1
|
Tang X, Li T, Hao Z, Zhao W, Han Y, Jia G, He Z, Ren C, Rao K, Pei J, Chen J. Identification of Key Genes Involved in Sesquiterpene Synthesis in Nardostachys jatamansi Based on Transcriptome and Component Analysis. Genes (Basel) 2024; 15:1539. [PMID: 39766806 PMCID: PMC11675428 DOI: 10.3390/genes15121539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Background:Nardostachys jatamansi (D. Don) DC. (N. jatamansi.) is an endangered medicinal plant native to the Himalayas that is widely used in traditional medicine due to its terpenoid compounds, especially sesquiterpenes, which are abundant in N. jatamansi. However, the mechanism of sesquiterpene metabolism remains unclear. Methods: Transcriptome sequencing analyses of different parts (roots and rhizomes, leaves, anthocaulus and flowers) and developmental stages (rejuvenation, budding, flowering, fruiting and withering) of cultivated N. jatamansi were conducted using the Illumina platform. Key genes involved in regulating the sesquiterpene metabolism pathway in N. jatamansi were identified by combining component analyses of various tissues and developmental stages. Furthermore, these key genes were validated through MeJA treatment and a chemical composition analysis. Results: A transcriptome sequencing analysis was performed on 24 samples from four tissues and in five developmental stages, yielding 183.18 Gb of clean data with a Q30 base percentage of 92% or above. A total of 269,136 UniGenes were obtained and annotated. Genes related to sesquiterpene synthesis were screened and validated by RT-qPCR using annotation results from various databases. Twelve candidate genes involved in sesquiterpene synthase were identified. Following MeJA treatment, an RT-qPCR analysis revealed that the expression of the NjTPS-49, NjTPS-54, NjTPS-56, NjTPS-57 and NjTPS-59 genes was positively regulated. Additionally, an HPLC analysis indicated an increase in the nardosinone content after MeJA treatment. This study demonstrates that NjTPS-49, NjTPS-54, NjTPS-56, NjTPS-57 and NjTPS-59 are potential candidate genes for sesquiterpene synthesis. Conclusion: The obtained findings establish the groundwork for elucidating the mechanism of sesquiterpene synthesis in N. jatamansi and contribute to the conservation of N. jatamansi resources.
Collapse
Affiliation(s)
- Xiaohui Tang
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China; (X.T.); (T.L.); (W.Z.); (Y.H.); (G.J.); (Z.H.)
| | - Tingju Li
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China; (X.T.); (T.L.); (W.Z.); (Y.H.); (G.J.); (Z.H.)
| | - Zhiyu Hao
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.H.); (C.R.); (K.R.); (J.P.)
| | - Wenji Zhao
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China; (X.T.); (T.L.); (W.Z.); (Y.H.); (G.J.); (Z.H.)
| | - Yanlong Han
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China; (X.T.); (T.L.); (W.Z.); (Y.H.); (G.J.); (Z.H.)
| | - Guofu Jia
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China; (X.T.); (T.L.); (W.Z.); (Y.H.); (G.J.); (Z.H.)
| | - Zhengjun He
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China; (X.T.); (T.L.); (W.Z.); (Y.H.); (G.J.); (Z.H.)
| | - Chaoxiang Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.H.); (C.R.); (K.R.); (J.P.)
| | - Ke Rao
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.H.); (C.R.); (K.R.); (J.P.)
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.H.); (C.R.); (K.R.); (J.P.)
| | - Jiang Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.H.); (C.R.); (K.R.); (J.P.)
| |
Collapse
|
2
|
Pathak S, Godela R. Nardostachys jatamansi: Phytochemistry, ethnomedicinal uses, and pharmacological activities: A comprehensive review. Fitoterapia 2024; 172:105764. [PMID: 38042505 DOI: 10.1016/j.fitote.2023.105764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
A member of the Valerianacae family, Nardostachys jatamansi is the smallest, most primitive, perennial, dwarf, hairy, rhizomatous, herbaceous species. It has an enlarged antiquity of usage as ayurvedic medicine, homeopathic medicine, ethnomedicine, and the Indian system of medicine, and is now used in the modern medicine industry. In the ayurvedic medical system, the rhizomes of the plant are used as a bitter tonic, stimulant, antispasmodic, epileptic treatment, and for hysteria. Pharmacological reports on Nardostachys jatamansi revealed its antifungal activity, hepatoprotective activity, central nervous system activity, anticonvulsant activity, neuroprotective activity, antiparkinson's activity, antioxidant activity, antidiabetic activity, tranquilizing activity, antiestrogenic activity furthermore, Jatamansone has also been linked to anti-hypertensive, anti-arrhythmic, anti-asthmatic, nematicidal, and antibacterial effects. This review article's objective is to go over traditional uses, Phytochemistry, Ethnomedicinal Importance, pharmacological activities, precise procedures for variety improvement, protection, and appropriate utilization, and recognize prospects for Nardostachys jatamansi.
Collapse
Affiliation(s)
- Shilpi Pathak
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India.
| | - Ramreddy Godela
- Department of Pharmaceutical Analysis and Quality Assurance, GITAM School of Pharmacy, Rudraram, Sangareddy, Hyderabad, Telangana, India.
| |
Collapse
|
3
|
Shuyuan L, Haoyu C. Mechanism of Nardostachyos Radix et Rhizoma-Salidroside in the treatment of premature ventricular beats based on network pharmacology and molecular docking. Sci Rep 2023; 13:20741. [PMID: 38007574 PMCID: PMC10676380 DOI: 10.1038/s41598-023-48277-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/24/2023] [Indexed: 11/27/2023] Open
Abstract
To analyse the mechanism of Nardostachyos Radix et Rhizoma-Salidroside in the treatment of Premature Ventricular Brats by using network pharmacology and molecular docking and to provide the basis for developing the use of experimental and clinical traditional Chinese medicine. The chemical compositions of Nardostachyos Radix et Rhizoma and Salidroside were determined, and their related targets were predicted. The disease-related targets were obtained by searching the common disease databases Genecards, OMIM, Drugbank and DisGeNET, and the intersection between the predicted targets and the disease targets was determined. Then using the STRING database to set up the protein‒protein interactions (PPIs) network between Nardostachyos Radix et Rhizoma-Salidroside and the common targets of PVB. An "herb-ingredient-target" network was constructed and analyzed by Cytoscape3.7.2 software. Using the metascape database to analysis the predicted therapeutic targets based on the GO and KEGG. Finally, molecular docking technology was used toconfirm the capacity of the primary active ingredients of the 2 herbs to bind to central targets using the online CB-Dock2 database. 41 active components of Nardostachyos Radix et Rhizoma-Salidroside were detected, with 420 potential targets of action, with a total of 1688 PVB targets, and the top 10 core targets of herb-disease degree values were AKT1, TNF, GAPDH, SRC, PPARG, EGFR, PTGS2, ESR1, MMP9, and STAT3. KEGG analysis indicated that its mechanism may be related to the calcium signalling pathway, cancer signalling pathway, AGE-RAGE signalling pathway and other pathways. Molecular docking suggested that main of the active ingredients of the Nardostachyos Radix et Rhizoma-Salidroside pairs were well bound to the core targets. Based on novel network pharmacology and molecular docking validation research methods, we revealed for the first time the potential mechanism of Nardostachyos Radix et Rhizoma-Salidroside in PVB therapy.
Collapse
Affiliation(s)
- Liu Shuyuan
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, ShanDong, People's Republic of China, 250013
| | - Chen Haoyu
- Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, ShanDong, People's Republic of China, 250011.
| |
Collapse
|
4
|
Bhagyashree Devidas T, Patil S, Sharma M, Ali N, Parvez MK, Al-Dosari MS, Liu S, Inbaraj BS, Bains A, Wen F. Green extraction of Milletia pinnata oil for the development, and characterization of pectin crosslinked carboxymethyl cellulose/guar gum herbal nano hydrogel. Front Chem 2023; 11:1260165. [PMID: 37780989 PMCID: PMC10538964 DOI: 10.3389/fchem.2023.1260165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Milletia pinnata oil and Nardostachys jatamansi are rich sources of bioactive compounds and have been utilized to formulate various herbal formulations, however, due to certain environmental conditions, pure extract form is prone to degradation. Therefore, in this, study, a green hydrodistillation technology was used to extract M. pinnata oil and N. jatamansi root for the further application in development of pectin crosslinked carboxymethyl cellulose/guar-gum nano hydrogel. Both oil and extract revealed the presence of spirojatamol and hexadecanoic acid methyl ester. Varied concentrations (w/w) of cross-linker and gelling agent were used to formulate oil emulsion extract gel (OEEG1, OEG1, OEEG2, OEG2, OEEG3, OEG3, OEEG4, OEG4, OEEG5, OEG5), in which OEEG2 and OEG2 were found to be stable. The hydrogel displayed an average droplet size of 186.7 nm and a zeta potential of -20.5 mV. Endo and exothermic peaks and the key functional groups including hydroxyl, amide II, and amide III groups confirmed thermal stability and molecular structure. The smooth surface confirmed structural uniformity. Bactericidal activity against both Gram-positive (25.41 ± 0.09 mm) and Gram-negative (27.25 ± 0.01 mm) bacteria and anti-inflammatory activity (49.25%-83.47%) makes nanohydrogel a potential option for treating various infections caused by pathogenic microorganisms. In conclusion, the use of green hydrodistillation technology can be used to extract the bioactive compounds that can be used in formulation of biocompatible and hydrophobic nanohydrogels. Their ability to absorb target-specific drugs makes them a potential option for treating various infections caused by pathogenic microorganisms.
Collapse
Affiliation(s)
| | - Sandip Patil
- Deparment of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
- Shenzhen Institute of Paediatrics, Shenzhen Children’s Hospital, Shenzhen, China
| | - Minaxi Sharma
- Haute Ecole Provinciale de Hainaut–Condorcet, Ath, Belgium
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S. Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sixi Liu
- Shenzhen Institute of Paediatrics, Shenzhen Children’s Hospital, Shenzhen, China
| | | | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagawara, Punjab, India
| | - Feiqiu Wen
- Deparment of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
- Shenzhen Institute of Paediatrics, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
5
|
Xue BX, Yang TT, He RS, Gao WK, Lai JX, Liu SX, Duan CY, Wang SX, Yu HJ, Yang WZ, Zhang LH, Wang QL, Wu HH. Degradation Profiling of Nardosinone at High Temperature and in Simulated Gastric and Intestinal Fluids. Molecules 2023; 28:5382. [PMID: 37513256 PMCID: PMC10385092 DOI: 10.3390/molecules28145382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Nardosinone, a predominant bioactive product from Nardostachys jatamansi DC, is well-known for its promising therapeutic applications, such as being used as a drug on anti-inflammatory, antidepressant, cardioprotective, anti-neuroinflammatory, anti-arrhythmic, anti-periodontitis, etc. However, its stability under varying environmental conditions and its degradation products remain unclear. In this study, four main degradation products, including two previously undescribed compounds [2-deoxokanshone M (64.23%) and 2-deoxokanshone L (1.10%)] and two known compounds [desoxo-narchinol A (2.17%) and isonardosinone (3.44%)], were firstly afforded from the refluxed products of nardosinone in boiling water; their structures were identified using an analysis of the extensive NMR and X-ray diffraction data and the simulation and comparison of electronic circular dichroism spectra. Compared with nardosinone, 2-deoxokanshone M exhibited potent vasodilatory activity without any of the significant anti-neuroinflammatory activity that nardosinone contains. Secondly, UPLC-PDA and UHPLC-DAD/Q-TOF MS analyses on the degradation patterns of nardosinone revealed that nardosinone degraded more easily under high temperatures and in simulated gastric fluid compared with the simulated intestinal fluid. A plausible degradation pathway of nardosinone was finally proposed using nardosinonediol as the initial intermediate and involved multiple chemical reactions, including peroxy ring-opening, keto-enol tautomerization, oxidation, isopropyl cleavage, and pinacol rearrangement. Our findings may supply certain guidance and scientific evidence for the quality control and reasonable application of nardosinone-related products.
Collapse
Affiliation(s)
- Bian-Xia Xue
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Tian-Tian Yang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Ru-Shang He
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Wen-Ke Gao
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Jia-Xin Lai
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Si-Xia Liu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Cong-Yan Duan
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Shao-Xia Wang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Hui-Juan Yu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Wen-Zhi Yang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Li-Hua Zhang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Qi-Long Wang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Hong-Hua Wu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| |
Collapse
|
6
|
Xue BX, He RS, Lai JX, Mireku-Gyimah NA, Zhang LH, Wu HH. Phytochemistry, data mining, pharmacology, toxicology and the analytical methods of Cyperus rotundus L. (Cyperaceae): a comprehensive review. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023:1-46. [PMID: 37359712 PMCID: PMC10183317 DOI: 10.1007/s11101-023-09870-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 04/12/2023] [Indexed: 06/28/2023]
Abstract
Cyperus rotundus L. has been widely used in the treatment and prevention of numerous diseases in traditional systems of medicine around the world, such as nervous, gastrointestinal systems diseases and inflammation. In traditional Chinese medicine (TCM), its rhizomes are frequently used to treat liver disease, stomach pain, breast tenderness, dysmenorrheal and menstrual irregularities. The review is conducted to summarize comprehensively the plant's vernacular names, distribution, phytochemistry, pharmacology, toxicology and analytical methods, along with the data mining for TCM prescriptions containing C. rotundus. Herein, 552 compounds isolated or identified from C. rotundus were systematically collated and classified, concerning monoterpenoids, sesquiterpenoids, flavonoids, phenylpropanoids, phenolics and phenolic glycosides, triterpenoids and steroids, diterpenoids, quinonoids, alkaloids, saccharides and others. Their pharmacological effects on the digestive system, nervous system, gynecological diseases, and other bioactivities like antioxidant, anti-inflammatory, anti-cancer, insect repellent, anti-microbial activity, etc. were summarized accordingly. Moreover, except for the data mining on the compatibility of C. rotundus in TCM, the separation, identification and analytical methods of C. rotundus compositions were also systematically summarized, and constituents of the essential oils from different regions were re-analyzed using multivariate statistical analysis. In addition, the toxicological study progresses on C. rotundus revealed the safety property of this herb. This review is designed to serve as a scientific basis and theoretical reference for further exploration into the clinical use and scientific research of C. rotundus. Graphical Abstract Supplementary Information The online version contains supplementary materials available at 10.1007/s11101-023-09870-3.
Collapse
Affiliation(s)
- Bian-Xia Xue
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617 People’s Republic of China
| | - Ru-Shang He
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617 People’s Republic of China
| | - Jia-Xin Lai
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617 People’s Republic of China
| | - Nana Ama Mireku-Gyimah
- Department of Pharmacognosy and Herbal Medicine, School of Pharmacy, College of Health Sciences, University of Ghana, Legon-Accra, Ghana
| | - Li-Hua Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617 People’s Republic of China
| | - Hong-Hua Wu
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617 People’s Republic of China
| |
Collapse
|
7
|
Arya A, Mittal V, Kaushik D, Kumar M, Alotaibi SS, Albogami SM, El-Saber Batiha G, Jeandet P. Mutivariate optimization strategy for the sonication-based extraction of Nardostachys jatamansi roots and analysis for chemical composition, anti-oxidant and acetylcholinesterase inhibitory potential. ULTRASONICS SONOCHEMISTRY 2022; 89:106133. [PMID: 36037596 PMCID: PMC9436804 DOI: 10.1016/j.ultsonch.2022.106133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Extracts from medicinal plants are generally obtained by conventional methods like percolation and maceration. Owing to limitations of traditional methods and to meet the rising demand of extracts, the development of new green approaches is need of hour. In the present research, we have developed an ultrasound-assisted extraction (UAE) method for the Nardostachys jatamansi (NJ) D. Don, DC roots and optimized the extraction parameters for possible improved extract yield. A multivariate optimization strategy using the Centre Composite Design coupled with response surface methodology was applied. A numerical optimization approach accurately predicted the extraction conditions (sonication time ∼ 20 min, ethanol ∼ 70 % and a liquid/solid ratio of about 21:1). Scanning electron microscopy of the plant samples after UAE also indicated the cavitation effect due to sound waves. GC-MS analysis of the optimized ultrasound extract (OUNJ) confirmed improvement in the concentration of various secondary metabolites like jatamansone (91.8 % increase), spirojatamol (42.3 % increase), globulol (130.4 % increase), sitosterol (84.6 % increase) as compared to the soxhlet extract (SXNJ). Different anti-oxidant parameters (DPPH, Glutathione, Catalase SOD and NO) were also significantly altered (p < 0.05) in the optimized extracts. The IC50 to inhibit acetylcholinesterase activity (AChE) in vitro and its concentration in brain homogenates were significantly (p < 0.05) improved by OUNJ extract as compared to the SXNJ ones. To conclude, we can say that established optimized conditions for UAE of N. jatamansi roots not only reduce the extraction time but also improved the pharmacological potential of the extracts.
Collapse
Affiliation(s)
- Ashwani Arya
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Manish Kumar
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana (133207), Ambala, Haryana, India
| | - Saqer S Alotaibi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, Saudi Arabia
| | - Sarah M Albogami
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, Egypt
| | - Philippe Jeandet
- University of Reims, Research Unit-Induced Resistance and Plant Bioprotection, EA 4707 - USC INRAe 1488, SFR Condorcet FR CNRS 3417, 51687 Reims, France.
| |
Collapse
|