1
|
Men L, Gu Z, Wang E, Li J, Li Z, Li K, Li C, Gong X. Fufang Muji Granules Ameliorate Liver Fibrosis by Reducing Oxidative Stress and Inflammation, Inhibiting Apoptosis, and Modulating Overall Metabolism. Metabolites 2024; 14:446. [PMID: 39195542 DOI: 10.3390/metabo14080446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Fufang Muji granules (FMGs) are a prominent modern prescription Chinese patent formulation derived from the Muji decoction. Utilized in clinical practice for nearly four decades, FMGs have demonstrated efficacy in treating liver diseases. However, the precise mechanism of action remains unclear. This study investigates the hepatoprotective effects of FMGs against liver fibrosis in rats based on untargeted metabolomics and elucidates their underlying mechanisms. A comprehensive model of liver fibrosis was established with 30% CCl4 (2 mL/kg) injected intraperitoneally, and a fat and sugar diet combined with high temperatures and humidity. Rats were orally administered FMGs (3.12 g/kg/d) once daily for six weeks. FMG administration resulted in improved liver fibrosis and attenuated hepatic oxidative stress and apoptosis. Furthermore, FMGs inhibited hepatic stellate cell activation and modulated transforming growth factor β1/Smad signaling. Additionally, FMG treatment influenced the expression levels of interleukin-6, interleukin-1β, and tumour necrosis factor alpha in the injured liver. Metabolic pathways involving taurine and hypotaurine metabolism, as well as primary bile acid biosynthesis, were identified as mechanisms of action for FMGs. Immunohistochemistry, quantitative reverse transcription polymerase chain reaction (RT-qPCR), and quantitative analysis also revealed that FMGs regulated taurine and hypotaurine metabolism and bile acid metabolism. These findings provide a valuable understanding of the role of FMGs in liver fibrosis management.
Collapse
Affiliation(s)
- Lei Men
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Zhihong Gu
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Enhua Wang
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Jiwen Li
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Zhongyu Li
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Keke Li
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Chunbin Li
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Xiaojie Gong
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
2
|
Ao X, Luo C, Zhang M, Liu L, Peng S. The efficacy of natural products for the treatment of nasopharyngeal carcinoma. Chem Biol Drug Des 2024; 103:e14411. [PMID: 38073436 DOI: 10.1111/cbdd.14411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor originating in the nasopharyngeal epithelium with a high incidence in southern China and parts of Southeast Asia. The current treatment methods are mainly radiotherapy and chemotherapy. However, they often have side effects and are not suitable for long-term exposure. Natural products have received more and more attention in cancer prevention and treatment because of their its high efficiency, low toxic side effects, and low toxicity. Natural products can serve as a viable alternative, and this study aimed to review the efficacy and mechanisms of natural products in the treatment of NPC by examining previous literature. Most natural products act by inhibiting cell proliferation, metastasis, inducing cell cycle arrest, and apoptosis. Although further research is needed to verify their effectiveness and safety, natural products can significantly improve the treatment of NPC.
Collapse
Affiliation(s)
- Xudong Ao
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Luo
- Medical Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengni Zhang
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lisha Liu
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shunlin Peng
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Liu K, Cao Z, Huang S, Kong F. Mechanism underlying the effect of Pulsatilla decoction in hepatocellular carcinoma treatment: a network pharmacology and in vitro analysis. BMC Complement Med Ther 2023; 23:405. [PMID: 37950195 PMCID: PMC10636957 DOI: 10.1186/s12906-023-04244-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Currently, hepatocellular carcinoma (HCC) is associated with a poor prognosis. Moreover, there exist limited strategies for treating HCC. Pulsatilla decoction (PD), a traditional Chinese medicine formula, has been used to treat inflammatory bowel disease and several cancer types. Accordingly, we explored the mechanism of PD in HCC treatment via network pharmacology and in vitro experiments. METHODS Online databases were searched for gene data, active components, and potential target genes associated with HCC development. Subsequently, bioinformatics analysis was performed using protein-protein interaction and Network Construction and Kyoto Encyclopedia of Genes and Genomes (KEGG) to screen for potential anticancer components and therapeutic targets of PD. Finally, the effect of PD on HCC was further verified by in vitro experiments. RESULTS Network pharmacological analysis revealed that 65 compounds and 180 possible target genes were associated with the effect of PD on HCC. These included PI3K, AKT, NF-κB, FOS, and NFKBIA. KEGG analysis demonstrated that PD exerted its effect on HCC mainly via the PI3K-AKT, IL-17, and TNF signaling pathways. Cell viability and cell cycle experiments revealed that PD could significantly inhibit cancer cell proliferation and kill HCC cells by inducing apoptosis. Furthermore, western blotting confirmed that apoptosis was mediated primarily via the PI3K-AKT, IL-17, and TNF signaling pathways. CONCLUSION To the best of our knowledge, this is the first study to elucidate the molecular mechanism and potential targets of PD in the treatment of HCC using network pharmacology.
Collapse
Affiliation(s)
- Kuijie Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhenyu Cao
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Siqi Huang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Fanhua Kong
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Biological Activities and Secondary Metabolites from Sophora tonkinensis and Its Endophytic Fungi. Molecules 2022; 27:molecules27175562. [PMID: 36080327 PMCID: PMC9457587 DOI: 10.3390/molecules27175562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022] Open
Abstract
The roots of Sophora tonkinensis Gagnep., a traditional Chinese medicine, is known as Shan Dou Gen in the Miao ethnopharmacy. A large number of previous studies have suggested the usage of S. tonkinensis in the folk treatment of lung, stomach, and throat diseases, and the roots of S. tonkinensis have been produced as Chinese patent medicines to treat related diseases. Existing phytochemical works reported more than 300 compounds from different parts and the endophytic fungi of S. tonkinensis. Some of the isolated extracts and monomer compounds from S. tonkinensis have been proved to exhibit diverse biological activities, including anti-tumor, anti-inflammatory, antibacterial, antiviral, and so on. The research progress on the phytochemistry and pharmacological activities of S. tonkinensis have been systematically summarized, which may be useful for its further research.
Collapse
|
5
|
Deng G, Wang F, Song Y. Circular RNA SET domain protein 3 promotes nasopharyngeal carcinoma proliferation, cisplatin resistance, and protein kinase B / mammalian target of rapamycin pathway activation by modulating microRNA-147a expression. Bioengineered 2022; 13:5843-5854. [PMID: 35196205 PMCID: PMC8973767 DOI: 10.1080/21655979.2022.2036907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Circular RNA (circRNA) plays a crucial role in the establishment and progression of nasopharyngeal carcinoma (NPC). Understanding the role of circRNA in NPC is helpful to find new therapeutic targets for NPC. The purpose of this study was to explore the effects of circRNA SET domain protein 3 (circSETD3) on protein kinase B (Akt)/ mammalian target of rapamycin (mTOR) signaling pathway and cisplatin (DDP) resistance to NPC and explore its downstream mechanism. The results showed that circSETD3 was upregulated in NPC tissues and was related to DDP resistance to NPC. Functional experiments revealed that circSETD3 knockdown inhibited NPC proliferation and increased DDP sensitivity and apoptosis rate. The promotion effect of circSETD3 overexpression on NPC proliferation and DDP resistance and inhibition effect on apoptosis was reversed by elevated miR-147a. CircSETD3 knockdown or miR-147a overexpression prevented Akt/mTOR pathway's activation. In terms of the mechanism, circSETD3 acted as a sponge for miR-147a. Xenotransplantation experiments showed that knockdown circSETD3 or DDP treatment could restrain tumor growth, and the effect of DDP was enhanced by knockdown of circSETD3. In conclusion, the results of this study confirm that circSETD3 promotes NPC proliferation and DDP resistance by regulating miR-147a, and circSETD3/miR-147a axis may serve as a potential therapeutic target for NPC in the future.
Collapse
Affiliation(s)
- Gang Deng
- Department of Otorhinolaryngology, Wuhan No. 1 Hospital of Hubei Province, Wuhan City, HuBei Province, China
| | - Fei Wang
- Department of Otorhinolaryngology, People's Hospital of Qinghai Province, Xining City, QingHai Province, China
| | - YiSa Song
- Department of Otorhinolaryngology, People's Hospital of Qinghai Province, Xining City, QingHai Province, China
| |
Collapse
|
6
|
Xu Y, Guo Z, Peng H, Guo L, Wang P. IGF2BP3 promotes cell metastasis and is associated with poor patient survival in nasopharyngeal carcinoma. J Cell Mol Med 2022; 26:410-421. [PMID: 34894048 PMCID: PMC8743660 DOI: 10.1111/jcmm.17093] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022] Open
Abstract
Metastasis contributes to treatment failure in nasopharyngeal carcinoma (NPC) patients. Our study aimed at elucidating the role of insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) in NPC metastasis and the underlying mechanism involved. IGF2BP3 expression in NPC was determined by bioinformatics, quantitative polymerase chain reaction and immunohistochemistry analyses. The biological function of IGF2BP3 was investigated by using in vitro and in vivo studies. In this study, IGF2BP3 mRNA and protein levels were elevated in NPC tissues. In addition, IGF2BP3 exerted an oncogenic role by promoting epithelial-mesenchymal transition (EMT), thereby inducing NPC cell migration and invasion. Further studies revealed that IGF2BP3 regulated the expression of key regulators of EMT by activating AKT/mTOR signalling, thus stimulating NPC cell migration and invasion. Remarkably, targeting IGF2BP3 delayed NPC metastasis through attenuating p-AKT and vimentin expression and inducing E-cadherin expression in vivo. Moreover, IGF2BP3 protein levels positively correlated with distant metastasis after initial treatment. Importantly, IGF2BP3 expression served as an independent prognostic factor in predicting the overall survival and distant metastasis-free survival of NPC patients. This work identifies IGF2BP3 as a novel prognostic marker and a new target for NPC treatment.
Collapse
Affiliation(s)
- Yun Xu
- Departments of Radiation OncologyTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin’s Clinical Research Center for CancerTianjinChina
- Fujian Medical University Cancer HospitalFujian Cancer HospitalFujianChina
| | - Zhoubo Guo
- Departments of Radiation OncologyTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin’s Clinical Research Center for CancerTianjinChina
| | - Hewei Peng
- Department of Epidemiology and Health StatisticsFujian Provincial Key Laboratory of Environment Factors and CancerSchool of Public HealthFujian Medical UniversityFuzhouChina
| | - Lanyan Guo
- School of Medical Technology and EngineeringFujian Medical UniversityFuzhouChina
| | - Ping Wang
- Departments of Radiation OncologyTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin’s Clinical Research Center for CancerTianjinChina
| |
Collapse
|
7
|
Effect of Combining Early Chemotherapy with Zhipu Liujunzi Decoction under the Concept of Strengthening and Consolidating Body Resistance for Gastric Cancer Patients and Nursing Strategy. CONTRAST MEDIA & MOLECULAR IMAGING 2021; 2021:2135924. [PMID: 34934408 PMCID: PMC8651398 DOI: 10.1155/2021/2135924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/21/2021] [Accepted: 10/29/2021] [Indexed: 12/03/2022]
Abstract
Objective To explore the clinical efficacy of combining early chemotherapy with Zhipu Liujunzi decoction under the concept of strengthening and consolidating body resistance for gastric cancer patients and nursing strategy. Methods The clinical data of 100 patients undergoing radical gastrectomy in our hospital from July 2019 to July 2020 were selected for the retrospective analysis, and the patients were divided into the control group and experimental group according to different treatment methods, with 50 cases in each group. Early chemotherapy after surgery was given to patients in the control group, and on the basis of the aforesaid treatment and under the concept of strengthening and consolidating body resistance, patients in the experimental group took Zhipu Liujunzi decoction and received the nursing strategy, so as to compare their effective rate, adverse reaction rate (ARR), immune function indicators, KPS scores, and nursing satisfaction scores. Results After treatment, the experimental group obtained significantly higher objective remission rate (ORR) and disease control rate (DCR) (P < 0.05), lower carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) levels (P < 0.001), higher immune parameters levels (P < 0.001), higher KPS scores and lower TCM symptom scores (P < 0.001), lower PSQI scores, SAS scores, and SDS scores (P < 0.001) and higher nursing satisfaction scores (P < 0.001), and lower total accidence rate of toxic side effects (P < 0.05) than the control group. Conclusion Under the concept of strengthening and consolidating body resistance, combining early chemotherapy with Zhipu Liujunzi decoction is a reliable method for improving the immune function and quality of life for gastric cancer patients with higher safety. Such a strategy greatly reduces the tumor marker levels in patients. Further research will be conducive to establishing a better solution for gastric cancer patients.
Collapse
|
8
|
Abd-Alla HI, Souguir D, Radwan MO. Genus Sophora: a comprehensive review on secondary chemical metabolites and their biological aspects from past achievements to future perspectives. Arch Pharm Res 2021; 44:903-986. [PMID: 34907492 PMCID: PMC8671057 DOI: 10.1007/s12272-021-01354-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/29/2021] [Indexed: 12/13/2022]
Abstract
Sophora is deemed as one of the most remarkable genera of Fabaceae, and the third largest family of flowering plants. The genus Sophora comprises approximately 52 species, 19 varieties, and 7 forms that are widely distributed in Asia and mildly in Africa. Sophora species are recognized to be substantial sources of broad spectrum biopertinent secondary metabolites namely flavonoids, isoflavonoids, chalcones, chromones, pterocarpans, coumarins, benzofuran derivatives, sterols, saponins (mainly triterpene glycosides), oligostilbenes, and mainly alkaloids. Meanwhile, extracts and isolated compounds from Sophora have been identified to possess several health-promising effects including anti-inflammatory, anti-arthritic, antiplatelets, antipyretic, anticancer, antiviral, antimicrobial, antioxidant, anti-osteoporosis, anti-ulcerative colitis, antidiabetic, anti-obesity, antidiarrheal, and insecticidal activities. Herein, the present review aims to provide comprehensive details about the phytochemicals and biological effects of Sophora species. The review spotlighted on the promising phytonutrients extracted from Sophora and their plethora of bioactivities. The review also clarifies the remaining gaps and thus qualifies and supplies a platform for further investigations of these compounds.
Collapse
Affiliation(s)
- Howaida I Abd-Alla
- Chemistry of Natural Compounds Department, National Research Centre, El-Bohouth Street, Giza-Dokki, 12622, Egypt.
| | - Dalila Souguir
- Institut National de Recherches en Génie Rural, Eaux et Forêts (INRGREF), Université de Carthage, 10 Rue Hédi Karray, Manzeh IV, 2080, Ariana, Tunisia
| | - Mohamed O Radwan
- Chemistry of Natural Compounds Department, National Research Centre, El-Bohouth Street, Giza-Dokki, 12622, Egypt.
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
9
|
BET protein inhibition evidently enhances sensitivity to PI3K/mTOR dual inhibition in intrahepatic cholangiocarcinoma. Cell Death Dis 2021; 12:1020. [PMID: 34716294 PMCID: PMC8556340 DOI: 10.1038/s41419-021-04305-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 01/07/2023]
Abstract
Intrahepatic cholangiocarcinoma (ICC), the second most common primary liver cancer, is a fatal malignancy with a poor prognosis and only very limited therapeutic options. Although molecular targeted therapy is emerged as a promising treatment strategy, resistance to molecular-targeted therapy occurs inevitably, which represents a major clinical challenge. In this study, we confirmed that mammalian target of rapamycin (mTOR) signaling is the most significantly affected pathways in ICC. As a novel phosphoinositide 3-kinase (PI3K)/mTOR dual inhibitor, BEZ235, exerts antitumour activity by effectively and specifically blocking the dysfunctional activation of the PI3K/serine/threonine kinase (AKT)/mTOR pathway. We generate the orthotopic ICC mouse model through hydrodynamic transfection of AKT and yes-associated protein (YAP) plasmids into the mouse liver. Our study confirmed that BEZ235 can suppress the proliferation, invasion and colony conformation abilities of ICC cells in vitro but cannot effectively inhibit ICC progression in vivo. Inhibition of PI3K/mTOR allowed upregulation of c-Myc and YAP through suppressed the phosphorylation of LATS1. It would be a novel mechanism that mediated resistance to PI3K/mTOR dual inhibitor. However, Bromo- and extraterminal domain (BET) inhibition by JQ1 downregulates c-Myc and YAP transcription, which could enhance the efficacy of PI3K/mTOR inhibitors. The efficacy results of combination therapy exhibited effective treatment on ICC in vitro and in vivo. Our data further confirmed that the combination of PI3K/mTOR dual inhibitor and BET inhibition induces M1 polarization and suppresses M2 polarization in macrophages by regulating the expression of HIF-1α. Our study provides a novel and efficient therapeutic strategy in treating primary ICC. ![]()
Collapse
|
10
|
Wang K, Miao X, Kong F, Huang S, Mo J, Jin C, Zheng Y. Integrating Network Pharmacology and Experimental Verification to Explore the Mechanism of Effect of Zuojin Pills in Pancreatic Cancer Treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3749-3764. [PMID: 34511884 PMCID: PMC8427689 DOI: 10.2147/dddt.s323360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Background and Aim Pancreatic cancer is one of the most malignant tumors worldwide. Zuojin pills (ZJP), a traditional Chinese medicine (TCM) formula, which can treat a variety of cancers. However, the active compounds present in ZJP and the potential mechanisms through which ZJP acts against pancreatic cancer have not been thoroughly investigated. Methods Data on pancreatic cancer-related genes, bioactive compounds, and potential targets of ZJP were downloaded from public databases. Bioinformatics analysis, including protein–protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, was conducted to identify important components, potential targets, and signaling pathways through which ZJP affects pancreatic cancer. The results of this analysis were verified by in vitro experiments. Results The network pharmacology analysis results showed that 41 compounds and 130 putative target genes of ZJP were associated with anti-pancreatic cancer effects. ZJP may exert its inhibitory effects against pancreatic cancer by acting on key targets such as JUN, TP53, and MAPK1. Moreover, KEGG analysis indicated that the anti-pancreatic cancer effect of ZJP was mediated by multiple pathways, such as the PI3K-AKT, IL-17, TNF, HIF-1, and P53 signaling pathways. Among these, the PI3K-AKT signaling pathway, which included the highest number of enriched genes, may play a more important role in treating pancreatic cancer. The in vitro results showed that ZJP significantly inhibits the cell cycle and cell proliferation through the PI3K/AKT/caspase pathway and that it can induce apoptosis of pancreatic cancer cells, consistent with the results predicted by network pharmacological methods. Conclusion This study preliminarily investigated the pharmacological effects of ZJP, which appear to be mediated by multiple compounds, targets and pathways, and its potential therapeutic effect on pancreatic cancer. Importantly, our work provides a promising approach for the identification of compounds in TCM and the characterization of therapeutic mechanisms.
Collapse
Affiliation(s)
- Kunpeng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, People's Republic of China
| | - Xiongying Miao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Fanhua Kong
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Siqi Huang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Jinggang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, People's Republic of China
| | - Chong Jin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, People's Republic of China
| | - Yanwen Zheng
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| |
Collapse
|