1
|
Bona NP, Pedra NS, Spohr L, da Silva Dos Santos F, Saraiva JT, Carvalho FB, da Cruz Fernandes M, Fernandes AS, Saraiva N, Martins MF, Tavares RG, Spanevello RM, Aguiar MSSD, Stefanello FM. Antitumoral Activity of Cecropia Pachystachya Leaves Extract in Vitro and in Vivo Model of Rat Glioma: Brain and Blood Effects. Mol Neurobiol 2024; 61:8234-8252. [PMID: 38483655 DOI: 10.1007/s12035-024-04086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/02/2024] [Indexed: 09/21/2024]
Abstract
The aim of this study was to investigate the antiglioma effect of Cecropia pachystachya Trécul (CEC) leaves extract against C6 and U87 glioblastoma (GB) cells and in a rat preclinical GB model. The CEC extract reduced in vitro cell viability and biomass. In vivo, the extract decreased the tumor volume approximately 62%, without inducing systemic toxicity. The deficit in locomotion and memory and an anxiolytic-like behaviors induced in the GB model were minimized by CEC. The extract decreased the levels of reactive oxygen species, nitrites and thiobarbituric acid reactive substances and increased the activity of antioxidant enzymes in platelets, sera and brains of GB animals. The activity of NTPDases, 5'-nucleotidase and adenosine deaminase (ADA) was evaluated in lymphocytes, platelets and serum. In platelets, ATP and AMP hydrolysis was reduced and hydrolysis of ADP and the activity of ADA were increased in the control, while in CEC-treated animals no alteration in the hydrolysis of ADP was detected. In serum, the reduction in ATP hydrolysis was reversed by CEC. In lymphocytes, the increase in the hydrolysis of ATP, ADP and in the activity of ADA observed in GB model was altered by CEC administration. The observed increase in IL-6 and decrease in IL-10 levels in the serum of GB animals was reversed by CEC. These results demonstrate that CEC extract is a potential complementary treatment to GB, decreasing the tumor size, while modulating aspects of redox and purinergic systems.
Collapse
Affiliation(s)
- Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, 96010-900, Brazil
| | - Nathalia Stark Pedra
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Luiza Spohr
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Francieli da Silva Dos Santos
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, 96010-900, Brazil
| | - Juliane Torchelsen Saraiva
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, 96010-900, Brazil
| | - Fabiano Barbosa Carvalho
- Laboratório de Pesquisa em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Marilda da Cruz Fernandes
- Laboratório de Pesquisa em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Ana Sofia Fernandes
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa, 1749-024, Portugal
| | - Nuno Saraiva
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa, 1749-024, Portugal
| | - Marta Filipa Martins
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa, 1749-024, Portugal
- Department of Biomedical Sciences, University of Alcalá, Ctra, Madrid-Barcelona Km. 33.600, Alcalá de Henares, Madrid, 28871, Spain
| | - Rejane Giacomelli Tavares
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa, 1749-024, Portugal
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Mayara Sandrielly Soares de Aguiar
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
2
|
Islam Shawon S, Nargis Reyda R, Qais N. Medicinal herbs and their metabolites with biological potential to protect and combat liver toxicity and its disorders: A review. Heliyon 2024; 10:e25340. [PMID: 38356556 PMCID: PMC10864916 DOI: 10.1016/j.heliyon.2024.e25340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
The liver is an essential organ that helps the body with immunity, metabolism, and detoxification, among other functions. Worldwide, liver illnesses are a leading cause of mortality and disability. There are few effective treatment choices, but they frequently have unfavorable side effects. Investigating the potential of medicinal plants and their bioactive phytoconstituents in the prevention and treatment of liver disorders has gained more attention in recent years. An assessment of the hepatoprotective potential of medicinal plants and their bioactive secondary metabolites is the goal of this thorough review paper. To determine their hepatoprotective activity, these plants were tested against liver toxicity artificially induced in rats, mice and rabbits by chemical agents such as carbon tetrachloride (CCl4), paracetamol (PCM), thioacetamide (TAA), N-nitrosodiethylamine, d-galactosamine/lipopolysaccharide, antitubercular medicines (rifampin, isoniazid) and alcohol. To find pertinent research publications published between 1989 and 2022, a comprehensive search of electronic bibliographic databases (including Web of Science, SpringerLink, ScienceDirect, Google Scholar, PubMed, Scopus, and others) was carried out. The investigation comprised 203 plant species from 81 families in total. A thorough discussion was mentioned regarding the hepatoprotective qualities of plants belonging to several families, such as Fabaceae, Asteraceae, Lamiaceae, and Euphorbiaceae. The plant groups Asteraceae and Fabaceae were the most frequently shown to have hepatoprotective properties. The phytochemical constituents namely flavonoids, phenolic compounds, and alkaloids exhibited the highest frequency of hepatoprotective action. Also, some possible mechanism of action of some active constituents from medicinal plants was discussed in brief which were found in some studies. In summary, the information on medicinal plants and their potentially hepatoprotective bioactive phytoconstituents has been consolidated in this review which emphasizes the importance of further research to explore the efficacy and safety of these natural remedies for various liver ailments.
Collapse
Affiliation(s)
- Shahparan Islam Shawon
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Rashmia Nargis Reyda
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Nazmul Qais
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
3
|
Garcia-Manieri JAA, Correa VG, Backes E, de Sá-Nakanishi AB, Bracht L, Comar JF, Corrêa RCG, Peralta RM, Bracht A. A Critical Appraisal of the Most Recent Investigations on the Hepatoprotective Action of Brazilian Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:3481. [PMID: 36559593 PMCID: PMC9785989 DOI: 10.3390/plants11243481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Conventional treatments for liver diseases are often burdened by side effects caused by chemicals. For minimizing this problem, the search for medicines based on natural products has increased. The objective of this review was to collect data on the potential hepatoprotective activity of plants of the Brazilian native flora. Special attention was given to the modes of extraction, activity indicators, and identification of the active compounds. The databases were Science direct, Pubmed, and Google Academic. Inclusion criteria were: (a) plants native to Brazil; (b) studies carried out during the last 15 years; (c) high-quality research. A fair number of communications met these criteria. Various parts of plants can be used, e.g., fruit peels, seeds, stem barks, and leaves. An outstanding characteristic of the active extracts is that they were mostly obtained from plant parts with low commercial potential, i.e., by-products or bio-residues. The hepatoprotective activities are exerted by constituents such as flavonoids, phenolic acids, vitamin C, phytosterols, and fructose poly- and oligosaccharides. Several Brazilian plants present excellent perspectives for the obtainment of hepatoprotective formulations. Very important is the economical perspective for the rural producers which may eventually increase their revenue by selling increasingly valued raw materials which otherwise would be wasted.
Collapse
Affiliation(s)
| | - Vanesa Gesser Correa
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| | - Emanueli Backes
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| | | | - Lívia Bracht
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| | | | - Rúbia Carvalho Gomes Corrêa
- Programa de Pós-Graduação em Tecnologias Limpas, Instituto Cesumar de Ciência, Tecnologia e Inovação—ICETI, Universidade Cesumar—UNICESUMAR, Maringá 87050-900, Brazil
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Rosane Marina Peralta
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| | - Adelar Bracht
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| |
Collapse
|
4
|
Sousa Mourão P, de Oliveira Gomes R, Crisóstomo Bezerra Costa CA, da Silva Moura OF, Sousa HG, Lemos Martins Júnior GR, Cabral Leão Ferreira D, Martins Maia Filho AL, Duarte de Freitas J, Rai M, Das Chagas Alves Lima F, Gourlart Santana AE, Chaves MH, Dos Santos Alves W, Uchôa VT. Cecropia pachystachya Trécul: identification, isolation of secondary metabolites, in silico study of toxicological evaluation and interaction with the enzymes 5-LOX and α-1-antitrypsin. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:827-849. [PMID: 35815836 DOI: 10.1080/15287394.2022.2095546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cecropia pachystachya Tréc., popularly known as embaúba, belongs to the Cecropiaceae family and is used by the native population in the treatment of bronchitis, asthma, high blood pressure, fever, and as a diuretic. The pharmacological actions including anti-inflammatory, antioxidant, cardiotonic and sedative were previously reported. The objective of this study was to (1) isolate and identify bioactive compounds extracted from the ethanolic extract of C. pachystachya roots (ERCP), as well as (2) verify the affinity of these metabolites with the enzymes 5-lipoxygenase (5-LOX) and α-1-antitrypsin through in silico tests. Isolation and/or identification were performed using GC-MS, HPLC, Infrared (IR), and nuclear magnetic resonance (NMR) techniques. After isolation and identification of the active compounds, these substances were subjected to the in silico investigation that proceeded by performing PreADMET simulations and molecular docking calculations. The bioactive compounds identified were 1-(+)-ascorbic acid 2,6-dihexadecanoate, ethyl hexadecanoate, ethyl (9E,12E)-octadec-9,12-dienoate, ethyl (Z)-octadec-9-enoate and ethyl octadecanoate by GC-MS; chlorogenic acid, catechin, epicatechin, syringaldehyde by HPLC; β-sitosterol, sitostenone, beccaridiol, tormentic acid, lupeol, α- and β-amyrin by classical chromatography, IR, 1H and 13C NMR techniques. The ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties were determined for each bioactive compound. Tormentic acid demonstrated a greater affinity for 5-LOX enzyme while sitostenone demonstrated a higher affinity for the α-1-antitrypsin enzyme. Our findings demonstrated a diverse range of secondary metabolites isolated from C. pachystachya that showed relevant interactions with the enzymes 5-LOX and α-1-antitrypsin. Thus, "embaúba" may be employed in in vivo experimental studies as a form of alternative treatment for chronic lung diseases.Abbreviations: ADT: Autodock Tools; BBB: Blood-brain barrier; CaCo2: Human colonic adenocarcinoma cells; CC: Classic/open Column; TLC: Thin Layer Chromatography; CD40: Differentiation Cluster 40; CENAUREMN: Centro Nordestino de Aplicação e Uso da Ressonância Magnética Nuclear; GC-MS: Gas Chromatography coupled to mass spectrometry; HPLC: High-Perfomance Liquid Chromatography; CYP2C9, CYP2C19, CYP2D6 and CYP3A4: Cytochrome P450 isoenzymes; COPD: Chronic Obstructive Pulmonary Disease; DRX-500: X-Ray Diffraction - 500; ERCP: Ethanolic extract of the roots of C. pachystachya; FAPEPI: Fundação de Amparo à Pesquisa do Piauí; HIA: Human Intestinal Absorption; IR: Infrared; Ki: Inhibition constant; 5-LOX: 5-Lipoxygenase; mM: miliMolar; nM: nanoMolar; OECD423: acute toxic class method; PDB: Protein Data Bank; P-gP: P-glycoprotein; PM2,5: Small inhalable particles 2,5; PPB: Plasm Protein Binding; PreADMET: Prediction Absorption, Distribution, Metabolization, Excretion and Toxicity; NMR: Nuclear Magnetic Resonance; +S9: with metabolic activation; -S9: no metabolic activation; SisGen: Sistema Nacional de Gestão de Patrimônio Genético e do Conhecimento Tradicional Associado; RT: Retention time; TA100: Ames test with TA100 cells line; TA1535: Ames test with cells of the TA1535 cell line; UESPI: State University of Piauí; V79: lung fibroblast cells; ΔG: Gibbs free energy (Kcal/mol); μM: microMolar.
Collapse
Affiliation(s)
- Penina Sousa Mourão
- Department of Chemistry, Natural Science Center, Piauí State University, Teresina, Brazil
| | | | | | | | - Herbert Gonzaga Sousa
- Department of Chemistry, Natural Science Center, Federal University of Piauí, Teresina, Brazil
| | | | | | - Antônio Luiz Martins Maia Filho
- Department of Chemistry, Natural Science Center, Piauí State University, Teresina, Brazil
- Health Sciences Department, Piauí State University, Teresina, Brazil
| | | | - Mahendra Rai
- Department of Microbiology, Nicolaus Copernicus University, Torun, Poland
| | - Francisco Das Chagas Alves Lima
- Department of Chemistry, Natural Science Center, Piauí State University, Teresina, Brazil
- Biotechnology Department, Piauí State University, Teresina, Brazil
| | | | - Mariana Helena Chaves
- Department of Chemistry, Natural Science Center, Federal University of Piauí, Teresina, Brazil
| | | | | |
Collapse
|
5
|
A pharmaceutical formulation containing Cecropia pachystachya alleviates metabolic alterations in a hypercaloric diet obesity model in Swiss mice. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|