1
|
Gong D, Lei J, He X, Hao J, Zhang F, Huang X, Gu W, Yang X, Yu J. Keys to the switch of fat burning: stimuli that trigger the uncoupling protein 1 (UCP1) activation in adipose tissue. Lipids Health Dis 2024; 23:322. [PMID: 39342273 PMCID: PMC11439242 DOI: 10.1186/s12944-024-02300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024] Open
Abstract
As one of the main pathogenic factors of cardiovascular and cerebrovascular diseases, the incidence of metabolic diseases such as adiposity and metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing annually. It is urgent and crucial to find more therapeutic targets to treat these diseases. Mainly expressed in brown adipocytes, mitochondrial uncoupling protein 1 (UCP1) is key to the thermogenesis of classical brown adipose tissue (BAT). Furthermore, white adipose tissue (WAT) is likely to express more UCP1 and subsequently acquire the ability to undergo thermogenesis under certain stimuli. Therefore, targeting and activating UCP1 to promote increased BAT thermogenesis and browning of WAT are helpful in treating metabolic diseases, such as adiposity and MASLD. In this case, the stimuli that activate UCP1 are emerging. Therefore, we summarize the thermogenic stimuli that have activated UCP1 in recent decades, among which cold exposure is one of the stimuli first discovered to activate BAT thermogenesis. As a convenient and efficient therapy with few side effects and good metabolic benefits, physical exercise can also activate the expression of UCP1 in adipose tissue. Notably, for the first time, we have summarized and demonstrated the stimuli of traditional Chinese medicines that can activate UCP1, such as acupuncture, Chinese herbal formulas, and Chinese medicinal herbs. Moreover, pharmacological agents, functional foods, food ingredients, and the gut microbiota are also commonly associated with regulating and activating UCP1. The identification and analysis of UCP1 stimuli can greatly facilitate our understanding of adipose tissue thermogenesis, including the browning of WAT. Thus, it is more conducive to further research and therapy for glucose and lipid metabolism disorders.
Collapse
Affiliation(s)
- Dihong Gong
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Juanhong Lei
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Xudong He
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Junjie Hao
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Fan Zhang
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Xinya Huang
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Wen Gu
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Xingxin Yang
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China.
| | - Jie Yu
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China.
| |
Collapse
|
2
|
You Y, Chen X, Chen X, Li H, Zhou R, Zhou J, Chen M, Peng B, Ji S, Kwan HY, Zou L, Yu J, Liu Y, Wu Y, Zhao X. Jiawei Yanghe Decoction suppresses breast cancer by regulating immune responses via JAK2/STAT3 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 316:116358. [PMID: 36933872 DOI: 10.1016/j.jep.2023.116358] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/18/2023] [Accepted: 03/03/2023] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiawei Yanghe Decoction (JWYHD) is a widely used traditional Chinese medicine prescription in the clinical setting for the treatment of autoimmune diseases. Many studies showed that JWYHD has anti-tumor activities in cell and animal models. However, the anti-breast cancer effects of JWYHD and the underlying mechanisms of action remain unknown. AIM OF STUDY This study aimed to determine the anti-breast cancer effect and reveal the underlying mechanisms of action in vivo, in vitro and in silico. MATERIALS AND METHODS Orthotopic xenograft breast cancer mouse model and inflammatory zebrafish model were used to observe the anti-tumor effect and immune cell regulation of JWYHD. Moreover, the anti-inflammatory effect of JWYHD were evaluated by the expression of RAW 264.7 cells. JWYHD active ingredients were obtained by UPLC-MS/MS and potential targets were screened by network pharmacology. The therapeutic targets and signaling pathways predicted by computer were assessed by Western blot, real-time PCR (RT-PCR), immunohistochemistry (IHC) staining, and Enzyme-linked immunosorbent assays (ELISA) to explore the therapeutic mechanism of JWYHD against breast cancer. At last, Colivelin and Stattic were used to explore the effect of JWYHD on JAK2/STAT3 pathway. RESULTS JWYHD significantly decreased the tumor growth in a dose-dependent manner in the orthotopic xenograft breast cancer mouse model. Flow cytometry and IHC results indicated that JWYHD decreased the expressions of M2 macrophages and Treg while increasing M1 macrophages. Meanwhile, ELISA and Western blot results showed a decrease in IL-1β, IL-6, TNFα, PTGS2 and VEGFα in tumor tissue of JWYHD groups. The results were also verified in LPS-induced RAW264.7 cells and zebrafish inflammatory models. TUNEL assay and IHC results showed that JWYHD significantly induced apoptosis. Seventy-two major compounds in JWYHD were identified by UPLC-MS/MS and Network pharmacology. It was found that the significant binding affinity of JWYHD to TNFα, PTGS2, EGFR, STAT3, VEGFα and their expressions were inhibited by JWYHD. IHC and Western blot analysis showed that JWYHD could decrease the expression of JAK2/STAT3 pathway. Furthermore, Colivelin could reverse the decrease effect of JWYHD in vitro. CONCLUSION JWYHD exerts a significant anti-tumor effect mainly by inhibiting inflammation, activating immune responses and inducing apoptosis via the JAK2/STAT3 signaling pathway. Our findings provide strong pharmacological evidence for the clinical application of JWYHD in the management of breast cancer.
Collapse
Affiliation(s)
- Yanting You
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Oncology, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, Guangdong, 523009, China.
| | - Xiaomei Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaohu Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Hong Li
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; School of Science, STEM College, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Ruisi Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Jie Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Meilin Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Baizhao Peng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Shuai Ji
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, China.
| | - Lifang Zou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Jingtao Yu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Yanyan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Yifen Wu
- Department of Oncology, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, Guangdong, 523009, China.
| | - Xiaoshan Zhao
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Li B, Tao X, Sheng L, Li Y, Zheng N, Li H. Divergent impacts on the gut microbiome and host metabolism induced by traditional Chinese Medicine with Cold or Hot properties in mice. Chin Med 2022; 17:144. [PMID: 36572936 PMCID: PMC9793677 DOI: 10.1186/s13020-022-00697-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/06/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Traditional Chinese Medicine (TCM) has been practiced and developed in China over thousands of years under the guidance of a series of complicated traditional theories. Herbs within TCM usually are classified according to their different properties ranging from cold, cool, warm to hot, which are simplified as Cold and Hot properties. TCM with either Cold or Hot properties are used in various formulae designed for the purpose of restoring the balance of patients. Emerging evidence has highlighted that an altered gut microbiota or host metabolism are critically involved in affecting the healing properties of TCM. However, at present the exact influences and crosstalk on the gut microbiota and host metabolism remain poorly understood. METHODS In the present study, the divergent impacts of six TCMs with either Cold or Hot properties on gut microbiome and host metabolism during short- or long-term intervention in mice were investigated. Six typical TCMs with Hot or Cold properties including Cinnamomi Cortex (rougui, RG), Zingiberis Rhizoma (ganjiang, GJ), Aconiti Lateralis Radix Praeparata (fuzi, FZ), Rhei Radix et Rhizoma (dahuang, DH), Scutellariae Radix (huangqin, HQ), and Copitdis Rhizoma (huanglian, HL) were selected and orally administered to male C57BL/6J mice for a short- or a long-term (7 or 35 days). At the end of experiments, serum and cecal contents were collected for metabolomic and gut microbiome analyses using gas chromatography-tandem mass spectrometry (GC-MS) or 16S ribosomal deoxyribonucleic acid (16S rDNA) sequencing. RESULTS The results revealed that the gut microbiome underwent divergent changes both in its composition and functions after short-term intervention with TCM possessing either Cold or Hot properties. Interestingly, the number of changed genus and bacteria pathways was reduced in Hot_LT, but was increased in Cold_LT, especially in the HL group. Increased α diversity and a reduced F/B ratio revealed the changes in Hot_ST, but a reduced Shannon index and increased altered bacteria function was evident in Cold_LT. The serum metabolic profile showed that the influence of TCM on host metabolism was gradually reduced over time. Glycolipid metabolism related pathways were specifically regulated by Hot_ST, but also surprisingly by Cold_LT. Reduced lactic acid in Cold_ST, increased tryptophan concentrations and decreased proline and threonine concentrations in Cold_LT perhaps highlighting the difference between the two natures influence on serum metabolism. These metabolites were closely correlated with altered gut microbiota shown by further correlation analyses. CONCLUSION The results indicated that TCM properties could be, at least partially characterized by an alteration in the gut microbiota and metabolic profile, implying that the divergent responses of gut microbiome and host metabolism are involved in different responses to TCM.
Collapse
Affiliation(s)
- Bingbing Li
- grid.412540.60000 0001 2372 7462School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China ,grid.494629.40000 0004 8008 9315School of Life Science, Westlake University, Hangzhou, 310000 China
| | - Xin Tao
- grid.412540.60000 0001 2372 7462School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Lili Sheng
- grid.412540.60000 0001 2372 7462School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Yan Li
- grid.412540.60000 0001 2372 7462School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Ningning Zheng
- grid.412540.60000 0001 2372 7462School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Houkai Li
- grid.412540.60000 0001 2372 7462School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| |
Collapse
|
4
|
Liu X, Huang Y, Liang X, Wu Q, Wang N, Zhou LJ, Liu WW, Ma Q, Hu B, Gao H, Cui YL, Li X, Zhao QC. Atractylenolide III from Atractylodes macrocephala Koidz promotes the activation of brown and white adipose tissue through SIRT1/PGC-1α signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154289. [PMID: 35785561 DOI: 10.1016/j.phymed.2022.154289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Hypothermia is a complex pathophysiological response that can be life-threatening in low-temperature environment because of impaired thermoregulation. However, there is currently no clinically effective drugs that can prevent or treat this disease. Brown adipose tissue (BAT) activation or browning of white adipose tissue (WAT) is a promising therapeutic strategy to prevent or treat hypothermia. Atractylodes macrocephala Koidz extract (AE) and its active compound Atractylenolide III (AIII) has been reported to regulate glycolipid metabolism, which might be relevant to BAT activation. However, the thermogenic effect and mechanism of AE and AIII on adipose tissues have not been explored yet. Therefore, this study firstly investigated the role of AE and AIII on hypothermia by promoting heat production of BAT and WAT. PURPOSE To explore the anti-cold effect of AE and AIII in cold exposure model and explore their biological function and mechanism underlying thermogenesis. METHODS The effect of thermogenesis and anti-hypothermia of AE and AIII on C57BL/6J mice were evaluated with several experiment in cold environment, such as toxicity test, cold exposure test, metabolism estimation, histology and immunohistochemistry, and protein expression. Additionally, BAT, inguinal WAT (iWAT) and brown adipocytes were utilized to explore the mechanism of AE and AIII on thermogenesis in vivo and in vitro. Finally, SIRT1 agonist and inhibitor in brown adipocytes to verify that AIII activated BAT through SIRT1/PGC-1α pathway. RESULTS Both AE and AⅢ could significantly maintain the core body temperature and body surface temperature of mice during cold exposure. Besides, AE and AⅢ could significantly improve the capacity of total antioxidant and glucose, lipid metabolism of mice. In addition, AE and AIII reduced mitochondrial membrane potential and ATP content both in BAT and brown adipocytes, and decreased the size of lipid droplets. Moreover, AE and AⅢ promoted the expression of proteins related to heat production in BAT and iWAT. And AIII might activate BAT via SIRT1/PGC-1α pathway. CONCLUSION AE and AⅢ were potential candidate drugs that treated hypothermia by improving the heat production capacity of the mice. Mechanistically, they may activate SIRT1/PGC-1α pathway, thus enhancing the function of BAT, and promoting the browning of iWAT, to act as anti-hypothermia candidate medicine.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Science, Shenyang Pharmaceutical University, Shenyang 110016, China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, China
| | - Yuan Huang
- School of Life Science, Shenyang Pharmaceutical University, Shenyang 110016, China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, China
| | - Xu Liang
- School of Life Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qiong Wu
- School of Life Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Nan Wang
- School of Life Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Li-Jun Zhou
- School of Life Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wen-Wu Liu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qun Ma
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, China
| | - Bei Hu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, China
| | - Huan Gao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, China
| | - Ya-Ling Cui
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, China
| | - Xiang Li
- School of Life Science, Shenyang Pharmaceutical University, Shenyang 110016, China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, China.
| | - Qing-Chun Zhao
- School of Life Science, Shenyang Pharmaceutical University, Shenyang 110016, China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, China.
| |
Collapse
|