of the mice ear and paw, the skin exudation of Evans blue and the excessive secretion of inflammatory cytokines. CONCLUSION Our results demonstrated that NHE-EA was the most active polar fraction of N. hybrida extracts. It inhibited the LPS-associated inflammatory response by blocking the activation of NF-κB and MAPKs pathways in RAW264.7 cells. It also effectively alleviated the inflammatory response of acute inflammation. These results indicated the role of NHE-EA as adjuvants and their potential role in alternative strategy for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Zhuangwei Zhang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan, 316000, People's Republic of China.
| | - Shuoqi Jiang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan, 316000, People's Republic of China.
| | - Hengqun Tian
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan, 316000, People's Republic of China.
| | - Yu Zeng
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan, 316000, People's Republic of China.
| | - Kang He
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan, 316000, People's Republic of China.
| | - Lin Lin
- ZhouShan Academy of Agriculture Sciences, Zhoushan, 316022, China
| | - Fangmiao Yu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan, 316000, People's Republic of China.
| |
Collapse
|
34
|
Li FR, Liu L, Liu YP, Wang JT, Yang ML, Khan A, Qin XJ, Wang YD, Cheng GG. HRESIMS-guided isolation of aspidosperma-scandine type bisindole alkaloids from Melodinus cochinchinensis and their anti-inflammatory and cytotoxic activities. PHYTOCHEMISTRY 2021; 184:112673. [PMID: 33556841 DOI: 10.1016/j.phytochem.2021.112673] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
The Melodinus species have been proved to be good resources of bisindole alkaloids. Six bisindole alkaloids were isolated from the leaves and stems of Melodinus cochinchinensis (Lour.) Merr. guided by HRESIMS data analysis. Among them, melokhanines K-M, epi-scandomelonine, and epi-scandomeline possessed aspidosperma-scandine skeleton linked by a C-C bond while meloyine II had a scandine-scandine skeleton. The structures were established by extensive spectroscopic analysis of their HRESIMS and NMR data. Melokhanines K-M were undescribed compounds, while epi-scandomelonine, epi-scandomeline and meloyine II were known compounds, which were reported from Melodinus species for the first time. The anti-inflammatory and cytotoxic activities of the isolates were also evaluated in vitro. Melokhanine K and meloyine II showed potent inhibitory activity on the production of nitric oxide, interleukin-6, and tumor necrosis factor-α in LPS-induced RAW 264.7 macrophages, whereas epi-scandomelonine and epi-scandomeline exhibited certain cytotoxic activity against MOLT-4 cells with IC50 values 5.2 and 1.5 μM, respectively.
Collapse
Affiliation(s)
- Fang-Ru Li
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Lu Liu
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China; Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Ya-Ping Liu
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jin-Tang Wang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Mei-Lian Yang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Xu-Jie Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yu-Dan Wang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, China.
| | - Gui-Guang Cheng
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
35
|
Wang Y, Tian L, Wang Y, Zhao T, Khan A, Wang Y, Cao J, Cheng G. Protective effect of Que Zui tea hot-water and aqueous ethanol extract against acetaminophen-induced liver injury in mice via inhibition of oxidative stress, inflammation, and apoptosis. Food Funct 2021; 12:2468-2480. [PMID: 33650604 DOI: 10.1039/d0fo02894k] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tender leaves and buds of Vaccinium dunalianum Wight have been traditionally processed as folk tea, known as Que Zui tea (QT), with a wide range of benefits to humans. In this study, Que Zui tea hot-water extract (QTW) and aqueous-ethanol extract (QTE) were tested for their effectiveness to alleviate acetaminophen (APAP)-induced liver damage. QTW and QTE significantly inhibited the alanine aminotransaminase, aspartate aminotransaminase, tumor necrosis factor-α, interleukin-6, and interleukin-1β levels in the serum. Both extracts also ameliorated pathological damage and inhibited oxidative stress in the liver of APAP-induced mice. In addition, QTW and QTE activated the nuclear erythroid related factor 2 signal pathway, and inhibited mitogen-activated protein kinase activation. QTW and QTE also suppressed hepatocyte apoptosis by improvement of Bcl-2/Bax and inhibition of caspase-3 and caspase-9 expression. The results demonstrated that QTW and QTE could effectively protect APAP hepatotoxicity, which might be attributed to their antioxidant, anti-inflammatory and anti-apoptosis activities.
Collapse
Affiliation(s)
- Yongpeng Wang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Gan DL, Yao Y, Su HW, Huang YY, Shi JF, Liu XB, Xiang MX. Volatile Oil of Platycladus Orientalis (L.) Franco Leaves Exerts Strong Anti-inflammatory Effects via Inhibiting the IκB/NF-κB Pathway. Curr Med Sci 2021; 41:180-186. [PMID: 33582924 DOI: 10.1007/s11596-020-2301-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/20/2020] [Indexed: 01/16/2023]
Abstract
This study was designed to investigate the anti-inflammatory effects of volatile oil of Platycladus orientalis (L.) Franco leaves (VOPF) and the underlying molecular mechanisms by using the non-infectious inflammation rat models and infectious inflammation mouse models. Ear swelling and intraperitoneal capillary permeability in mice, and carrageenan-induced toe swelling and cotton ball-induced granuloma in rats were used to reveal anti-inflammatory effects of VOPF. Moreover, the lipopolysaccharide (LPS)-induced mouse model of acute lung injury was used to explore the anti-inflammatory mechanism of VOPF. The results showed that VOPF could significantly inhibit auricular swelling, intraperitoneal capillary permeability in mice, and reduce granuloma swelling and paw swelling in rats. Furthermore, it significantly alleviated the pathological damage of the lung tissue. In addition, VOPF could reduce the contents of IL-1β and TNF-α and increase the content of IL-10 in the serum. It had little effect on the expression of p65 but reduced the phosphorylation level of p65 and IκB in NF-κB pathway. In conclusion, VOPF has anti-inflammatory effects and the mechanisms involve the down-regulation of the phosphorylation levels of p65 and IκB and blockage of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Da-Li Gan
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Yan Yao
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Han-Wen Su
- Department of Laboratory Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu-Ying Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Jun-Feng Shi
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Xiong-Biao Liu
- Department of Dermatology, Tianmen First People's Hospital, Tianmen, 431700, China.
| | - Mei-Xian Xiang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China.
| |
Collapse
|
37
|
Liu L, Xie MJ, Zhou WB, Wang JT, Wang JY, Khan A, Liu YP, Cao JX, Cheng GG, Mao WY. Potent immunosuppressive and anti-inflammatory bisindole alkaloids from Melodinus fusiformis. Nat Prod Res 2021; 36:1536-1542. [PMID: 33567911 DOI: 10.1080/14786419.2021.1883604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Phytochemical investigation of Melodinus fusiformis led to a new aspidosperma-aspidosperma bisindole alkaloid (BIA), bis-19β-hydroxyvenalstonidine (1), together with three known BIAs (2-4). The structures were established by extensive analysis of their HRESIMS, NMR data, and comparing with the reported data. BIA 1 is an almost symmetrical structure, linked by C3-C14' bond, while BIAs 2-4 are reported for the first time from the plant. The cytotoxic, immunosuppressive and anti-inflammatory activities of BIAs 1-4 were evaluated in vitro. BIAs 1, 3 and 4 showed good toxicity against MOLT-4 cell lines with IC50 values in the range of 1.5-17.5 -M. BIA 2 exhibited the strongest inhibitory effect against MCF-7 cell lines with an IC50 value of 7.1 μM. BIA 1 significantly inhibited Con A-stimulated mice splenocytes proliferation equal to that of the positive control (DXM) in a concentration-dependent manner. BIAs 1 and 2 were able to decrease the NO production in LPS-induced RAW 264.7 cells at 30 μM concentration. BIA 2 showed similar inhibition of nitric oxide release, compared to that of DXM. Furthermore, BIA 2 remarkably inhibited the levels of IL-6 and TNF-α compared to the LPS induced group. Interestingly, BIA 2 displayed an inhibitory effect on TNF-α production similar to that of dexamethasone at a concentration of 20 μM.
Collapse
Affiliation(s)
- Lu Liu
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, China.,Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Ming-Jun Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | | | - Jin-Tang Wang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, China
| | - Jia-Yi Wang
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Ya-Ping Liu
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, China
| | - Jian-Xin Cao
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, China
| | - Gui-Guang Cheng
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, China
| | - Wen-Yuan Mao
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|