1
|
Wang PP, Liu YD, Cui LT, Li G, Zhao LX, Jin M. Synthesis, characterization and anticancer, antibacterial activities of pentacyclic triterpenoid glycoside derivatives. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024:1-17. [PMID: 39317172 DOI: 10.1080/10286020.2024.2405224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024]
Abstract
As a kind of glycoside, pentacyclic triterpenoid saponins have good biological activities, such as anticancer, antibacterial, antiviral and hypoglycemic effects [1]. In this paper, twenty-four pentacyclic triterpenoid derivatives, including twelve monosaccharide derivatives, were designed and synthesized. The anticancer effect and antibacterial activities of all compounds were evaluated. It is noteworthy that compound UA-2b has the strongest inhibitory effect on the growth of A549, Hela and HepG2 cancer cells (IC50 = 5.37 ± 0.22 µM, 5.82 ± 0.25 µM and 5.47 ± 0.06 µM, respectively). Compounds OA-2b, OA-6a, OA-6b, UA-2b and UA-6a have the best activity against Escherichia coli 1924 (MIC = 16 μg/ml).
Collapse
Affiliation(s)
- Pan-Pan Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Yan-Dan Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Lan-Tian Cui
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Gao Li
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Long-Xuan Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Mei Jin
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
- Department of Pharmacy, Yanbian University Hospital, Yanji 133000, China
| |
Collapse
|
2
|
Ramsis T, Refat M Selim HM, Elseedy H, Fayed EA. The role of current synthetic and possible plant and marine phytochemical compounds in the treatment of acne. RSC Adv 2024; 14:24287-24321. [PMID: 39104563 PMCID: PMC11298783 DOI: 10.1039/d4ra03865g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
Acne is a long-standing skin condition characterized by plugged hair follicles due to the accumulation of dead skin cells, sebum, and Propionibacterium acnes (P. acnes) bacteria, causing inflammation, and the formation of pimples or lesions. Acne was recognized in the ancient times by the ancient Egyptians, Greeks, and Romans. Since ancient times, folk medicine from different cultures have comprised herbal and natural products for the treatment of acne. Current acne medications include antibiotics, keratolytics, corticosteroids, in addition to hormonal therapy for women. However, these conventional drugs can cause some serious side effects. And therefore, seeking new safe treatment options from natural sources is essential. Plants can be a potential source of medicinal phytochemicals which can be pharmacologically active as antibacterial, antioxidant, anti-inflammatory, keratolytic and sebum-reducing. Organic acids, obtained from natural sources, are commonly used as keratolytics in dermatology and cosmetology. Most of the promising phytochemicals in acne treatment belong to terpenes, terpenoids, flavonoids, alkaloids, phenolic compounds, saponins, tannins, and essential oils. These can be extracted from leaves, bark, roots, rhizomes, seeds, and fruits of plants and may be incorporated in different dosage forms to facilitate their penetration through the skin. Additionally, medicinal compounds from marine sources can also contribute to acne treatment. This review will discuss the pathogenesis, types and consequences of acne, side effects of conventional treatment, current possible treatment options from natural sources obtained from research and folk medicine and possible applied dosage forms.
Collapse
Affiliation(s)
- Triveena Ramsis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University - Kantara Branch Ismailia 41636 Egypt
| | - Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University P.O. Box 71666 Riyadh 11597 Saudi Arabia
- Microbiology and Immunology Department, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 35527 Egypt
| | - Howida Elseedy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo Cairo Egypt
| | - Eman A Fayed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 11754 Egypt +20 201221330523
| |
Collapse
|
3
|
Cristani M, Micale N. Bioactive Compounds from Medicinal Plants as Potential Adjuvants in the Treatment of Mild Acne Vulgaris. Molecules 2024; 29:2394. [PMID: 38792254 PMCID: PMC11124055 DOI: 10.3390/molecules29102394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, there has been a growing interest in the use of medicinal plants and phytochemicals as potential treatments for acne vulgaris. This condition, characterized by chronic inflammation, predominantly affects adolescents and young adults. Conventional treatment typically targets the key factors contributing to its development: the proliferation of Cutibacterium acnes and the associated inflammation. However, these treatments often involve the use of potent drugs. As a result, the exploration of herbal medicine as a complementary approach has emerged as a promising strategy. By harnessing the therapeutic properties of medicinal plants and phytochemicals, it may be possible to address acne vulgaris while minimizing the reliance on strong drugs. This approach not only offers potential benefits for individuals seeking alternative treatments but also underscores the importance of natural remedies of plant origin in dermatological care. The primary aim of this study was to assess the antimicrobial, antioxidant, and anti-inflammatory properties of plants and their phytochemical constituents in the management of mild acne vulgaris. A comprehensive search of scientific databases was conducted from 2018 to September 2023. The findings of this review suggest that medicinal plants and their phytochemical components hold promise as treatments for mild acne vulgaris. However, it is crucial to note that further research employing high-quality evidence and standardized methodologies is essential to substantiate their efficacy and safety profiles.
Collapse
Affiliation(s)
| | - Nicola Micale
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy;
| |
Collapse
|
4
|
Jolly A, Hour Y, Lee YC. An outlook on the versatility of plant saponins: A review. Fitoterapia 2024; 174:105858. [PMID: 38365071 DOI: 10.1016/j.fitote.2024.105858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
The abundance of saponin-rich plants across different ecosystems indicates their great potential as a replacement for harmful synthetic surfactants in modern commercial products. These organic saponins have remarkable biological and surface-active properties and align with sustainable and eco-friendly practices. This article examines and discusses the structure and properties of plant saponins with high yield of saponin concentrations and their exploitable applications. This highlights the potential of saponins as ethical substitutes for traditional synthetic surfactants and pharmacological agents, with favorable effects on the economy and environment. For this purpose, studies on the relevant capabilities, structure, and yield of selected plants were thoroughly examined. Studies on the possible uses of the selected saponins have also been conducted. This in-depth analysis highlights the potential of saponins as workable and ethical replacements for traditional synthetic medications and surfactants, thus emphasizing their favorable effects on human health and the environment.
Collapse
Affiliation(s)
- Annu Jolly
- Department of BioNanotechnology, Gachon University, 1342 Seongnam-Daero, Sujeon-Gu, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea
| | - Youl Hour
- 125-6, Techno 2-ro, Yuseong-gu, Daejeon 34024, BTGin co., Ltd., Republic of Korea.
| | - Young-Chul Lee
- Department of BioNanotechnology, Gachon University, 1342 Seongnam-Daero, Sujeon-Gu, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea.
| |
Collapse
|
5
|
Nguyen QD, La QD, Nguyen NN, Nguyen TNL. Green removal of unpleasant volatiles from soapberry ( Sapindus mukorossi) extracts by two-phase microbial fermentation fortified with pomelo peel waste. RSC Adv 2023; 13:13282-13291. [PMID: 37124002 PMCID: PMC10142458 DOI: 10.1039/d3ra01858j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023] Open
Abstract
Soapberry (Sapindus mukorossi Gaertn) is a popular woody plant in Vietnam, often used as a cleaning product due to its ability to wash, foam and emulsify due to high saponin content. In this study, the performance of fermentation by two microbial strains, namely Saccharomyces cerevisiae active dry yeast (ADY) and Levilactobacillus brevis lactic acid bacteria (LB) along with the addition of pomelo peel (flavedo) was evaluated during 15 days in terms of sugar removal, antioxidant and antibacterial activities, foaming power, volatile composition, and sensory acceptability. The results showed that the soluble solid content of original extracts experienced a significant decrease from 14.5% to a stable range of 9.4-11.0% until day 15 for all fermented samples, which correlated with a reduction by approximately 60% in reducing sugars (from 12.52 g L-1 to 4.77-6.56 g L-1). In addition, the saponin content of fermented extracts was in the range of 118.2-145.0 mg L-1 while antioxidant activities were extremely reduced after 15 days of fermentation. Increases in pomelo peel imparted fermented extracts with greater antibacterial activity against Staphylococcus aureus ATCC 6538, Proteus mirabilis ATCC 25933, and Candida albicans ATCC 10231, and LB had higher activity than ADY overall. Regarding the volatile profiles, two main compounds in the original extracts, including trilaurin (75.02%) and 1-dodecanoyl-3-myristoyl glycerol (24.85%), were completely removed and replaced by new alkanes, alkenes, alcohols, esters, and organic acids, and particularly d-limonene (86.34-95.31%) upon pomelo addition. Additionally, the foaming ability and stability of fermented extracts were also enhanced and there was clear distinction between fermented and unfermented samples using principal component analysis based on sensory liking data which showed consumers' preference towards fermented samples with a high percentage of pomelo peel.
Collapse
Affiliation(s)
- Quoc-Duy Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University Ho Chi Minh City 754000 Vietnam
| | - Quoc-Duy La
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University Ho Chi Minh City 754000 Vietnam
| | - Nhu-Ngoc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University Ho Chi Minh City 754000 Vietnam
| | - Thi-Ngoc-Lan Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University Ho Chi Minh City 754000 Vietnam
| |
Collapse
|
6
|
Pan-Genomics of Escherichia albertii for Antibiotic Resistance Profiling in Different Genome Fractions and Natural Product Mediated Intervention: In Silico Approach. Life (Basel) 2023; 13:life13020541. [PMID: 36836896 PMCID: PMC9962377 DOI: 10.3390/life13020541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Escherichia albertii is an emerging, enteric pathogen of significance. It was first isolated in 2003 from a pediatric diarrheal sample from Bangladesh. In this study, a comprehensive in silico strategy was followed to first list out antibiotic-resistant genes from core, accessory and unique genome fractions of 95 available genomes of E. albertii. Then, 56 drug targets were identified from the core essential genome. Finally, ZipA, an essential cell division protein that stabilizes the FtsZ protofilaments by cross-linking them and serves as a cytoplasmic membrane anchor for the Z ring, was selected for further downstream processing. It was computationally modeled using a threading approach, followed by virtual screening of two phytochemical libraries, Ayurvedic (n = 2103 compounds) and Traditional Chinese Medicine (n = 36,043 compounds). ADMET profiling, followed by PBPK modeling in the central body compartment, in a population of 250 non-diseased, 250 cirrhotic and 250 renally impaired people was attempted. ZINC85624912 from Chinese medicinal library showed the highest bioavailability and plasma retention. This is the first attempt to simulate the fate of natural products in the body through PBPK. Dynamics simulation of 20 ns for the top three compounds from both libraries was also performed to validate the stability of the compounds. The obtained information from the current study could aid wet-lab scientists to work on the scaffold of screened drug-like compounds from natural resources and could be useful in our quest for therapy against antibiotic-resistant E. albertii.
Collapse
|
7
|
Sochacki M, Vogt O. Triterpenoid Saponins from Washnut ( Sapindus mukorossi Gaertn.)-A Source of Natural Surfactants and Other Active Components. PLANTS (BASEL, SWITZERLAND) 2022; 11:2355. [PMID: 36145756 PMCID: PMC9502486 DOI: 10.3390/plants11182355] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
Abstract
Sapindus mukorossi Gaertn., also called the washnut, is a tropical tree of the Sapindaceae family. The plant owes its name to its cleaning and washing properties used by the local population as a natural detergent. The most important ingredients of the plant are triterpenoid saponins contained in many parts of the plant, inducing fruits, galls, or roots. The tree also contains other valuable, biologically active compounds that are obtained by extraction methods. Raw or purified extract and isolated saponins are valuable plant products that can be used in the food, pharmaceutical, cosmetic, and chemical industries. This review includes the most important biological and surfactant properties of extracts and isolated saponins obtained from various parts of the plant.
Collapse
Affiliation(s)
- Mateusz Sochacki
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | | |
Collapse
|
8
|
Si YZ, Li DW, Zhong J, Huang L, Zhu LH. Diaporthe sapindicola sp. nov. Causes Leaf Spots of Sapindus mukorossi in China. PLANT DISEASE 2022; 106:1105-1113. [PMID: 34752121 DOI: 10.1094/pdis-04-21-0777-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sapindus mukorossi Gaertn. (Sapindaceae), or soapberry, is an important biodiesel tree in southern China. In recent years, leaf spot disease on soapberry has been observed frequently in a soapberry germplasm repository in Jianning County, Sanming City, Fujian province, China. The symptoms initially appeared as irregular, small, yellow spots, and the centers of the lesions became dark brown with time. Three fungal isolates from lesions were collected. Koch's postulates were performed, and their pathogenicity was confirmed. Morphologically, α-conidia from diseased tissues were single-celled, hyaline, smooth, clavate or ellipsoidal, and biguttulate, measuring 6.2 to 7.2 × 2.3 to 2.7 μm. In addition, the three isolates in this study developed three types (α, β, and γ) of conidia on potato dextrose agar, and their morphological characteristics matched those of Diaporthe. A phylogenetic analysis based on internal transcribed spacer, TEF, TUB, HIS, and CAL sequence data determined that the three isolates are a new species of Diaporthe. Based on both morphological and phylogenetic analyses, the causal fungus, Diaporthe sapindicola sp. nov., was described and illustrated.
Collapse
Affiliation(s)
- Yuan-Zhi Si
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - De-Wei Li
- The Connecticut Agricultural Experiment Station Valley Laboratory, Windsor, CT 06095, U.S.A
| | - Jing Zhong
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing 100083, China
| | - Lin Huang
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Li-Hua Zhu
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
9
|
Silva RG, Martins G, Nucci LB, Granero F, Figueiredo CM, Santiago P, Silva L. Antiglycation, antioxidant, antiacne, and photoprotective activities of crude extracts and triterpene saponin fraction of Sapindus saponaria L. fruits: An in vitro study. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.354430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
Abstract
Current strategies of combating bacterial infections are limited and involve the use of antibiotics and preservatives. Each of these agents has generally inadequate efficacy and a number of serious adverse effects. Thus, there is an urgent need for new antimicrobial drugs and food preservatives with higher efficacy and lower toxicity. Edible plants have been used in medicine since ancient times and are well known for their successful antimicrobial activity. Often photosensitizers are present in many edible plants; they could be a promising source for a new generation of drugs and food preservatives. The use of photodynamic therapy allows enhancement of antimicrobial properties in plant photosensitizers. The purpose of this review is to present the verified data on the antimicrobial activities of photodynamic phytochemicals in edible species of the world’s flora, including the various mechanisms of their actions.
Collapse
|
11
|
Identification of Sitogluside as a Potential Skin-Pigmentation-Reducing Agent through Network Pharmacology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4883398. [PMID: 34603597 PMCID: PMC8483913 DOI: 10.1155/2021/4883398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/25/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022]
Abstract
Many traditional Chinese medicines (TCMs) with skin-whitening properties have been recorded in the Ben-Cao-Gang-Mu and in folk prescriptions, and some literature confirms that their extracts do have the potential to inhibit pigmentation. However, no systematic studies have identified the specific regulatory mechanisms of the potential active ingredients. The aim of this study was to screen the ingredients in TCMs that inhibit skin pigmentation through a network pharmacology system and to explore underlying mechanisms. We identified 148 potential active ingredients from 14 TCMs, and based on the average “degree” of the topological parameters, the top five TCMs (Fructus Ligustri Lucidi, Hedysarum multijugum Maxim., Ampelopsis japonica, Pseudobulbus Cremastrae Seu Pleiones, and Paeoniae Radix Alba) that were most likely to cause skin-whitening through anti-inflammatory processes were selected. Sitogluside, the most common ingredient in the top five TCMs, inhibits melanogenesis in human melanoma cells (MNT1) and murine melanoma cells (B16F0) and decreases skin pigmentation in zebrafish. Furthermore, mechanistic research revealed that sitogluside is capable of downregulating tyrosinase (TYR) expression by inhibiting the ERK and p38 pathways and inhibiting TYR activity. These results demonstrate that network pharmacology is an effective tool for the discovery of natural compounds with skin-whitening properties and determination of their possible mechanisms. Sitogluside is a novel skin-whitening active ingredient with dual regulatory effects that inhibit TYR expression and activity.
Collapse
|
12
|
Laboratory and Field Evaluation of the Phytotoxic Activity of Sapindus mukorossi Gaertn Pulp Extract and Identification of a Phytotoxic Substance. Molecules 2021; 26:molecules26051318. [PMID: 33801201 PMCID: PMC7957876 DOI: 10.3390/molecules26051318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/17/2022] Open
Abstract
Interest in finding plant-based herbicides to supplement synthesized herbicides is increasing. Although the extract of Sapindus mukorossi Gaertn has been reported to have herbicidal activity, little is known about phytotoxic substances and their efficacy of weed control in the field. To identify phytotoxic substances, the bioassay-guided fractionation by column chromatography and high-speed counter-current chromatography (HSCCC) was carried out. The phytotoxic activity assay, performed by the agar medium method, showed that the 70% ethanol fraction exhibited strong root growth inhibition against Trifolium pratense with an 50% inhibitory concentration (IC50) value of 35.13 mg/L. An active compound was isolated from the 70% ethanol fraction and identified as hederagenin 3-o-β-D-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside (Compound A). Compound A had an IC50 value of 16.64 mg/L. Finally, a new formulation was prepared based on the 70% ethanol fraction, which exhibited good efficacy against broadleaf weeds in a carrot field. The fresh weight control efficacy was 78.7% by 45 days after treatment at the dose of 1500 g a. i./ha. Hence, the extract of S. mukorossi pulp could be a promising supplement to the synthesized herbicides. Furthermore, compound A from S. mukorossi may be responsible for its phytotoxic activity.
Collapse
|