1
|
El-Seedi HR, El-Wahed AAA, Salama S, Agamy N, Altaleb HA, Du M, Saeed A, Di Minno A, Wang D, Daglia M, Guo Z, Zhang H, Khalifa SAM. Natural Remedies and Health; A Review of Bee Pollen and Bee Bread Impact on Combating Diabetes and Obesity. Curr Nutr Rep 2024; 13:751-767. [PMID: 39302593 DOI: 10.1007/s13668-024-00567-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE OF THE REVIEW Diabetes and obesity are complicated multifactorial conditions that have been highlighted as a significant global burden for both health care and national budgets and their complications are considered a substantial public health concern. This review focuses on the potential anti-diabetic and anti-obesity properties of bee pollen (BP) and bee bread (BB), two bee products with a long history of use in traditional medicine and supplemental nutrition. RECENT FINDINGS Recent studies, encompassing cellular models, experimental models, and clinical trials, have shed light on the therapeutic potential of these bee products. BP and BB are rich in phytochemical constituents like flavonoids and phenolic acids, which are believed to confer their anti-oxidant, anti-inflammatory, anti-cancer, anti-diabetic, and anti-obesity properties. These bee products have shown promising results in the treatment of diabetes and obesity, underscoring their potential as natural therapeutic tools. BP and BB possess properties that aid in decreasing blood glucose levels and body weight. BP and BB have been found to enhance insulin sensitivity, alleviate oxidative stress, regulate appetite, adjust levels of hormones linked to obesity, while bolstering anti-oxidant defense systems. BP and BB nutritional qualities and health benefits make them promising candidates for further research towards diabetes and obesity treatment strategies.
Collapse
Affiliation(s)
- Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, 42351, Madinah, Saudi Arabia.
| | - Aida A Abd El-Wahed
- Department of Bee Research, Agricultural Research Centre, Plant Protection Research Institute, Giza, 12627, Egypt
| | - Suzy Salama
- Indigenous Knowledge and Heritage Center, Ghibaish College of Science and Technology, Ghibaish, Sudan
| | - Neveen Agamy
- Nutrition Department, Food Analysis Division, High Institute of Public Health, Alexandria University, Alexandria, 21561, Egypt
| | - Hamud A Altaleb
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, 42351, Madinah, Saudi Arabia.
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116024, China
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Alessandro Di Minno
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Daijie Wang
- Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze, 274000, China
| | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Hongcheng Zhang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Shaden A M Khalifa
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
- Neurology and Psychiatry Department, Capio Saint Göran's Hospital, Sankt Göransplan 1, 112 19, Stockholm, Sweden.
| |
Collapse
|
2
|
Arruda VM, Azevedo GT, Granato MJMG, Matos ACP, Araújo TG, Guerra JFDC. Oxidative Stress and Annexin A2 Differential Expression in Free Fatty Acids-Induced Non-Alcoholic Fatty Liver Disease in HepG2 Cells. Int J Mol Sci 2024; 25:9591. [PMID: 39273539 PMCID: PMC11395542 DOI: 10.3390/ijms25179591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a rising global burden, affecting one in four adults. Despite the increasing prevalence of NAFLD, the exact cellular and molecular mechanisms remain unclear, and effective therapeutic strategies are still limited. In vitro models of NAFLD are critical to understanding the pathogenesis and searching for effective therapies; thus, we evaluated the effects of free fatty acids (FFAs) on NAFLD hallmarks and their association with the modulation of Annexin A2 (ANXA2) and Keratin 17 (KRT17) in HepG2 cells. Our results show that oleic and palmitic acids can differentially induce intracellular lipid accumulation, cell death, and promote oxidative stress by increasing lipid peroxidation, protein carbonylation, and antioxidant defense depletion. Moreover, a markedly increased expression of inflammatory cytokines demonstrated the activation of inflammation pathways associated with lipotoxicity and oxidative stress. ANXA2 overexpression and KRT17 nuclear translocation were also observed, supporting the role of both molecules in the progression of liver disease. Taken together, these data provide insights into the interplay between ANXA2 and KRT17 in NAFLD, paving the way for understanding molecular mechanisms involved with the disease and developing new therapeutic strategies.
Collapse
Affiliation(s)
- Vinícius Marques Arruda
- Laboratory of Metabolic Biochemistry and Redox Processes, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas 38700-002, Brazil; (V.M.A.); (G.T.A.); (M.J.M.G.G.)
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas 38700-002, Brazil; (A.C.P.M.); (T.G.A.)
| | - Gabriela Tolentino Azevedo
- Laboratory of Metabolic Biochemistry and Redox Processes, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas 38700-002, Brazil; (V.M.A.); (G.T.A.); (M.J.M.G.G.)
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas 38700-002, Brazil; (A.C.P.M.); (T.G.A.)
| | - Maria Júlia Maia Gonçalves Granato
- Laboratory of Metabolic Biochemistry and Redox Processes, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas 38700-002, Brazil; (V.M.A.); (G.T.A.); (M.J.M.G.G.)
| | - André Carlos Pereira Matos
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas 38700-002, Brazil; (A.C.P.M.); (T.G.A.)
| | - Thaise Gonçalves Araújo
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas 38700-002, Brazil; (A.C.P.M.); (T.G.A.)
| | - Joyce Ferreira da Costa Guerra
- Laboratory of Metabolic Biochemistry and Redox Processes, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas 38700-002, Brazil; (V.M.A.); (G.T.A.); (M.J.M.G.G.)
| |
Collapse
|
3
|
Ye Z, Xiong H, Huang L, Zhao Q, Xiong Z, Zhang H, Zhang W. Mechanisms underlying the combination effect of arsenite and high-fat diet on aggravating liver injury in mice. ENVIRONMENTAL TOXICOLOGY 2024; 39:1323-1334. [PMID: 37955338 DOI: 10.1002/tox.24037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/23/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Arsenic (As) is a highly toxic metalloid that can be found in insufficiently purified drinking water and exerts adverse effects on the physiology of living organisms that can negatively affect human health after subchronic exposure, causing several diseases, such as liver damage. A high-fat diet, which is increasing in frequency worldwide, can aggravate hepatic pathology. However, the mechanisms behind liver injury caused by the combinatory effects of As exposure and a high-fat diet remain unclear. In this study, we investigated such underlying mechanisms by focusing on three different aspects: As biotransformation, pathological liver damage, and differential expression of signaling pathway components. We employed mice that were fed a regular diet or a high-fat diet and exposed them to a range of arsenite concentrations (As(III), 0.05-50 mg/L) for 12 weeks. Our results showed that a high-fat diet increased the absorption of As into the liver and enhanced liver toxicity, which became progressively more severe as the As concentration increased. Co-exposure to a high-fat diet and As(III) activated PI3K/AKT and PPAR signaling as well as fatty acid metabolism pathways. In addition, the expression of proteins related to lipid cell function, lipid metabolism, and the regulation of body weight was also affected. Our study provides insights into the mechanisms that contribute to liver injury from subchronic combinatory exposure to As and a high-fat diet and showcases the importance of a healthy lifestyle, which may be of particular benefit to people living in areas with high As(III) concentrations, as a means to reduce or prevent aggravated liver damage.
Collapse
Affiliation(s)
- Zijun Ye
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Haiyan Xiong
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of Environment and Ecology, Xiamen University, Xiamen, China
| | - Liping Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Qianyu Zhao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Zhu Xiong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Wei Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| |
Collapse
|
4
|
Ge S, Lian W, Bai Y, Wang L, Zhao F, Li H, Wang D, Pang Q. TMT-based quantitative proteomics reveals the targets of andrographolide on LPS-induced liver injury. BMC Vet Res 2023; 19:199. [PMID: 37817228 PMCID: PMC10563216 DOI: 10.1186/s12917-023-03758-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Andrographolide (Andro) is a diterpenoid derived from Andrographis paniculate, which has anti-inflammatory, antibacterial, antiviral and hepatoprotective activities. Gram-negative bacterial infections can cause varying degrees of liver injury in chickens, although Andro has been shown to have a protective effect on the liver, its underlying mechanism of action and effects on liver proteins are not known. METHODS The toxicity of Andro on the viability of leghorn male hepatoma (LMH) cells at different concentrations and times was analyzed by CCK-8 assays. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in the culture supernatants were measured using an automatic biochemical analyzer to evaluate the protective effect of androscopolide on LPS-induced injury of LMH cells. Subsequently, TMT proteomics analysis were performed on the negative control group (NC group), LPS, and LPS-Andro groups, and bioinformatics analysis was performed on the differentially expressed proteins (DEPs). RESULTS It was found that Andro reduced ALT and AST levels in the cell supernatant and alleviated LPS-induced injury in LMH cells. Proteomic analysis identified 50 and 166 differentially expressed proteins in the LPS vs. NC group and LPS-Andro vs. LPS group, respectively. Andro may be involved in steroid metabolic processes, negative regulation of MAPK cascade, oxidative stress, and other processes to protect against LPS-induced liver injury. CONCLUSIONS Andro protects against LPS-induced liver injury, HMGCS1, HMGCR, FDPS, PBK, CAV1, PRDX1, PRDX4, and PRDX6, which were identified by differential proteomics, may be the targets of Andro. Our study may provide new theoretical support for Andro protection against liver injury.
Collapse
Affiliation(s)
- Shihao Ge
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- College of Pharmacy, Heze University, Heze, 274000, Shangdong, China
| | - Wenqi Lian
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yongjiang Bai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Linzheng Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250035, Shangdong, China
| | - Fuwei Zhao
- College of Pharmacy, Heze University, Heze, 274000, Shangdong, China
| | - Houmei Li
- Shuozhou grass and animal husbandry development center, ShuoZhou, 036000, Shanxi, China
| | - Dongliang Wang
- ShuoZhou Vocational Technology College, ShuoZhou, 036000, Shanxi, China
| | - Quanhai Pang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
5
|
Zhou Y, Tao H, Xu N, Zhou S, Peng Y, Zhu J, Liu S, Chang Y. Chrysin improves diabetic nephropathy by regulating the AMPK-mediated lipid metabolism in HFD/STZ-induced DN mice. J Food Biochem 2022; 46:e14379. [PMID: 35976957 DOI: 10.1111/jfbc.14379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/17/2022] [Accepted: 08/01/2022] [Indexed: 01/13/2023]
Abstract
Diabetic nephropathy (DN) is a highly prevalent and severe diabetic complication. It is urgent to explore high efficiency and minor side effects therapy for DN. Chrysin is a natural flavonoid with various biological activities found in honey and propolis, and has considerable potential to improve DN. The study was designed to explore the effects and the specific underlying mechanism of chrysin for DN in high-fat-diet (HFD) and streptozotocin (STZ) induced DN mice. Firstly, the study revealed that chrysin effectively improved obesity, insulin resistance (IR), renal function, and pathological injury in DN mice. Secondly, the study found that chrysin improved the key indices and markers of lipid accumulation, oxidative stress, and inflammation which are closely related to the development or progression of DN. Moreover, chrysin markedly modulated lipid metabolism by regulating Adenosine 5' monophosphate-activated protein kinase (AMPK) and essential downstream proteins. Furthermore, AMPK inhibitor (Dorsomorphin) intervention partially suppressed the positive effects of chrysin on all testing indicators, indicating that activated AMPK is crucial for chrysin action on DN. The present study demonstrated that chrysin may improve DN by regulating lipid metabolism, and activated AMPK plays a critical role in the regulation of chrysin. PRACTICAL APPLICATIONS: The study verified the positive effects of chrysin on obesity, insulin resistance, kidney injury, renal function, lipid accumulation, inflammation, and oxidative stress, which are closely related to the development or progression of diabetic nephropathy (DN). Moreover, we explored that chrysin improves DN by regulating AMPK-mediated lipid metabolism. Furthermore, the AMPK inhibitor was used to confirm that activated AMPK plays a critical role in the effects of chrysin. These results could offer a full explanation and a potential option for adjuvant therapy of DN diabetes with chrysin.
Collapse
Affiliation(s)
- Yingjun Zhou
- The State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Heng Tao
- The State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Nuo Xu
- The State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Shichun Zhou
- Agricultural and Rural Bureau, Haiyang, Shandong, People's Republic of China
| | - Yuke Peng
- The State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jianxiang Zhu
- Shanghai Cao Yang No. 2 High School, Shanghai, People's Republic of China
| | - Shaowei Liu
- The State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yaning Chang
- The State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
6
|
Li C, Chen Q, Liu Y, Sun Z, Shen Z, Li S, Cha D, Sun C. Methionine enkephalin promotes white fat browning through cAMP/PKA pathway. Life Sci 2022; 312:121189. [PMID: 36396109 DOI: 10.1016/j.lfs.2022.121189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
AIMS Obesity and its related metabolic disorders, including insulin resistance and fatty liver, have become a serious global public health problem. Previous studies have shown Methionine Enkephalin (MetEnk) has the potential on adipocyte browning, however, its effects on the potential mechanisms of its regulation in browning as well as its improvement in energy metabolic homeostasis remain to be deciphered. MAIN METHODS C57BL/6J male mice were fed with high-fat diet (HFD) to induce obesity model, and MetEnk was injected subcutaneously to detect changes in the metabolic status of mice, adipocytes and HepG2 cells were also treated with MetEnk, and transcriptomic, metabolomic were used to detect the changes of lipid metabolism, mitochondrial function, inflammation and other related factors. KEY FINDINGS We found that MetEnk effectively protected against obesity weight gain in HFD-induced C57BL/6J mice, significantly improved glucose tolerance and insulin sensitivity, reduced the expression levels of interleukin 6 (IL-6), promoted white fat browning, moreover, using a combination of transcriptomic, metabolomic and inhibitors, it was found that MetEnk improved mitochondrial function, promoted thermogenesis and lipolysis by activating cAMP/PKA pathway in adipocytes, further analysis found that MetEnk also promoted lipolysis and alleviated inflammation through AMP-activated protein kinase (AMPK) pathway in mice liver and HepG2 cells. SIGNIFICANCE Our study provides profound evidence for the role of MetEnk in improving lipid metabolism disorders. This study provides a mechanical foundation for investigating the potential of MetEnk to improve obesity and its associated metabolic disorders.
Collapse
Affiliation(s)
- Chaowei Li
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Qi Chen
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Yanrong Liu
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Zhuwen Sun
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Zhentong Shen
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Shuhan Li
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Dingrui Cha
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Chao Sun
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Chrysin: Perspectives on Contemporary Status and Future Possibilities as Pro-Health Agent. Nutrients 2021; 13:nu13062038. [PMID: 34198618 PMCID: PMC8232110 DOI: 10.3390/nu13062038] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Chrysin belongs to the group of natural polyphenols. It can be found, among others, in honey, propolis and fruits and has a wide range of biological activities, including the prevention of oxidative stress, inflammation, neurodegeneration and carcinogenesis. Being a part of the human diet, chrysin is considered to be a promising compound to be used in the prevention of many diseases, including cancers, diabetes and neurodegenerative diseases such as Alzheimer's or Parkinson's. Nevertheless, due to the low solubility of chrysin in water and under physiological conditions, its bioavailability is low. For this reason, attempts at its functionalization have been undertaken, aiming to increase its absorption and thus augment its in vivo therapeutic efficacy. The aim of this review is to summarize the most recent research on chrysin, including its sources, metabolism, pro-health effects and the effects of its functionalization on biological activity and pharmacological efficacy, evaluated both in vitro and in vivo.
Collapse
|
8
|
Wang X, Cai H, Shui S, Lin Y, Wang F, Wang L, Chen J, Liu J. Chrysin Stimulates Subcutaneous Fat Thermogenesis in Mice by Regulating PDGFRα and MicroRNA Expressions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5897-5906. [PMID: 34027663 DOI: 10.1021/acs.jafc.1c01130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The activation of adipose tissue browning and thermogenesis provides a new strategy to counter obesity and associated metabolic diseases. Here, a natural flavonoid chrysin is used as the supplement of a high-fat diet (HFD). Dietary chrysin alleviates adiposity and insulin resistance in HFD-fed mice. Meanwhile, dietary chrysin elevates systemic energy expenditure and enhances the uncoupling protein-1 (UCP1) level in subcutaneous adipose tissue (SAT), which is accompanied by the increased thermogenic program, beige preadipocyte number, and angiogenesis in SAT. Dietary chrysin also induces the expression of SAT platelet-derived growth factor receptor α (PDGFRα), which commits adipose progenitor cells to differentiate into beige or white adipocytes in response to various environmental signals. Double immunofluorescent staining for UCP1 and PDGFRα reveals that chrysin elevates the number of UCP1+PDGFRα+ beige progenitors in SAT. Further, chrysin treatment reverses the effects of the specific PDGFRα inhibitor imatinib on browning differentiation of stromal vascular fraction cells from SAT. Finally, chrysin-induced adipocyte browning is correlated with the expressions of microRNAs as PDGFRα inhibitors or thermogenesis suppressors. In conclusion, dietary chrysin promotes subcutaneous adipocyte browning and systematic energy expenditure by regulating PDGFRα and microRNA expressions in HFD-fed mice.
Collapse
Affiliation(s)
- Xin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Hao Cai
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Shanshan Shui
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yan Lin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Fangbin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Lu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Juan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Jian Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
- Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|