1
|
Mayyas A, Al-Samydai A, Al-Karablieh N, Zalloum WA, Al-Tawalbeh D, Al-Mamoori F, Amr RA, Al Nsairat H, Carradori S, Al-Halaseh LK, Aburjai T. A phytotherapeutic approach to hinder the resistance against clindamycin by MRSA: in vitro and in silico studies. Future Sci OA 2025; 11:2458438. [PMID: 39895160 PMCID: PMC11792796 DOI: 10.1080/20565623.2025.2458438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025] Open
Abstract
AIMS This study investigates the potential effects of essential oils (EOs) in enhancing the efficacy of clindamycin against Methicillin-resistant Staphylococcus aureus (MRSA) using in vitro and computer simulations. The research seeks to identify essential oils that exhibit synergistic activity with clindamycin and determine their potential key active components. MATERIALS AND METHODS Essential oils commonly used in traditional medicine were tested for their antimicrobial activity against MRSA. The minimum inhibitory concentration (MIC) was determined using in vitro microdilution assays. A synergistic test with clindamycin was performed, and molecular docking studies evaluated the interaction between a key compound (trans-cinnamaldehyde) and MRSA protein. RESULTS EOs from Cinnamomum verum, Rosmarinus officinalis, Salvia officinalis, and Thymus vulgaris demonstrated significant inhibitory and synergistic activities against MRSA, standard strain, and human clinical isolates. Gas Chromatography/Mass Spectroscopy identified trans-cinnamaldehyde, eucalyptol, and thymol as prominent antibacterial compounds. Molecular docking studies confirmed trans-cinnamaldehyde's strong binding to MRSA's AgrA protein, elucidating its enhanced efficacy. CONCLUSION The study underscores the potential of plant-based therapies to augment the effectiveness of conventional antibiotics like clindamycin in combating MRSA and addressing antibiotic resistance by integrating traditional plant remedies with modern medical approaches.
Collapse
Affiliation(s)
- Amal Mayyas
- Department of Pharmacy, Faculty of Health Sciences, American University of Madaba, Madaba, Jordan
| | - Ali Al-Samydai
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Nehaya Al-Karablieh
- Department of Plant Protection, School of Agriculture, The University of Jordan, Amman, Jordan
- Hamdi Mango Centre for Scientific Research, The University of Jordan, Amman, Jordan
| | - Waleed A Zalloum
- Department of Pharmacy, Faculty of Health Sciences, American University of Madaba, Madaba, Jordan
| | - Deniz Al-Tawalbeh
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Farah Al-Mamoori
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Zarqa University, Zarqa, Jordan
| | - Rula A. Amr
- Department of Pharmacy, Faculty of Health Sciences, American University of Madaba, Madaba, Jordan
| | - Hamdi Al Nsairat
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Simone Carradori
- Department of Pharmacy “G. d’Annunzio”, University of Chieti-Pescara, Chieti, SC, Italy
| | - Lidia Kamal Al-Halaseh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Talal Aburjai
- Faculty of Pharmacy, The University of Jordan, Amman, Jordan
| |
Collapse
|
2
|
Jiang N, Wang T, Fang Y, Liu X, Dai N, Ruan H, Dai H, Guan L, He C, Kong L, Meng W, Ma H, Zhang H. A Novel Protein Demonstrating Antibacterial Activity Against Multidrug-Resistant Escherichia coli Purified from Bacillus velezensis CB6. Foods 2025; 14:1255. [PMID: 40238499 PMCID: PMC11988598 DOI: 10.3390/foods14071255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
In recent years, multidrug resistance in pathogenic bacteria has become increasingly serious, causing serious harm to the livestock and poultry breeding industries and posing severe challenges to its clinical prevention and treatment; therefore, the development of new antibacterial agents is urgently needed. We previously isolated Bacillus velezensis CB6, which exhibits broad-spectrum antibacterial activity, from Changbaishan in China. In this study, multidrug-resistant Escherichia coli B2(MDR E. coli B2) was used as an indicator bacterium. Ammonium sulfate precipitation, dextran gel chromatography, and Diethylaminoethyl Bestarose High Performance was used to isolate antibacterial protein with strong activity against MDR E. coli B2. SDS-PAGE combined with liquid chromatography-mass spectrometry was used to obtain the antibacterial protein CB6-E, which has a molecular weight of 54.537 kDa. Our study found that CB6-E has a strong inhibitory effect on Gram-negative bacteria such as Pseudomonas aeruginosa Z1, Salmonella H9812, and Shigella castellani Z1; among them, the minimum inhibitory concentration for MDR E. coli B2 was 32 µg/mL. In addition, CB6-E is stable under various conditions including exposure to various temperatures, organic reagents, pH values, and proteolytic enzymes. The hemolytic activity test and cytotoxicity test also showed that CB6-E is safe. Research on antibacterial mechanisms showed that CB6-E destroys cell membranes in a dose-dependent manner and can inhibit the growth of MDR E. coli B2 by targeting lipopolysaccharides on the cell membrane, showing good therapeutic effects in model animals. In summary, CB6-E is a newly discovered antibacterial protein with a high therapeutic index that is safe, nontoxic, and stabile, and is expected to be an effective antibacterial agent.
Collapse
Affiliation(s)
- Nan Jiang
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (N.J.); (T.W.); (Y.F.); (X.L.); (N.D.); (H.D.); (L.G.); (C.H.); (W.M.)
| | - Tajin Wang
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (N.J.); (T.W.); (Y.F.); (X.L.); (N.D.); (H.D.); (L.G.); (C.H.); (W.M.)
| | - Yue Fang
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (N.J.); (T.W.); (Y.F.); (X.L.); (N.D.); (H.D.); (L.G.); (C.H.); (W.M.)
| | - Xiaoyu Liu
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (N.J.); (T.W.); (Y.F.); (X.L.); (N.D.); (H.D.); (L.G.); (C.H.); (W.M.)
| | - Nan Dai
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (N.J.); (T.W.); (Y.F.); (X.L.); (N.D.); (H.D.); (L.G.); (C.H.); (W.M.)
| | - Hongling Ruan
- Changchun Shuangyang District Animal Husbandry Station, Shuangyang Street No. 586, Changchun 130600, China;
| | - Huining Dai
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (N.J.); (T.W.); (Y.F.); (X.L.); (N.D.); (H.D.); (L.G.); (C.H.); (W.M.)
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Lili Guan
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (N.J.); (T.W.); (Y.F.); (X.L.); (N.D.); (H.D.); (L.G.); (C.H.); (W.M.)
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Chengguang He
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (N.J.); (T.W.); (Y.F.); (X.L.); (N.D.); (H.D.); (L.G.); (C.H.); (W.M.)
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Lingcong Kong
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China;
| | - Weixue Meng
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (N.J.); (T.W.); (Y.F.); (X.L.); (N.D.); (H.D.); (L.G.); (C.H.); (W.M.)
| | - Hongxia Ma
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (N.J.); (T.W.); (Y.F.); (X.L.); (N.D.); (H.D.); (L.G.); (C.H.); (W.M.)
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China;
| | - Haipeng Zhang
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (N.J.); (T.W.); (Y.F.); (X.L.); (N.D.); (H.D.); (L.G.); (C.H.); (W.M.)
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| |
Collapse
|
3
|
El-Shiekh RA, Radi MH, Elshimy R, Abdel-Sattar E, El-Halawany AM, Ibrahim MA, Ali ME, Hassanen EI. Friedelin: A natural compound exhibited potent antibacterial, anti-inflammatory, and wound healing properties against MRSA-infected wounds. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03965-8. [PMID: 40100378 DOI: 10.1007/s00210-025-03965-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is primarily recognized as a pathogen responsible for skin, soft tissue, and multiple organs infection. The colonization of the skin and mucous membranes by hypervirulent resistant bacteria like MRSA during hospitalization significantly contributes to life-threatening conditions. Friedelin (FRN) is a pentacyclic triterpene (C30H50O) isolated from Euphorbia grantii Oliv. The current work aims to determine the efficacy of FRN against MRSA-infected wounds in mice besides the in vitro study to evaluate its bactericidal activity. The in vitro study revealed that FRN was strongly active against MRSA which had a wide zone of MRSA growth inhibition and promising minimum inhibitory concentration (MIC). Moreover, FRN downregulated the major virulence genes seb and icaD, responsible for the production of staphylococcal enterotoxin SED and biofilm formation, respectively in contrast to the untreated group. The dressing of MRSA-infected wound with 40 ppm FRN significantly reduced the wound size and bacterial count and accelerated the process of wound healing which had a higher immune expression of both VEGF (vascular endothelial growth factor) and α-SMA (alpha smooth muscle actin) compared with other treated groups. Additionally, FRN could reduce the inflammatory response of MRSA in a dose-dependent manner by downregulating the TNF-α (tumor necrosis factor-α) and PGS-2 (prostaglandin synthase-2) gene expression levels. FRN is effective against MRSA-infected wounds via its potent bactericidal and anti-inflammatory activities that accelerate angiogenesis and wound maturation.
Collapse
Affiliation(s)
- Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Mai Hussin Radi
- Herbal Department, Egyptian Drug Authority, Cairo, 15301, Egypt
| | - Rana Elshimy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Giza, 12573, Egypt
- Department of Microbiology and Immunology, Egyptian Drug Authority, Cairo, 15301, Egypt
| | - Essam Abdel-Sattar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Ali M El-Halawany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Merhan E Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
4
|
Wu KY, Yao FH, Ren XM, Hang XD, Bai YF, Qi SH. Multi-target anti-MRSA mechanism and antibiotic synergistic effect of marine alkaloid Ascomylactam A in vitro and in vivo against clinical MRSA strains. Biochem Pharmacol 2025; 232:116697. [PMID: 39643122 DOI: 10.1016/j.bcp.2024.116697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), as a kind of multi-drug resistant bacteria, often causes serious sanitary infection problems. Marine fungi are seen as a promising source of lead compounds for antibiotics. In this research, the antibacterial activity, antibiotic synergistic effect and mechanism of the alkaloid Ascomylactam A (AsA) derived from the marine fungus Microascus sp. SCSIO 41821 were investigated in vivo and in vitro. Antibacterial assays showed that AsA had excellent antibacterial activity and inhibition of biofilm formation against MRSA SC41993, and exhibitted synergistic antibacterial effects with clinical antibiotics. Transcriptomics revealed the potential mechanism that AsA affected the formation of MRSA biofilm, cell wall synthesis and virulence through LytSR, VraSR, ArgAC and KdpDE two-component system (TCS). In addition, by treatment with AsA, it was found that AdhE protein was a potential target for oxidative stress and lipid peroxidation in MRSA, and the resistance of MRSA was reversed by regulating some genes. In vivo experiments showed that AsA combined with gentamicin sulfate (GMS) had a better therapeutic effect than alone against clinical MRSA USA300, especially in the heart. In this study, the antibacterial mechanism of decahydrofluorene-class alkaloids was preliminarily investigated, supporting the potence of AsA as a promising therapeutic agent to combat MASA infections.
Collapse
Affiliation(s)
- Ke-Yue Wu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei-Hua Yao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China
| | - Xu-Meng Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu-Dong Hang
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yue-Fan Bai
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Shu-Hua Qi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China.
| |
Collapse
|
5
|
Bakhtiari R, Shiri M, Reza Mohammadi M, Reza Pourmand M, Mirzaie A, Taghiabadi Z. Enhanced antimicrobial effects of carvacrol against methicillin-resistant Staphylococcus aureus strains using niosome formulations. Rev Argent Microbiol 2025:S0325-7541(24)00122-6. [PMID: 39843290 DOI: 10.1016/j.ram.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 01/24/2025] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) causes a wide range of infections and contributes to elevated morbidity, mortality, and healthcare costs. Herbal compounds combined with drug delivery systems could be an effective alternative option for treating resistant bacteria. This study evaluates the antimicrobial prowess of carvacrol-loaded niosomes against MRSA strains. In this study, six carvacrol-niosome formulations with different ratios of Span and Tween were prepared. The physicochemical attributes of the optimized synthesized niosomes were assessed using Fourier-transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) as well as DLS Zetasizer. Encapsulation efficiency (EE) and in vitro drug release were studied. The antibacterial activity of the synthesized carvacrol-niosomes, in concentrations varying between 7.8 and 1000μg/ml, was evaluated using microdilution broth methods. The optimized niosomes, with a size of 207.3nm and an impressive EE of 91%, exhibited a spherical structure as confirmed by the electron microscopy analysis. Impressively, these carvacrol-niosomes demonstrated superior antimicrobial effectiveness against S. aureus, reducing MIC levels 4-fold to 62.5±0.0μg/ml and MBC to 125±0.0μg/ml, a significant improvement over the 250±0.0μg/ml MIC and 500±0.0μg/ml MBC of free carvacrol. Additionally, while empty niosomes showed minimal cytotoxicity with 88.32±1.32% cell viability at 100μg/ml, free carvacrol led to a marked reduction in viability to 39.46±1.26%. However, niosomes encapsulating carvacrol notably increased cell survival to 59.67±1.62% at this concentration. These findings underscore the enhanced antimicrobial potency of carvacrol when enclosed within niosomes, suggesting its potential as a potent herbal remedy for combating methicillin-resistant S. aureus.
Collapse
Affiliation(s)
- Ronak Bakhtiari
- Department of Pathobiology, Division of Microbiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maliheh Shiri
- Department of Pathobiology, Division of Microbiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Mohammadi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Pourmand
- Department of Pathobiology, Division of Microbiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Mirzaie
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran; Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Taghiabadi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran; Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Mohamed DH, Mohammed H, El-Gebaly RH, Adam M, Ali FM. Pulsed electric field at resonance frequency combat Klebsiella pneumonia biofilms. Appl Microbiol Biotechnol 2024; 108:505. [PMID: 39500784 PMCID: PMC11538251 DOI: 10.1007/s00253-024-13330-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024]
Abstract
Healtcare-associated infections have increased due to the development of antimicrobial resistance (AMR) of Gram-negative pathogens (GNPs) and the development of outbreacks over the past two decades. In this work, we investigated how exposure to positive electric pulses affects the growth characteristics of Klebsiella pneumonia (K. pneumonia), a common cause of pneumonia. We explored the impact of varying exposure frequencies (0.2-2 Hz) and time (15-90 min, at resonance frequency) on bioelectric signals produced during cell division, biofilm formation, and bacterial antibiotic susceptibility. Our research found that an extremely low-frequency pulsed electric field (ELF-PEF) significantly inhibited K. pneumonia growth. Specifically, exposure to 0.8 Hz for one hour increased the antibiotic susceptibility of K. pneumonia to inhibitors of cell wall formation, proteins, β-lactamase, DNA, and other substances. We also noticed a notable decrease in K. pneumonia biofilm development exposed to ELF-PEF. Our results suggest that the interaction of K. pneumonia cells with ELF-PEF at the specified frequency and time alters cellular activity and bacterial structure. This technique may be used in the future to treat K. pneumonia infections both in vitro and in vivo.
Collapse
Affiliation(s)
- Dorria H Mohamed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Haitham Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Reem H El-Gebaly
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed Adam
- Agricultural Zoology and Nematology Department, Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Fadel M Ali
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
7
|
Jandl B, Dighe S, Gasche C, Makristathis A, Muttenthaler M. Intestinal biofilms: pathophysiological relevance, host defense, and therapeutic opportunities. Clin Microbiol Rev 2024; 37:e0013323. [PMID: 38995034 PMCID: PMC11391705 DOI: 10.1128/cmr.00133-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYThe human intestinal tract harbors a profound variety of microorganisms that live in symbiosis with the host and each other. It is a complex and highly dynamic environment whose homeostasis directly relates to human health. Dysbiosis of the gut microbiota and polymicrobial biofilms have been associated with gastrointestinal diseases, including irritable bowel syndrome, inflammatory bowel diseases, and colorectal cancers. This review covers the molecular composition and organization of intestinal biofilms, mechanistic aspects of biofilm signaling networks for bacterial communication and behavior, and synergistic effects in polymicrobial biofilms. It further describes the clinical relevance and diseases associated with gut biofilms, the role of biofilms in antimicrobial resistance, and the intestinal host defense system and therapeutic strategies counteracting biofilms. Taken together, this review summarizes the latest knowledge and research on intestinal biofilms and their role in gut disorders and provides directions toward the development of biofilm-specific treatments.
Collapse
Affiliation(s)
- Bernhard Jandl
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Satish Dighe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Christoph Gasche
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| | - Athanasios Makristathis
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Vadakkan K, Sathishkumar K, Kuttiyachan Urumbil S, Ponnenkunnathu Govindankutty S, Kumar Ngangbam A, Devi Nongmaithem B. A review of chemical signaling mechanisms underlying quorum sensing and its inhibition in Staphylococcus aureus. Bioorg Chem 2024; 148:107465. [PMID: 38761705 DOI: 10.1016/j.bioorg.2024.107465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Staphylococcus aureus is a significant bacterium responsible for multiple infections and is a primary cause of fatalities among patients in hospital environments. The advent of pathogenic bacteria such as methicillin-resistant S. aureus revealed the shortcomings of employing antibiotics to treat bacterial infectious diseases. Quorum sensing enhances S. aureus's survivability through signaling processes. Targeting the key components of quorum sensing has drawn much interest nowadays as a promising strategy for combating infections caused by bacteria. Concentrating on the accessory gene regulator quorum-sensing mechanism is the most commonly suggested anti-virulence approach for S.aureus. Quorum quenching is a common strategy for controlling illnesses triggered by microorganisms since it reduces the pathogenicity of bacteria and improves bacterial biofilm susceptibility to antibiotics, thus providing an intriguing prospect for drug discovery. Quorum sensing inhibition reduces selective stresses and constrains the emergence of antibiotic resistance while limiting bacterial pathogenicity. This review examines the quorum sensing mechanisms involved in S. aureus, quorum sensing targets and gene regulation, environmental factors affecting quorum sensing, quorum sensing inhibition, natural products as quorum sensing inhibitory agents and novel therapeutical strategies to target quorum sensing in S. aureus as drug developing technique to augment conventional antibiotic approaches.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala 680020, India; Manipur International University, Imphal, Manipur 795140, India.
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu 602105, India
| | | | | | | | | |
Collapse
|
9
|
Guo J, Tang W, Tang W, Gao T, Yuan M, Wu Y, Wang G. Research progress on the types, functions, biosynthesis, and metabolic regulation of ginkgo terpenoids. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108754. [PMID: 38824693 DOI: 10.1016/j.plaphy.2024.108754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/04/2024]
Abstract
Ginkgo biloba L. is a relict plant endemic to China that is commonly considered a "living fossil". It contains unique medicinal compounds that play important roles in its response to various stresses and help maintain human health. Ginkgo terpenoids are known to be important active ingredients but have received less attention than flavonoids. Hence, this review focuses on recent progress in research on the pharmacological effects of ginkgo terpenoid and the bioactivities of different terpenoid monomers. Many key structural genes, enzyme-encoding genes, transcription factors, and noncoding RNAs involved in the ginkgo terpenoid pathway were identified. Finally, many external factors (ecological factors, hormones, etc.) that regulate the biosynthesis and metabolism of terpenoids were proposed. All these findings improve the understanding of the biosynthesis, accumulation, and medicinal functions of terpenoids. Finally, this review includes an in-depth discussion regarding the limitations of terpenoid-related studies and potential future research directions.
Collapse
Affiliation(s)
- Jing Guo
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| | - Wei Tang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| | - Wenjie Tang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| | - Tianhui Gao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| | - Meng Yuan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| | - Yaqiong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Qian Hu Hou Cun No. 1, Nanjing, 210014, China.
| | - Guibin Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
10
|
Wei PW, Wang X, Wang C, Chen M, Liu MZ, Liu WX, He YL, Xu GB, Zheng XH, Zhang H, Liu HM, Wang B. Ginkgo biloba L. exocarp petroleum ether extract inhibits methicillin-resistant Staphylococcus aureus by modulating ion transport, virulence, and biofilm formation in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:117957. [PMID: 38493904 DOI: 10.1016/j.jep.2024.117957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 03/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As reported in the Ancient Chinese Medicinal Books, Ginkgo biloba L. fruit has been used as a traditional Chinese medicine for the treatment asthma and cough or as a disinfectant. Our previous study demonstrated that G. biloba exocarp extract (GBEE), an extract of a traditional Chinese herb, inhibits the formation of methicillin-resistant Staphylococcus aureus (MRSA) biofilms. However, GBEE is a crude extract that contains many components, and the underlying mechanisms of purified GBEE fractions extracted with solvents of different polarities are unknown. AIM OF THE STUDY This study aimed to investigate the different components in GBEE fractions extracted with solvents of different polarities and their antibacterial effects and mechanisms against MRSA and Staphylococcus haemolyticus biofilms both in vitro and in vivo. METHODS The components in different fractions were detected by high-performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS). Microbroth dilution assays and time growth curves were used to determine the antibacterial effects of the fractions on 15 clinical bacterial isolates. Crystal violet staining, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were utilized to identify the fractions that affected bacterial biofilm formation. The potential MRSA targets of the GBEE fraction obtained with petroleum ether (PE), denoted GBEE-PE, were screened by transcriptome sequencing, and the gene expression profile was verified by quantitative polymerase chain reaction (qPCR). RESULTS HPLC-HRMS analysis revealed that the four GBEE fractions (extracted with petroleum ether, ethyl acetate, n-butanol, and water) contained different ginkgo components, and the antibacterial effects decreased as the polarity of the extraction solvent increased. The antibacterial activity of GBEE-PE was greater than that of the GBEE fraction extracted with ethyl acetate (EA). GBEE-PE improved H. illucens survival and reduced MRSA colonization in model mouse organs. Crystal violet staining and SEM and TEM analyses revealed that GBEE-PE inhibited MRSA and S. haemolyticus biofilm formation. Transcriptional analysis revealed that GBEE-PE inhibits MRSA biofilms by altering ion transport, cell wall metabolism and virulence-related gene expression. In addition, the LO2 cell viability and H. illucens toxicity assay data showed that GBEE-PE at 20 mg/kg was nontoxic. CONCLUSION The GBEE fractions contained different components, and their antibacterial effects decreased with increases in the polarity of the extraction solvent. GBEE-PE limited MRSA growth and biofilm formation by affecting ion transport, cell wall synthesis, and virulence-related pathways. This research provides a more detailed overview of the mechanism by which GBEE-PE inhibits MRSA both in vitro and in vivo and suggests that GBEE-PE is a new prospective antimicrobial with the potential to be used in MRSA therapeutics in the future.
Collapse
Affiliation(s)
- Peng-Wei Wei
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (Modern Industry College of Health Medicine), Guizhou Medical University, Guiyang, 561113, Guizhou, China
| | - Xu Wang
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (Modern Industry College of Health Medicine), Guizhou Medical University, Guiyang, 561113, Guizhou, China
| | - Cong Wang
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Formulation (R&D) Department, Guiyang, 550001, China
| | - Ming Chen
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (Modern Industry College of Health Medicine), Guizhou Medical University, Guiyang, 561113, Guizhou, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (School of Public Health, Guizhou Medical University), Guiyang, 561113, Guizhou, China
| | - Meng-Zhu Liu
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (Modern Industry College of Health Medicine), Guizhou Medical University, Guiyang, 561113, Guizhou, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (School of Public Health, Guizhou Medical University), Guiyang, 561113, Guizhou, China
| | - Wen-Xia Liu
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (Modern Industry College of Health Medicine), Guizhou Medical University, Guiyang, 561113, Guizhou, China; Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, Guizhou, China
| | - Yan-Ling He
- Zhejiang Hisun Pharmaceutical Co., Ltd., Taizhou, 318000, Zhejiang, China
| | - Guo-Bo Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New Area, 561113, Guizhou, China.
| | - Xiao-He Zheng
- Zhejiang Hisun Pharmaceutical Co., Ltd., Taizhou, 318000, Zhejiang, China
| | - Hua Zhang
- Department of Laboratory Medicine, Guizhou Provincial People's Hospital, Affiliated Hospital of Guizhou University, Guiyang, 550002, Guizhou, China.
| | - Hong-Mei Liu
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (Modern Industry College of Health Medicine), Guizhou Medical University, Guiyang, 561113, Guizhou, China.
| | - Bing Wang
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (Modern Industry College of Health Medicine), Guizhou Medical University, Guiyang, 561113, Guizhou, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (School of Public Health, Guizhou Medical University), Guiyang, 561113, Guizhou, China; Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, Guizhou, China.
| |
Collapse
|
11
|
Qiu M, Xu Z. Berberine hydrochloride reduces staphyloxanthin synthesis by inhibiting fni genes in methicillin-resistant Staphylococcus aureus. Mol Biol Rep 2024; 51:761. [PMID: 38874884 DOI: 10.1007/s11033-024-09698-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) poses a great health threat to humans. Looking for compounds that could reduce the resistance of S. aureus towards methicillin is an effective way to alleviate the antimicrobial resistance crisis. METHODS AND RESULTS Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), Time-killing growth curve, staphyloxanthin and penicillin-binding protein 2a (PBP2a) were detected. A quantitative polymerase chain reaction was used to measure the effect of BBH on the gene transcription profiles of MRSA. The MIC of MRSA-ST59-t437 towards oxacillin was 8 µg/ml, and MBC was 128 µg/ml. After adding a sub-inhibitory concentration of BBH, the MIC and MBC of MRSA-ST59-t478 towards oxacillin went down to 0.125 and 32 µg/ml respectively. The amount of PBP2a and staphyloxanthin were reduced after treatment with BBH. Moreover, the transcription levels of sarA, mecA and fni genes were downregulated. CONCLUSIONS It is for the first time reported that BBH could inhibit staphyloxanthin synthesis by inhibiting fni gene. Moreover, fni might be the target gene of sarA, and there might be another regulatory pathway to inhibit staphyloxanthin biosynthesis. BBH could effectively reduce the methicillin resistance of MRSA-ST59-t437 by downregulating fni, sarA and mecA genes.
Collapse
Affiliation(s)
- Mengyue Qiu
- Department of Sanitary Toxicology and Chemistry, Tianjin Medical University, Tianjin, 300070, China
- Tianjin Key Laboratory of Environment Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China
- Center for International Collaborative Research on Environment Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Zhen Xu
- Department of Sanitary Toxicology and Chemistry, Tianjin Medical University, Tianjin, 300070, China.
- Tianjin Key Laboratory of Environment Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China.
- Center for International Collaborative Research on Environment Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
12
|
Wu X, Wang H, Xiong J, Yang GX, Hu JF, Zhu Q, Chen Z. Staphylococcus aureus biofilm: Formulation, regulatory, and emerging natural products-derived therapeutics. Biofilm 2024; 7:100175. [PMID: 38298832 PMCID: PMC10827693 DOI: 10.1016/j.bioflm.2023.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024] Open
Abstract
Staphylococcus aureus can readily form biofilm which enhances the drug-resistance, resulting in life-threatening infections involving different organs. Biofilm formation occurs due to a series of developmental events including bacterial adhesion, aggregation, biofilm maturation, and dispersion, which are controlled by multiple regulatory systems. Rapidly increasing research and development outcomes on natural products targeting S. aureus biofilm formation and/or regulation led to an emergent application of active phytochemicals and combinations. This review aimed at providing an in-depth understanding of biofilm formation and regulation mechanisms for S. aureus, outlining the most important antibiofilm strategies and potential targets of natural products, and summarizing the latest progress in combating S. aureus biofilm with plant-derived natural products. These findings provided further evidence for novel antibiofilm drugs research and clinical therapies.
Collapse
Affiliation(s)
- Xiying Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Huan Wang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Juan Xiong
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Guo-Xun Yang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jin-Feng Hu
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| |
Collapse
|
13
|
Chen M, Huang WK, Yao Y, Wu SM, Yang YX, Liu WX, Luo G, Wei SF, Zhang H, Liu HM, Wang B. Heterologous expression of the insect SVWC peptide WHIS1 inhibits Candida albicans invasion into A549 and HeLa epithelial cells. Front Microbiol 2024; 15:1358752. [PMID: 38873147 PMCID: PMC11169590 DOI: 10.3389/fmicb.2024.1358752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Candida albicans (C. albicans), a microbe commonly isolated from Candida vaginitis patients with vaginal tract infections, transforms from yeast to hyphae and produces many toxins, adhesins, and invasins, as well as C. albicans biofilms resistant to antifungal antibiotic treatment. Effective agents against this pathogen are urgently needed. Antimicrobial peptides (AMPs) have been used to cure inflammation and infectious diseases. In this study, we isolated whole housefly larvae insect SVWC peptide 1 (WHIS1), a novel insect single von Willebrand factor C-domain protein (SVWC) peptide from whole housefly larvae. The expression pattern of WHIS1 showed a response to the stimulation of C. albicans. In contrast to other SVWC members, which function as antiviral peptides, interferon (IFN) analogs or pathogen recognition receptors (PRRs), which are the prokaryotically expressed MdWHIS1 protein, inhibit the growth of C. albicans. Eukaryotic heterologous expression of WHIS1 inhibited C. albicans invasion into A549 and HeLa cells. The heterologous expression of WHIS1 clearly inhibited hyphal formation both extracellularly and intracellularly. Furthermore, the mechanism of WHIS1 has demonstrated that it downregulates all key hyphal formation factors (ALS1, ALS3, ALS5, ECE1, HWP1, HGC1, EFG1, and ZAP1) both extracellularly and intracellularly. These data showed that heterologously expressed WHIS1 inhibits C. albicans invasion into epithelial cells by affecting hyphal formation and adhesion factor-related gene expression. These findings provide new potential drug candidates for treating C. albicans infection.
Collapse
Affiliation(s)
- Ming Chen
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang, Guizhou, China
| | - Wei-Kang Huang
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yang Yao
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Shi-Mei Wu
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yong-Xin Yang
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Wen-Xia Liu
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
- School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Gang Luo
- School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Shao-Feng Wei
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang, Guizhou, China
| | - Hua Zhang
- Department of Laboratory Medicine, Guizhou Provincial People's Hospital, Affiliated Hospital of Guizhou University, Guiyang, Guizhou, China
| | - Hong-Mei Liu
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang, Guizhou, China
| | - Bing Wang
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang, Guizhou, China
| |
Collapse
|
14
|
Yamaguchi J, Manome T, Hara Y, Yamazaki Y, Nakamura Y, Ishibashi M, Takaya A. Physalin H, physalin B, and isophysalin B suppress the quorum-sensing function of Staphylococcus aureus by binding to AgrA. Front Pharmacol 2024; 15:1365815. [PMID: 38659576 PMCID: PMC11039898 DOI: 10.3389/fphar.2024.1365815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
The virulence of Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), depends on the expression of toxins and virulence factors controlled by the quorum-sensing (QS) system, encoded on the virulence accessory gene regulator (agr) locus. The aim of this study was to identify a phytochemical that inhibits Agr-QS function and to elucidate its mechanism. We screened 577 compounds and identified physalin H, physalin B, and isophysalin B--phytochemicals belonging to physalins found in plants of the Solanaceae family--as novel Agr-QS modulators. Biological analyses and in vitro protein-DNA binding assays suggested that these physalins suppress gene expression related to the Agr-QS system by inhibiting binding of the key response regulator AgrA to the agr promoters, reducing the function of hemolytic toxins downstream of these genes in MRSA. Furthermore, although physalin F suppressed gene expression in the Agr-QS system, its anti-hemolytic activity was lower than that of physalins H, B, and isophysalin B. Conversely, five physalins isolated from the same plant with the ability to suppress Agr-QS did not reduce bacterial Agr-QS activity but inhibited AgrA binding to DNA in vitro. A docking simulation revealed that physalin interacts with the DNA-binding site of AgrA in three docking states. The carbonyl oxygens at C-1 and C-18 of physalins, which can suppress Agr-QS, were directed to residues N201 and R198 of AgrA, respectively, whereas these carbonyl oxygens of physalins, without Agr-QS suppression activity, were oriented in different directions. Next, 100-ns molecular dynamics simulations revealed that the hydrogen bond formed between the carbonyl oxygen at C-15 of physalins and L186 of AgrA functions as an anchor, sustaining the interaction between the carbonyl oxygen at C-1 of physalins and N201 of AgrA. Thus, these results suggest that physalin H, physalin B, and isophysalin B inhibit the interaction of AgrA with the agr promoters by binding to the DNA-binding site of AgrA, suppressing the Agr-QS function of S. aureus. Physalins that suppress the Agr-QS function are proposed as potential lead compounds in the anti-virulence strategy for MRSA infections.
Collapse
Affiliation(s)
- Junpei Yamaguchi
- Department of Infection Control Science, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Teruhisa Manome
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Laboratory of Natural Products Chemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yasumasa Hara
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Faculty of Agriculture, Kagawa University, Takamatsu, Japan
| | - Yuriko Yamazaki
- Cutaneous Allergy and Host Defense, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Dermatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuumi Nakamura
- Cutaneous Allergy and Host Defense, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Dermatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masami Ishibashi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa, Japan
| | - Akiko Takaya
- Department of Infection Control Science, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Medical Mycology Research Center, Chiba University, Chiba, Japan
- Plant Molecular Science Center, Chiba University, Chiba, Japan
| |
Collapse
|
15
|
Mohammadi Zonouz A, Ghasemzadeh Rahbardar M, Hosseinzadeh H. The molecular mechanisms of ginkgo (Ginkgo biloba) activity in signaling pathways: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155352. [PMID: 38342017 DOI: 10.1016/j.phymed.2024.155352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/30/2023] [Accepted: 01/08/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND One of the most unique plants that have ever grown on the planet is Ginkgo biloba L., a member of the Ginkgoaceae family with no close living relatives. The existence of several differently structured components of G. biloba has increased the chemical variety of herbal therapy. Numerous studies that investigated the biochemical characteristics of G. biloba suggest this plant as a potential treatment for many illnesses. PURPOSE Review the molecular mechanisms involved in the signaling pathways of G. biloba activity in varied circumstances and its potential as a novel treatment for various illnesses. METHODS Studies focusing on the molecular processes and signaling pathways of compounds and extracts of G. biloba were found and summarized using the proper keywords and operators from Google Scholar, PubMed, Web of Science, and Scopus without time restrictions. RESULTS G. biloba exerts its effects through its anti-inflammatory, anti-apoptotic, anti-cancer, neuroprotective, cardioprotective, hepatoprotective, antiviral, antibacterial, pulmoprotective, renoprotective, anti-osteoporosis, anti-melanogenic, retinoprotective, otoprotective, adipogenic, and anti-adipogenic properties. The most important mechanisms involved in these actions are altering the elevation of ROS formation, inhibiting NADPH oxidases activation, altering the expression of antioxidant enzymes, downregulating MAPKs (p38 MAPK and ERK, and JNK) and AP-1, increasing cAMP, inactivating Stat5, activating the AMPK signaling pathway, affecting Stat3/JAK2, NF-κB, Nrf-2, mTOR, HGF/c-Met, Wnt/β-catenin and BMP signaling pathways, and changing the mitochondrial transmembrane potential, the Bax/Bcl-2 ratio, the release of Cyc from mitochondria to cytosol, the protein cleavage of caspases 3, 7, 8, 9, and 12, poly (ADP-ribose) polymerase, and MMPs levels. CONCLUSIONS G. biloba and its components have gained attention in recent years for their therapeutic benefits, such as their anti-inflammatory, antioxidant, anti-apoptotic, and apoptotic effects. By understanding their molecular mechanisms and signaling pathways, potential novel medicines might be developed in response to the rising public desire for new therapies.
Collapse
Affiliation(s)
| | | | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Aboelnaga N, Elsayed SW, Abdelsalam NA, Salem S, Saif NA, Elsayed M, Ayman S, Nasr M, Elhadidy M. Deciphering the dynamics of methicillin-resistant Staphylococcus aureus biofilm formation: from molecular signaling to nanotherapeutic advances. Cell Commun Signal 2024; 22:188. [PMID: 38519959 PMCID: PMC10958940 DOI: 10.1186/s12964-024-01511-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/01/2024] [Indexed: 03/25/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) represents a global threat, necessitating the development of effective solutions to combat this emerging superbug. In response to selective pressures within healthcare, community, and livestock settings, MRSA has evolved increased biofilm formation as a multifaceted virulence and defensive mechanism, enabling the bacterium to thrive in harsh conditions. This review discusses the molecular mechanisms contributing to biofilm formation across its developmental stages, hence representing a step forward in developing promising strategies for impeding or eradicating biofilms. During staphylococcal biofilm development, cell wall-anchored proteins attach bacterial cells to biotic or abiotic surfaces; extracellular polymeric substances build scaffolds for biofilm formation; the cidABC operon controls cell lysis within the biofilm, and proteases facilitate dispersal. Beside the three main sequential stages of biofilm formation (attachment, maturation, and dispersal), this review unveils two unique developmental stages in the biofilm formation process for MRSA; multiplication and exodus. We also highlighted the quorum sensing as a cell-to-cell communication process, allowing distant bacterial cells to adapt to the conditions surrounding the bacterial biofilm. In S. aureus, the quorum sensing process is mediated by autoinducing peptides (AIPs) as signaling molecules, with the accessory gene regulator system playing a pivotal role in orchestrating the production of AIPs and various virulence factors. Several quorum inhibitors showed promising anti-virulence and antibiofilm effects that vary in type and function according to the targeted molecule. Disrupting the biofilm architecture and eradicating sessile bacterial cells are crucial steps to prevent colonization on other surfaces or organs. In this context, nanoparticles emerge as efficient carriers for delivering antimicrobial and antibiofilm agents throughout the biofilm architecture. Although metal-based nanoparticles have been previously used in combatting biofilms, its non-degradability and toxicity within the human body presents a real challenge. Therefore, organic nanoparticles in conjunction with quorum inhibitors have been proposed as a promising strategy against biofilms. As nanotherapeutics continue to gain recognition as an antibiofilm strategy, the development of more antibiofilm nanotherapeutics could offer a promising solution to combat biofilm-mediated resistance.
Collapse
Affiliation(s)
- Nirmeen Aboelnaga
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Salma W Elsayed
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nehal Adel Abdelsalam
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Salma Salem
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Nehal A Saif
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Manar Elsayed
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Shehab Ayman
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed Elhadidy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
17
|
Wei YM, Tong WY, Tan JS, Lim V, Leong CR, Tan WN. Effects of Phomopsidione on the Viability, Virulence, and Metabolites Profile of Methicillin-Resistant Staphylococcus aureus (MRSA). Curr Microbiol 2024; 81:108. [PMID: 38461425 DOI: 10.1007/s00284-024-03627-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/27/2024] [Indexed: 03/12/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infections have become one of the most threatening multidrug-resistant pathogens. Thus, an ongoing search for anti-MRSA compounds remains an urgent need to effectively treating MRSA infections. Phomopsidione, a novel antibiotic isolated from Diaporthe fraxini, has previously demonstrated potent anti-candidal activity. The present study aimed to investigate the effects of phomopsidione on the viability, virulence, and metabolites profile of MRSA. MRSA was sensitive to phomopsidione in a concentration-dependent manner. Phomopsidione exhibited minimum inhibitory concentration and minimum bactericidal concentration of 62.5 and 500.00 µg/mL against MRSA on broth microdilution assay. The compound showed significant reduction in virulence factors production including extracellular polymeric substances quantification, catalase, and lipase. An untargeted metabolomics analysis using liquid chromatography-high resolution mass spectrometry revealed a significant difference in the metabolites profile of MRSA with 13 putatively identified discriminant metabolites. The present study suggested the potential of phomopsidione as a promising anti-MRSA agent.
Collapse
Affiliation(s)
- Yee-Min Wei
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Woei-Yenn Tong
- Institute of Medical Science Technology, Universiti Kuala Lumpur, 43000, Kajang, Selangor, Malaysia.
| | - Joo-Shun Tan
- Bioprocess Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Chean-Ring Leong
- Malaysian Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur, 78000, Alor Gajah, Melaka, Malaysia
| | - Wen-Nee Tan
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| |
Collapse
|
18
|
Hu D, Wang HJ, Yu LH, Guan ZR, Jiang YP, Hu JH, Yan YX, Zhou ZH, Lou JS. The role of Ginkgo Folium on antitumor: Bioactive constituents and the potential mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117202. [PMID: 37742878 DOI: 10.1016/j.jep.2023.117202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/16/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginkgo biloba L. is a well-known and highly regarded resource in Chinese traditional medicine due to its effectiveness and safety. Ginkgo Folium, the leaf of Ginkgo biloba L., contains biologically active constituents with diverse pharmacological activities. Recent studies have shown promising antitumor effects of the bioactive constituents found in Ginkgo Folium against various types of cancer cells, highlighting its potential as a natural source of antitumor agents. Further research is needed to elucidate the underlying mechanisms and optimize its therapeutic potential. AIM OF THE REVIEW To provide a detailed understanding of the pharmacological activities of Ginkgo Folium and its potential therapeutic benefits for cancer patients. MATERIALS AND METHODS In this study, we conducted a thorough and systematic search of multiple online databases, including PubMed, Web of Science, Medline, using relevant keywords such as "Ginkgo Folium," "flavonoids," "terpenoids," "Ginkgo Folium extracts," and "antitumor" to cover a broad range of studies that could inform our review. Additionally, we followed a rigorous selection process to ensure that the studies included in our review met the predetermined inclusion criteria. RESULTS The active constituents of Ginkgo Folium primarily consist of flavonoids and terpenoids, with quercetin, kaempferol, isorhamnetin, ginkgolides, and bilobalide being the major compounds. These active constituents exert their antitumor effects through crucial biological events such as apoptosis, cell cycle arrest, autophagy, and inhibition of invasion and metastasis via modulating diverse signaling pathways. During the process of apoptosis, active constituents primarily exert their effects by modulating the caspase-8 mediated death receptor pathway and caspase-9 mediated mitochondrial pathway via regulating specific signaling pathways. Furthermore, by modulating multiple signaling pathways, active constituents effectively induce G1, G0/G1, G2, and G2/M phase arrest. Among these, the pathways associated with G2/M phase arrest are particularly extensive, with the cyclin-dependent kinases (CDKs) being most involved. Moreover, active constituents primarily mediate autophagy by modulating certain inflammatory factors and stressors, facilitating the fusion stage between autophagosomes and lysosomes. Additionally, through the modulation of specific chemokines and matrix metalloproteinases, active constituents effectively inhibit the processes of epithelial-mesenchymal transition (EMT) and angiogenesis, exerting a significant impact on cellular invasion and migration. Synergistic effects are observed among the active constituents, particularly quercetin and kaempferol. CONCLUSION Active components derived from Ginkgo Folium demonstrate a comprehensive antitumor effect across various levels and pathways, presenting compelling evidence for their potential in new drug development. However, in order to facilitate their broad and adaptable clinical application, further extensive experimental investigations are required to thoroughly explore their efficacy, safety, and underlying mechanisms of action.
Collapse
Affiliation(s)
- Die Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Hao-Jie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Li-Hua Yu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zheng-Rong Guan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Ya-Ping Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jun-Hu Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Ya-Xin Yan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zhao-Huang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jian-Shu Lou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
19
|
Li J, Xie S, Gao Q, Deng Z. Evaluation of the potential of endophytic Trichoderma sp. isolated from medicinal plant Ampelopsis japonica against MRSA and bioassay-guided separation of the anti-MRSA compound. Braz J Microbiol 2024; 55:543-556. [PMID: 38261262 PMCID: PMC10920522 DOI: 10.1007/s42770-024-01250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Endophytic fungi have been recognized as a valuable source for the production of biologically active compounds with potential applications in various domains. This study aimed to isolate endophytic fungi from Ampelopsis japonica (Thunb.) Makino and assess their anti-MRSA activity. Meanwhile, chromatographic separation techniques were applied to analyze the constituents of endophytic fungal secondary metabolites. The isolate BLR24, which exhibited strong inhibition activity against MRSA, was identified as Trichoderma virens based on morphological characteristics and ITS sequence analyses. The ethyl acetate extract of BLR24 (EA-BLR24) showed good anti-MRSA activity with the MIC and MBC values of 25 μg/mL and 50 μg/mL, separately. The inhibition of biofilm formation was up to 34.67% under MIC concentration treatment. Meanwhile, EA-BLR24 could significantly reduce the expression of biofilm-related genes (icaA, sarA, and agrA) of MRSA. Based on LC-MS/MS analysis, twenty compounds in EA-BLR24 could be annotated using the GNPS platform, mainly diketopiperazines. The anti-MRSA compound (Fr.1.1) was obtained from EA-BLR24 by bioassay-guided fractionation and determined as gliotoxin. The results indicated that endophytic Trichoderma virens BLR24 isolated from the medical plant A. japonica roots could be a promising source of natural anti-MRSA agents. Endophytic fungal secondary metabolites are abundant in biologically active compounds. Endophytic fungi from medicinal plants could be a source yielding bioactive metabolites of pharmaceutical importance.
Collapse
Affiliation(s)
- Jianbin Li
- School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, People's Republic of China
| | - Siyun Xie
- School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, People's Republic of China
| | - Qing Gao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Zujun Deng
- School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
20
|
Silva E, Teixeira JA, Pereira MO, Rocha CMR, Sousa AM. Evolving biofilm inhibition and eradication in clinical settings through plant-based antibiofilm agents. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154973. [PMID: 37499434 DOI: 10.1016/j.phymed.2023.154973] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/05/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND After almost 100 years since evidence of biofilm mode of growth and decades of intensive investigation about their formation, regulatory pathways and mechanisms of antimicrobial tolerance, nowadays there are still no therapeutic solutions to eradicate bacterial biofilms and their biomedical related issues. PURPOSE This review intends to provide a comprehensive summary of the recent and most relevant published studies on plant-based products, or their isolated compounds with antibiofilm activity mechanisms of action or identified molecular targets against bacterial biofilms. The objective is to offer a new perspective of most recent data for clinical researchers aiming to prevent or eliminate biofilm-associated infections caused by bacterial pathogens. METHODS The search was performed considering original research articles published on PubMed, Web of Science and Scopus from 2015 to April 2023, using keywords such as "antibiofilm", "antivirulence", "phytochemicals" and "plant extracts". RESULTS Over 180 articles were considered for this review with a focus on the priority human pathogens listed by World Health Organization, including Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli. Inhibition and detachment or dismantling of biofilms formed by these pathogens were found using plant-based extract/products or derivative compounds. Although combination of plant-based products and antibiotics were recorded and discussed, this topic is currently poorly explored and only for a reduced number of bacterial species. CONCLUSIONS This review clearly demonstrates that plant-based products or derivative compounds may be a promising therapeutic strategy to eliminate bacterial biofilms and their associated infections. After thoroughly reviewing the vast amount of research carried out over years, it was concluded that plant-based products are mostly able to prevent biofilm formation through inhibition of quorum sensing signals, but also to disrupt mature biofilms developed by multidrug resistant bacteria targeting the biofilm extracellular polymeric substance. Flavonoids and phenolic compounds seemed the most effective against bacterial biofilms.
Collapse
Affiliation(s)
- Eduarda Silva
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - José A Teixeira
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Maria Olivia Pereira
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Cristina M R Rocha
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Ana Margarida Sousa
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal.
| |
Collapse
|
21
|
Peng Q, Tang X, Dong W, Zhi Z, Zhong T, Lin S, Ye J, Qian X, Chen F, Yuan W. Carvacrol inhibits bacterial polysaccharide intracellular adhesin synthesis and biofilm formation of mucoid Staphylococcus aureus: an in vitro and in vivo study. RSC Adv 2023; 13:28743-28752. [PMID: 37807974 PMCID: PMC10552078 DOI: 10.1039/d3ra02711b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is one of the important human pathogens and causes both superficial and systemic infections. More importantly, the formation of S. aureus biofilms, a main cause of its pathogenicity and drug resistance, has been a critical challenge in clinical treatment. Carvacrol, a plant-based natural product, has gained great interest for therapeutic purposes due to its effective biological activity with low cytotoxicity. The present study aimed to investigate the effect of carvacrol on anti-biofilm activity. Growth curve analysis showed that applying a sub-inhibitory concentration of carvacrol (4 μg mL-1) was not lethal to S. aureus SYN; however, the inhibition rate of biofilm formation was as high as 63.6%, and the clearance rate of mature biofilms was as high as 30.7%. In addition, carvacrol effectively reduced the production of biofilm-associated extracellular polysaccharides and showed no effect on eDNA release. Furthermore, qPCR analysis revealed that carvacrol significantly down-regulated the expression of icaA, icaB, icaC, agrA, and sarA (P < 0.05). The in vivo efficacy of carvacrol against biofilm infection was further verified with a biological model of G. mellonella larvae. The results showed that carvacrol was non-toxic to the larvae and can effectively increase the survival rate of the larvae infected with S. aureus strain SYN.
Collapse
Affiliation(s)
- Qi Peng
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
| | - Xiaohua Tang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
- Department of Clinical Laboratory, Third Affiliated Hospital of Guangzhou Medical University Guangzhou 510150 PR China
| | - Wanyang Dong
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
| | - Ziling Zhi
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
| | - Tian Zhong
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
| | - Shunan Lin
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
| | - Jingyi Ye
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
| | - Xiping Qian
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
| | - Fu Chen
- Panyu District Health Management Center Guangzhou 511450 PR China
| | - Wenchang Yuan
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
| |
Collapse
|
22
|
Qin J, Yu L, Peng F, Ye X, Li G, Sun C, Cheng F, Peng C, Xie X. Tannin extracted from Penthorum chinense Pursh, a potential drug with antimicrobial and antibiofilm effects against methicillin-sensitive Staphylococcus aureus and methicillin-resistant Staphylococcus aureus. Front Microbiol 2023; 14:1134207. [PMID: 37465024 PMCID: PMC10351983 DOI: 10.3389/fmicb.2023.1134207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen. Due to the widespread use and abuse of antibiotics, various drug-resistant strains of S. aureus have emerged, with methicillin-resistant Staphylococcus aureus (MRSA) being the most prevalent. Bacterial biofilm is a significant contributor to bacterial infection and drug resistance. Consequently, bacterial biofilm formation has emerged as a therapeutic strategy. In this study, the chemical constituents, antimicrobial and antibiofilm properties of tannins isolated from Penthorum chinense Pursh (TPCP) were investigated. In vitro, TPCP exhibited antimicrobial properties. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) for methicillin-sensitive Staphylococcus aureus (MSSA) and MRSA were 156.25 and 312.5 μg/mL, and 312.5 and 625 μg/mL, respectively. According to the growth curves, TPCP significantly inhibited the growth of MSSA and MRSA. The results of the crystal violet biofilm assay in conjunction with confocal laser scanning and scanning electron microscopy demonstrated that TPCP destroyed preformed MSSA and MRSA biofilms. TPCP significantly decreased the secretion of exopolysaccharides and extracellular DNA. Subsequently, the mechanism was investigated using RT-PCR. Examining the expression of icaA, cidA, sigB, agrA, and sarA genes in MRSA, we discovered that TPCP inhibited biofilm formation by affecting the quorum-sensing system in bacteria. Our study demonstrates that TPCP exerts antibacterial effects by disrupting the formation of bacterial biofilms, suggesting that TPCP has clinical potential as a novel antibacterial agent for the prevention and treatment of MSSA and MRSA infections.
Collapse
Affiliation(s)
- Junyuan Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xin Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gangmin Li
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Chen Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
23
|
Yan J, Yin Q, Nie H, Liang J, Liu XR, Li Y, Xiao H. Prodigiosin as an antibiofilm agent against multidrug-resistant Staphylococcus aureus. BIOFOULING 2023:1-15. [PMID: 37369552 DOI: 10.1080/08927014.2023.2226613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Staphylococcus aureus is known for forming bacterial biofilms that confer increased antimicrobial resistance. Combining antibiotics with antibiofilm agents is an alternative approach, but the antibiofilm ability of prodigiosin (PG), a potential antibiotic synergist, against antimicrobial-resistant (AMR) S. aureus remains to be understood. The antibiofilm activity of PG against 29 clinical AMR S. aureus strains was evaluated using crystal violet staining, and its synergistic effects with vancomycin (VAN) was confirmed using the checkerboard test. The viability and metabolic activity of biofilms and planktonic cells were also assessed. The results revealed that PG exhibited promising inhibitory activity against biofilm formation and synergistic activity with VAN. It effectively reduced the metabolic activity of biofilms and suppressed the production of exopolysaccharides, which might be attributed to the downregulation of biofilm-related genes such as sarA, agrA, and icaA. These findings suggest that PG could be used as a preventive coating or adjuvant against biofilms in clinical settings.
Collapse
Affiliation(s)
- Jing Yan
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, PR China
| | - Qi Yin
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, PR China
| | - Hao Nie
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, PR China
| | - Jinyou Liang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, PR China
| | - Xiang-Ru Liu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, PR China
| | - Yingli Li
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, PR China
| | - Hong Xiao
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
24
|
Wu X, Ma GL, Chen HW, Zhao ZY, Zhu ZP, Xiong J, Yang GX, Hu JF. Antibacterial and antibiofilm efficacy of the preferred fractions and compounds from Euphorbia humifusa (herba euphorbiae humifusae) against Staphylococcus aureus. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116177. [PMID: 36681167 DOI: 10.1016/j.jep.2023.116177] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Euphorbia humifusa Willd., known as Di-Jin-Cao in Chinese, has long been utilized as a traditional herb for the treatment of furuncles and carbuncles mainly caused by Staphylococcus aureus infection. Despite extensive chemical and pharmacological studies reported previously for E. humifusa, the antibacterial and antibiofilm activities against S. aureus as well as the related mechanism of action (MoA) remain largely obscure. AIM OF THE STUDY To investigate the antibacterial and antibiofilm activities of the preferred fractions and compounds from E. humifusa against S. aureus and assess the associated MoA. MATERIALS AND METHODS The bioactive fractions and compounds were obtained from the 75% ethanol extract of E. humifusa (75%-EEEH) with the assistance of the related antibacterial and antibiofilm screening. Their antibacterial activities were determined using the broth microdilution method, whilst the inhibition of biofilm formation and the disruption of preformed biofilm were assessed by crystal violet staining and confocal laser scanning microscopy (CLSM). To achieve more effective therapies, the combinatory effects of different components were also studied. The biofilm metabolic activities of isolated compounds were evaluated by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assay. The scanning electron microscopy (SEM) and quantitative real-time polymerase chain reaction (qRT-PCR) were employed to explore the antibiofilm mechanism. RESULTS Fractions DJC06 and DJC07 collected from the ethyl acetate extract of the 75%-EEEH exhibited antibacterial activity (MIC = 256 μg/mL) against S. aureus and further separation of these two fractions led to the isolation and characterization of 22 compounds. Among the isolates, luteolin (LU), quercetin (QU), and kaempferol (KA) are the verified components associated with the antibacterial and antibiofilm activities by displaying individual or combinational MIC values of 8-128 μg/mL and 70.9-99.7% inhibition for biofilm formation. Importantly, QU and KA can work in synergy with LU to significantly enhance the efficacy via destroying cell integrity, increasing membrane permeability, and down-regulating the biofilm-related gene expression. CONCLUSIONS The preferred fractions and compounds from E. humifusa exerted desired antibacterial and antibiofilm efficacy against S. aureus via a MoA involving cell morphology disruption and altered genes expression. The findings herein not only support its traditional use in the treatment of furuncles and carbuncles, but reveal E. humifusa is a potential source for producing promising antibiofilm alternatives against S. aureus and highlight the isolated components (LU, QU, KA) that can potentiate the efficacy when used in synergy.
Collapse
Affiliation(s)
- Xiying Wu
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Guang-Lei Ma
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Hao-Wei Chen
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Ze-Yu Zhao
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zi-Ping Zhu
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China
| | - Juan Xiong
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Guo-Xun Yang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jin-Feng Hu
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
25
|
Li M, Xiao H, Su Y, Cheng D, Jia Y, Li Y, Yin Q, Gao J, Tang Y, Bai Q. Synergistic Inhibitory Effect of Honey and Lactobacillus plantarum on Pathogenic Bacteria and Their Promotion of Healing in Infected Wounds. Pathogens 2023; 12:pathogens12030501. [PMID: 36986423 PMCID: PMC10053434 DOI: 10.3390/pathogens12030501] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Prevention and control of infections have become a formidable challenge due to the increasing resistance of pathogens to antibiotics. Probiotics have been discovered to have positive effects on the host, and it is well-known that some Lactobacilli are effective in treating and preventing inflammatory and infectious diseases. In this study, we developed an antibacterial formulation consisting of honey and Lactobacillus plantarum (honey-L. plantarum). The optimal formulation of honey (10%) and L. plantarum (1 × 109 CFU/mL) was used to investigate its antimicrobial effect and mechanism in vitro, and its healing effect on wound healing of whole skin infections in rats. Biofilm crystalline violet staining and fluorescent staining results indicated that the honey-L. plantarum formulation prevented the biofilm formation in Staphylococcus aureus and Pseudomonas aeruginosa and increased the number of dead bacteria in the biofilms. Further mechanism studies revealed that the honey-L. plantarum formulation may inhibit biofilm formation by upregulating biofilm-related genes (icaA, icaR, sigB, sarA, and agrA) and downregulating quorum sensing (QS) associated genes (lasI, lasR, rhlI, rhlR, and pqsR). Furthermore, the honey-L. plantarum formulation decreased the number of bacteria in the infected wounds of rats and accelerated the formation of new connective tissue to promote wound healing. Our study suggests that the honey-L. plantarum formulation provides a promising option for the treatment of pathogenic infections and wound healing.
Collapse
Affiliation(s)
- Mei Li
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 401334, China
| | - Hong Xiao
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 401334, China
| | - Yongmei Su
- Chongqing College of Traditional Chinese Medicine, Chongqing 402760, China
| | - Danlin Cheng
- The First Clinical School, Chongqing Medical University, Chongqing 400016, China
| | - Yan Jia
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 401334, China
| | - Yingli Li
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 401334, China
| | - Qi Yin
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 401334, China
| | - Jieying Gao
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 401334, China
| | - Yong Tang
- Chongqing Orthopedics Hospital of Traditional Chinese Medicine, Chongqing 400039, China
| | - Qunhua Bai
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 401334, China
| |
Collapse
|
26
|
Zhao D, Li X, Xu M, Jiao Y, Liu H, Xiao X, Zhao H. Preparations of antibacterial yellow-green-fluorescent carbon dots and carbon dots-lysozyme complex and their applications in bacterial imaging and bacteria/biofilm inhibition/clearance. Int J Biol Macromol 2023; 231:123303. [PMID: 36657551 DOI: 10.1016/j.ijbiomac.2023.123303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
The preparation of functional long-wavelength-emitting nanomaterials and the researches on their applications in antibacterial and antibiofilm fields have important significance. This paper reports the preparation of yellow-green-fluorescent and high- quantum yield carbon dots (4-ACDs) with 4-aminosalicylic acid and polyethylene imine as raw materials through one-step route, and the impacts of raw material structure and the reaction conditions upon the optical properties of the products have been investigated. 4-ACDs exhibit excellent broad-spectrum antibacterial activity, and their good biocompatibility ensures them as ideal fluorescent nano-probe for cell imaging. However, 4-ACDs could not effectively eliminate the biofilm of Staphylococcus aureus (S. aureus). CDs-LZM complex was prepared through the coupling between 4-ACDs and lysozyme (LZM) and the complex showed strong antibacterial activity against Gram-positive bacteria, particularly with MIC against S. aureus at 5 μg mL-1. Besides, CDs-LZM showed excellent ability against the biofilm of S. aureus. At the concentration of 60 μg mL-1, its inhibition rate against the growth of biofilm was 86 %, and elimination rate against biofilm reached 76 %. CDs-LZM exhibited obvious antibiofilm ability through removing extracellular matrix of biofilm, greatly reducing the thickness of biofilm under confocal microscopy. The application of novel long-wavelength-emitting nanomaterial in eliminating pathogenic bacteria is of great significance.
Collapse
Affiliation(s)
- Dan Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China.
| | - Xiaoyun Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Mengyu Xu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Yan Jiao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Huan Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Xincai Xiao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Haiyan Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| |
Collapse
|
27
|
Exploring Possible Ways to Enhance the Potential and Use of Natural Products through Nanotechnology in the Battle against Biofilms of Foodborne Bacterial Pathogens. Pathogens 2023; 12:pathogens12020270. [PMID: 36839543 PMCID: PMC9967150 DOI: 10.3390/pathogens12020270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Biofilms enable pathogenic bacteria to survive in unfavorable environments. As biofilm-forming pathogens can cause rapid food spoilage and recurrent infections in humans, especially their presence in the food industry is problematic. Using chemical disinfectants in the food industry to prevent biofilm formation raises serious health concerns. Further, the ability of biofilm-forming bacterial pathogens to tolerate disinfection procedures questions the traditional treatment methods. Thus, there is a dire need for alternative treatment options targeting bacterial pathogens, especially biofilms. As clean-label products without carcinogenic and hazardous potential, natural compounds with growth and biofilm-inhibiting and biofilm-eradicating potentials have gained popularity as natural preservatives in the food industry. However, the use of these natural preservatives in the food industry is restricted by their poor availability, stability during food processing and storage. Also there is a lack of standardization, and unattractive organoleptic qualities. Nanotechnology is one way to get around these limitations and as well as the use of underutilized bioactives. The use of nanotechnology has several advantages including traversing the biofilm matrix, targeted drug delivery, controlled release, and enhanced bioavailability, bioactivity, and stability. The nanoparticles used in fabricating or encapsulating natural products are considered as an appealing antibiofilm strategy since the nanoparticles enhance the activity of the natural products against biofilms of foodborne bacterial pathogens. Hence, this literature review is intended to provide a comprehensive analysis of the current methods in nanotechnology used for natural products delivery (biofabrication, encapsulation, and nanoemulsion) and also discuss the different promising strategies employed in the recent and past to enhance the inhibition and eradication of foodborne bacterial biofilms.
Collapse
|
28
|
Ray RR, Pattnaik S. Contribution of phytoextracts in challenging the biofilms of pathogenic bacteria. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
29
|
Liu G, Liu A, Yang C, Zhou C, Zhou Q, Li H, Yang H, Mo J, Zhang Z, Li G, Si H, Ou C. Portulaca oleracea L. organic acid extract inhibits persistent methicillin-resistant Staphylococcus aureus in vitro and in vivo. Front Microbiol 2023; 13:1076154. [PMID: 36713183 PMCID: PMC9874160 DOI: 10.3389/fmicb.2022.1076154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Staphylococcus aureus continues to be one of the most important pathogens capable of causing a wide range of infections in different sites of the body in humans and livestock. With the emergence of methicillin-resistant strains and the introduction of strict laws on antibiotic usage in animals, antibiotic replacement therapy has become increasingly popular. Previous studies have shown that Portulaca oleracea L. extract exerts a certain degree of bacteriostatic effect, although the active ingredients are unknown. In the present study, the antibacterial activity of the organic acid of P. oleracea (OAPO) against S. aureus was examined using a series of experiments, including the minimum inhibitory concentration, growth curve, and bacteriostasis curve. In vitro antibacterial mechanisms were evaluated based on the integrity and permeability of the cell wall and membrane, scanning electron microscopy, and soluble protein content. A mouse skin wound recovery model was used to verify the antibacterial effects of OAPO on S. aureus in vivo. The results showed that OAPO not only improved skin wound recovery but also decreased the bacterial load in skin wounds. Moreover, the number of inflammatory cells and cytokines decreased in the OAPO-treated groups. In summary, this study reports a botanical extract that can inhibit S. aureus in vitro and in vivo, indicating the potential use of OAPO to prevent and control S. aureus infection in the near future.
Collapse
Affiliation(s)
- Gengsong Liu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Aijing Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Cheng Yang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Congcong Zhou
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qiaoyan Zhou
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Haizhu Li
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hongchun Yang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jiahao Mo
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zhidan Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Gonghe Li
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Changbo Ou
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China,*Correspondence: Changbo Ou, ✉
| |
Collapse
|
30
|
Ali NB, El-Shiekh RA, Ashour RM, El-Gayed SH, Abdel-Sattar E, Hassan M. In Vitro and In Vivo Antibiofilm Activity of Red Onion Scales: An Agro-Food Waste. Molecules 2023; 28:molecules28010355. [PMID: 36615550 PMCID: PMC9822268 DOI: 10.3390/molecules28010355] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
Red onion wastes (ROW) are valuable sources of bioactive metabolites with promising antimicrobial effects. Methicillin-resistant Staphylococcus aureus (MRSA) infections are a growing risk in hospitals and communities. This study aims to investigate the in vitro and in vivo antibiofilm activities of the acidified ethanolic extract of red onion scales (RO-T) and its fractions against an MRSA vaginal colonization model. The RO-T extract, as well as its anthocyanin-rich fraction (RO-P) and flavonoid-rich fraction (RO-S), recorded a promising antibacterial activity against highly virulent strains of bacteria (MRSA, Acinetobacter baumannii, Escherichia coli and Pseudomonas aeruginosa). RO-S showed the highest antibacterial activity (MBC of 0.33 ± 0.11 mg/mL) against MRSA USA300 and significantly eradicated its biofilm formation with an IC50 of 0.003. Using a rat model, in vivo assessment on all samples, which were formulated as a hydrogel, revealed a significant reduction of MRSA bacterial load recovered from an infected vagina compared to that of the negative control group (NCG). RO-T extract and vancomycin groups recorded the highest antibacterial activity with a bacterial load 2.998 and 3.358 logs lower than the NCG, respectively. The histopathological investigation confirmed our findings. RO-T and RO-S were standardized for their quercetin content. Finally, ROW offers a new potent antibiofilm agent mostly due to its high quercetin content.
Collapse
Affiliation(s)
- Nermeen B. Ali
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Riham A. El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Rehab M. Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Sabah H. El-Gayed
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, 6th October University, Cairo 12585, Egypt
| | - Essam Abdel-Sattar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Correspondence:
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez 43511, Egypt
| |
Collapse
|
31
|
Xue P, Sang R, Li N, Du S, Kong X, Tai M, Jiang Z, Chen Y. A new approach to overcoming antibiotic-resistant bacteria: Traditional Chinese medicine therapy based on the gut microbiota. Front Cell Infect Microbiol 2023; 13:1119037. [PMID: 37091671 PMCID: PMC10117969 DOI: 10.3389/fcimb.2023.1119037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/12/2023] [Indexed: 04/25/2023] Open
Abstract
With the irrational use of antibiotics and the increasing abuse of oral antibiotics, the drug resistance of gastrointestinal pathogens has become a prominent problem in clinical practice. Gut microbiota plays an important role in maintaining human health, and the change of microbiota also affects the activity of pathogenic bacteria. Interfering with antibiotic resistant bacteria by affecting gut microbiota has also become an important regulatory signal. In clinical application, due to the unique advantages of traditional Chinese medicine in sterilization and drug resistance, it is possible for traditional Chinese medicine to improve the gut microbial microenvironment. This review discusses the strategies of traditional Chinese medicine for the treatment of drug-resistant bacterial infections by changing the gut microenvironment, unlocking the interaction between microbiota and drug resistance of pathogenic bacteria.
Collapse
Affiliation(s)
- Peng Xue
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Rui Sang
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Nan Li
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Siyuan Du
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xiuwen Kong
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Mingliang Tai
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Zhihao Jiang
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Ying Chen
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu, China
- *Correspondence: Ying Chen,
| |
Collapse
|
32
|
Yang S, Wang B, Li J, Zhao X, Zhu Y, Sun Q, Liu H, Wen X. Genetic Diversity, Antibiotic Resistance, and Virulence Gene Features of Methicillin-Resistant Staphylococcus aureus Epidemics in Guiyang, Southwest China. Infect Drug Resist 2022; 15:7189-7206. [PMID: 36514797 PMCID: PMC9741838 DOI: 10.2147/idr.s392434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common pathogens of community- and hospital-acquired infections, and its prevalence is increasing globally. Guiyang is the capital city of Guizhou Province, Southwest China; as the transport and tourism centre of Southwest China, Guizhou Province is bordered by Yunnan, Sichuan, Chongqing, and Guangxi Provinces. Although MRSA prevalence is increasing, little is known about its aspects in the area. The purpose of this study was to analyse MRSA molecular characteristics, antimicrobial resistance, and virulence genes in Guiyang. Methods In total, 209 MRSA isolates from four hospitals (2019-2020) were collected and analysed by antimicrobial susceptibility testing and molecular classification by the MLST, spa, and SCCmec typing methods. Isolate antibiotic resistance rates were detected by a drug susceptibility assays. PCR amplification was used to detect the virulence gene-carrying status. Results Twenty-four STs, including 4 new STs (ST7346, ST7347, ST7348, and ST7247) and 3 new allelic mutations, were identified based on MLST. The major prevalent ST type and clone complex were ST59 (49.8%) and CC59 (62.7%), respectively. Spa type t437 (42.1%) and SCCmec IV (55.5%) were identified by spa and SCCmec typing methods as the most important types. Drug sensitivity data showed that the multidrug resistance rate was 79.0%. There were significant differences in multidrug resistance rates and virulence gene-carrying rates for seb, hla, hlb, cna and bap between ST59 and non-ST59 types. Conclusion ST59-SCCmecIV-t437 is a major epidemic clone in Guiyang that should be monitored by local medical and health institutions. The situation differs from other adjacent or middle provinces of China, which may be due to the special geographical location of the region and the trend in antibiotic use or lifestyle. This study provides empirical evidence for local medical and health departments to prevent and control the spread of MRSA.
Collapse
Affiliation(s)
- SuWen Yang
- School of Basic Medical Sciences, Basic Medical School, Guizhou Medical University, Guiyang, 550025, People’s Republic of China,Engineering Research Centre of Medical Biotechnology, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China,People’s Hospital of Kaiyang, Guiyang, 550300, People’s Republic of China
| | - Bing Wang
- Engineering Research Centre of Medical Biotechnology, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China,Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China,School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Jing Li
- Department of Microbial Immunology, The First Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People’s Republic of China
| | - Xue Zhao
- Department of Clinical Laboratory, The First People’s Hospital of Guiyang, Guiyang, 550002, People’s Republic of China
| | - Yan Zhu
- Department of Clinical Laboratory, The Fourth People’s Hospital of Guiyang, Guiyang, 550002, People’s Republic of China
| | - Qian Sun
- Department of Emergency Medicine, The First People’s Hospital of Guiyang, Guiyang, 550002, People’s Republic of China
| | - HongMei Liu
- Engineering Research Centre of Medical Biotechnology, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China,Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China,School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - XiaoJun Wen
- School of Basic Medical Sciences, Basic Medical School, Guizhou Medical University, Guiyang, 550025, People’s Republic of China,Correspondence: XiaoJun Wen; HongMei Liu, Guizhou Medical University, Guiyang, 550025, People’s Republic of China, Email ;
| |
Collapse
|
33
|
Wang H, Li Y, Li Z, Ma R, Bai X, Zhan X, Luo K, Su R, Li X, Xia X, Shi C. Inhibition of Cronobacter sakazakii by Litsea cubeba Essential Oil and the Antibacterial Mechanism. Foods 2022; 11:foods11233900. [PMID: 36496708 PMCID: PMC9736361 DOI: 10.3390/foods11233900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Litsea cubeba essential oil (LC-EO) has anti-insecticidal, antioxidant, and anticancer proper-ties; however, its antimicrobial activity toward Cronobacter sakazakii has not yet been researched extensively. The objective of this study was to investigate the antimicrobial and antibiofilm effects of LC-EO toward C. sakazakii, along with the underlying mechanisms. The minimum inhibitory concentrations of LC-EO toward eight different C. sakazakii strains ranged from 1.5 to 4.0 μL/mL, and LC-EO exposure showed a longer lag phase and lower specific growth compared to untreated bacteria. LC-EO increased reactive oxygen species production, decreased the integrity of the cell membrane, caused cell membrane depolarization, and decreased the ATP concentration in the cell, showing that LC-EO caused cellular damage associated with membrane permeability. LC-EO induced morphological changes in the cells. LC-EO inhibited C. sakazakii in reconstituted infant milk formula at 50 °C, and showed effective inactivation of C. sakazakii biofilms on stainless steel surfaces. Confocal laser scanning and attenuated total reflection-Fourier-transform infrared spectrometry indicated that the biofilms were disrupted by LC-EO. These findings suggest a potential for applying LC-EO in the prevention and control of C. sakazakii in the dairy industry as a natural antimicrobial and antibiofilm agent.
Collapse
Affiliation(s)
- Haoran Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Yulu Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Zhuo Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Run Ma
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Xiangyang Bai
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Kunyao Luo
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Xuejiao Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Xiaodong Xia
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116304, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
- Correspondence: ; Tel.: +86-29-87092486; Fax: +86-29-87091391
| |
Collapse
|
34
|
Wang C, Wei PW, Song CR, Wang X, Zhu GF, Yang YX, Xu GB, Hu ZQ, Tang L, Liu HM, Wang B. Evaluation of the antimicrobial function of Ginkgo biloba exocarp extract against clinical bacteria and its effect on Staphylococcus haemolyticus by disrupting biofilms. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115602. [PMID: 36030030 DOI: 10.1016/j.jep.2022.115602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The fruit of Ginkgo biloba L. (Ginkgo nuts) has been used for a long time as a critical Chinese medicine material to treat cough and asthma, as well as a disinfectant. Similar records were written in the Compendium of Materia Medica (Ben Cao Gang Mu, pinyin in Chinese) and Sheng Nong's herbal classic (Shen Nong Ben Cao Jing, pinyin in Chinese). Recent research has shown that Ginkgo biloba exocarp extract (GBEE) has the functions of unblocking blood vessels and improving brain function, as well as antitumour activity and antibacterial activity. GBEE was shown to inhibit methicillin-resistant Staphylococcus aureus (MRSA) biofilm formation as a traditional Chinese herb in our previous report in this journal. AIM OF THE STUD: yThe antibiotic resistance of clinical bacteria has recently become increasingly serious. Thus, this study aimed to investigate the Ginkgo biloba exocarp extract (GBEE) antibacterial lineage, as well as its effect and mechanism on S. haemolyticus biofilms. This study will provide a new perspective on clinical multidrug resistant (MDR) treatment with ethnopharmacology herbs. METHODS The microbroth dilution assay was carried out to measure the antibacterial effect of GBEE on 13 types of clinical bacteria. Bacterial growth curves with or without GBEE treatment were drawn at different time points. The potential targets of GBEE against S. haemolyticus were screened by transcriptome sequencing. The effects of GBEE on bacterial biofilm formation and mature biofilm disruption were determined by crystal violet staining and scanning electron microscopy. The metabolic activity of bacteria inside the biofilm was assessed by colony-forming unit (CFU) counting and (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2HY-tetrazolium bromide (MTT) assay. Quantitative polymerase chain reaction (qPCR) was used to measure the gene expression profile of GBEE on S. haemolyticus biofilm-related factors. RESULTS The results showed that GBEE has bacteriostatic effects on 3 g-positive (G+) and 2 g-negative (G-) bacteria among 13 species of clinical bacteria. The antibacterial effect of GBEE supernatant liquid was stronger than the antibacterial effect of GBEE supernviaould-like liquid. GBEE supernatant liquid inhibited the growth of S. epidermidis, S. haemolyticus, and E. faecium at shallow concentrations with minimum inhibitory concentrations (MICs) of 2 μg/ml, 4 μg/ml and 8 μg/ml, respectively. Genes involved in quorum sensing, two-component systems, folate biosynthesis, and ATP-binding cassette (ABC) transporters were differentially expressed in GBEE-treated groups compared with controls. Crystal violet, scanning electron microscopy (SEM) and MTT assays showed that GBEE suppressed S. haemolyticus biofilm formation in a dose-dependent manner. Moreover, GBEE supernatant liquid downregulated cidA, cidB and atl, which are involved in cell lysis and extracellular DNA (eDNA) release, as well as downregulated the cbp, ebp and fbp participation in encoding cell-surface binding proteins. CONCLUSIONS GBEE has an excellent antibacterial effect on gram-positive bacteria and also inhibits the growth of gram-negative bacteria, such as A. baumannii (carbapenem-resistant Acinetobacter baumannii) CRABA and S. maltophilia. GBEE inhibits the biofilm formation of S. haemolyticus by altering the regulation and biofilm material-related genes, including the release of eDNA and cell-surface binding proteins.
Collapse
Affiliation(s)
- Cong Wang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R & D, School of Pharmacy, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Peng-Wei Wei
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Biology and Medical Engineering, Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Chao-Rong Song
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Biology and Medical Engineering, Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Xu Wang
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Biology and Medical Engineering, Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Gao-Feng Zhu
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R & D, School of Pharmacy, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Yong-Xin Yang
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Biology and Medical Engineering, Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Guo-Bo Xu
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R & D, School of Pharmacy, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Zu-Quan Hu
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Biology and Medical Engineering, Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang, 550025, Guizhou, China
| | - Lei Tang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R & D, School of Pharmacy, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| | - Hong-Mei Liu
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Biology and Medical Engineering, Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| | - Bing Wang
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Biology and Medical Engineering, Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China; Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Guizhou Medical University, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang, 550025, Guizhou, China.
| |
Collapse
|
35
|
Chamachar MM, Fazeli MR, Salimi M, Samadi N. Growth promoting activity, anti-biofilm effect, and down regulation of papC and rcsA genes expression by Medicago sativa (alfalfa) extract. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Wei PW, Song CR, Wang X, Chen M, Yang YX, Wang C, Hu ZQ, Liu HM, Wang B. A potential milk preservative----Phormicin C-NS, sorbic acid-modified housefly antimicrobial peptide, inhibits Candida albicans hypha and biofilm formation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
37
|
Wang B, Wei PW, Yao Y, Song CR, Wang X, Yang YX, Long YH, Yang SW, Hu Y, Gai ZC, Wu JW, Liu HM. Functional and expression characteristics identification of Phormicins, novel AMPs from Musca domestica with anti-MRSA biofilm activity, in response to different stimuli. Int J Biol Macromol 2022; 209:299-314. [PMID: 35381282 DOI: 10.1016/j.ijbiomac.2022.03.204] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/26/2022]
Abstract
Antibiotic-resistant bacteria (including MRSA) in the clinic pose a growing threat to public health, and antimicrobial peptides (AMPs) have great potential as efficient treatment alternatives. Houseflies have evolved over long periods in complex, dirty environments, developing a special immune system to overcome challenges in harmful environments. AMPs are key innate immune molecules. Herein, two differentially expressed AMPs, Phormicins A and B, were identified by screening transcriptomic changes in response to microbial stimulation. Structural mimic assays indicated that these AMPs exhibited functional divergence due to their C-terminal features. Expression analysis showed that they had different expression patterns. Phormicin B had higher constitutive expression than Phormicin A. However, Phormicin B was sharply downregulated, whereas Phormicin A was highly upregulated, after microbial stimulation. The MIC, MBC and time-growth curves showed the antibacterial spectrum of these peptides. Crystal violet staining and SEM showed that Phormicin D inhibited MRSA biofilm formation. TEM suggested that Phormicin D disrupted the MRSA cell membrane. Furthermore, Phormicin D inhibited biofilm formation by downregulating the expression of biofilm-related genes, including altE and embp. Therefore, housefly Phormicins were functionally characterized as having differential expression patterns and antibacterial & antibiofilm activities. This study provides a new potential peptide for clinical MRSA therapy.
Collapse
Affiliation(s)
- Bing Wang
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China; Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang 550025, Guizhou, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang 550025, Guizhou, China.
| | - Peng-Wei Wei
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Yang Yao
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Chao-Rong Song
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Xu Wang
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Yong-Xin Yang
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Yao-Hang Long
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Su-Wen Yang
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Yong Hu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang 550025, Guizhou, China
| | - Zhong-Chao Gai
- Shaanxi University of Science and Technology, Xiaan, Shaanxi 710021, China.
| | - Jian-Wei Wu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou, China.
| | - Hong-Mei Liu
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China; School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
38
|
Wang B, Song CR, Zhang QY, Wei PW, Wang X, Long YH, Yang YX, Liao SG, Liu HM, Xu GB. The Fusaric Acid Derivative qy17 Inhibits Staphylococcus haemolyticus by Disrupting Biofilm Formation and the Stress Response via Altered Gene Expression. Front Microbiol 2022; 13:822148. [PMID: 35369527 PMCID: PMC8964301 DOI: 10.3389/fmicb.2022.822148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/02/2022] [Indexed: 12/05/2022] Open
Abstract
Staphylococcus haemolyticus (S. haemolyticus) is the second most commonly isolated coagulase-negative staphylococcus (CoNS) in patients with hospital-acquired infections. It can produce phenol-soluble modulin (PSM) toxins and form biofilms. Compared with the wealth of information on Staphylococcus aureus and Staphylococcus epidermidis, very little is known about S. haemolyticus. There is an urgent need to find an effective preparation to combat the harm caused by S. haemolyticus infection. Chinese herbs have been utilized to cure inflammation and infectious diseases and have a long history of anticancer function in China. Here, we modified fusaric acid characterized from the metabolites of Gibberella intermedia, an endophyte previously isolated from Polygonum capitatum. This study shows that fusaric acid analogs (qy17 and qy20) have strong antibacterial activity against S. haemolyticus. In addition, crystal violet analyses and scanning electron microscopy observations demonstrated that qy17 inhibited biofilm formation and disrupted mature biofilms of S. haemolyticus in a dose-dependent manner. Additionally, it reduced the number of live bacteria inside the biofilm. Furthermore, the antibiofilm function of qy17 was achieved by downregulating transcription factors (sigB), transpeptidase genes (srtA), and bacterial surface proteins (ebp, fbp) and upregulating biofilm-related genes and the density-sensing system (agrB). To further elucidate the bacteriostatic mechanism, transcriptomic analysis was carried out. The following antibacterial mechanisms were uncovered: (i) the inhibition of heat shock (clpB, groES, groL, grpE, dnaK, dnaJ)-, oxidative stress (aphC)- and biotin response (bioB)-related gene expression, which resulted in S. haemolyticus being unable to compensate for various stress conditions, thereby affecting bacterial growth; and (ii) a reduction in the expression of PSM-beta (PSMβ1, PSMβ2, PSMβ3) toxin- and Clp protease (clpP, clpX)-related genes. These findings could have major implications for the treatment of diseases caused by S. haemolyticus infections. Our research reveals for the first time that fusaric acid derivatives inhibit the expression of biofilm formation-related effector and virulence genes of S. haemolyticus. These findings provide new potential drug candidates for hospital-acquired infections caused by S. haemolyticus.
Collapse
Affiliation(s)
- Bing Wang
- Engineering Research Center of Medical Biotechnology & School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, Guiyang, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang, China
| | - Chao-Rong Song
- Engineering Research Center of Medical Biotechnology & School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Qing-Yan Zhang
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Peng-Wei Wei
- Engineering Research Center of Medical Biotechnology & School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Xu Wang
- Engineering Research Center of Medical Biotechnology & School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Yao-Hang Long
- Engineering Research Center of Medical Biotechnology & School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, Guiyang, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Yong-Xin Yang
- Engineering Research Center of Medical Biotechnology & School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Shang-Gao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Hong-Mei Liu
- Engineering Research Center of Medical Biotechnology & School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, Guiyang, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Guo-Bo Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| |
Collapse
|
39
|
Elmesseri RA, Saleh SE, Elsherif HM, Yahia IS, Aboshanab KM. Staphyloxanthin as a Potential Novel Target for Deciphering Promising Anti- Staphylococcus aureus Agents. Antibiotics (Basel) 2022; 11:298. [PMID: 35326762 PMCID: PMC8944557 DOI: 10.3390/antibiotics11030298] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 01/16/2023] Open
Abstract
Staphylococcus aureus is a fatal Gram-positive pathogen threatening numerous cases of hospital-admitted patients worldwide. The emerging resistance of the pathogen to several antimicrobial agents has pressurized research to propose new strategies for combating antimicrobial resistance. Novel strategies include targeting the virulence factors of S. aureus. One of the most prominent virulence factors of S. aureus is its eponymous antioxidant pigment staphyloxanthin (STX), which is an auspicious target for anti-virulence therapy. This review provides an updated outline on STX and multiple strategies to attenuate this virulence factor. The approaches discussed in this article focus on bioprospective and chemically synthesized inhibitors of STX, inter-species communication and genetic manipulation. Various inhibitor molecules were found to exhibit appreciable inhibitory effect against STX and hence would be able to serve as potential anti-virulence agents for clinical use.
Collapse
Affiliation(s)
- Rana A. Elmesseri
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo 19648, Egypt; (R.A.E.); (H.M.E.)
| | - Sarra E. Saleh
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University (ASU), Cairo 11566, Egypt;
| | - Heba M. Elsherif
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo 19648, Egypt; (R.A.E.); (H.M.E.)
| | - Ibrahim S. Yahia
- Laboratory of Nano-Smart Materials for Science and Technology (LNSMST), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61441, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Nanoscience Laboratory for Environmental and Biomedical Applications (NLEBA), Semiconductor Laboratory, Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo 11757, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University (ASU), Cairo 11566, Egypt;
| |
Collapse
|
40
|
Zhao D, Wang Q, Lu F, Bie X, Zhao H, Lu Z, Lu Y. A novel plantaricin 827 effectively inhibits Staphylococcus aureus and extends shelf life of skim milk. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Liu S, Li X, Yang X, Zhou L, Liang X, Qiu R, Fa Y. A capillary electrophoresis method for the determination of soluble monosaccharides in Ginkgo biloba leaves. J Sep Sci 2021; 45:623-630. [PMID: 34793622 DOI: 10.1002/jssc.202100749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/05/2022]
Abstract
A method for the simultaneous determination of six monosaccharides by pre-column derivatization with 1-phenyl-3-methyl-5-pyrazolone and capillary electrophoresis was developed in this work. The derivatization (i.e., reaction temperature, capillary electrophoresis duration, and extraction number) and separation (i.e., pH and buffer concentration) conditions for capillary electrophoresis were optimized. Results showed that the limits of detection under optimal conditions were in the range of 0.036-0.35 mg/L with a mean correlation coefficient >0.99. The recoveries were in the range of 87.3-108.49%, and the relative standard deviations of intra- and inter-day variations were in the ranges of 2.2-3.8 and 3.2-5.0%, respectively. The method was successfully applied to the analysis of six free monosaccharides in three types of Ginkgo biloba leaves.
Collapse
Affiliation(s)
- Shuo Liu
- Qingdao University of Science and Technology, College of Chemical Engineering, No.53, Zhengzhou Road, Qingdao, Shandong, 266000, P. R. China.,CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao, Shandong, 266000, P. R. China
| | - Xin Li
- Qingdao University of Science and Technology, College of Chemical Engineering, No.53, Zhengzhou Road, Qingdao, Shandong, 266000, P. R. China.,CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao, Shandong, 266000, P. R. China
| | - Xifeng Yang
- Qingdao University of Science and Technology, College of Chemical Engineering, No.53, Zhengzhou Road, Qingdao, Shandong, 266000, P. R. China.,CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao, Shandong, 266000, P. R. China
| | - Linhui Zhou
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao, Shandong, 266000, P. R. China.,Department of Veterinary and Agricultural Sciences, The University of Melbourne, Grattan Street Parkville, Melbourne, VIC 3010, Australia
| | - Xiangfeng Liang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao, Shandong, 266000, P. R. China.,Innovation Academy for Green Manufacture, Chinese Academy of Sciences, No.1 North Second Street, Zhongguancun, Beijing, 100190, P. R. China
| | - Ruchen Qiu
- Qingdao University of Science and Technology, College of Chemical Engineering, No.53, Zhengzhou Road, Qingdao, Shandong, 266000, P. R. China
| | - Yun Fa
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao, Shandong, 266000, P. R. China
| |
Collapse
|