1
|
Yang H, He S, Feng Q, Liu Z, Xia S, Zhou Q, Wu Z, Zhang Y. Lotus (Nelumbo nucifera): a multidisciplinary review of its cultural, ecological, and nutraceutical significance. BIORESOUR BIOPROCESS 2024; 11:18. [PMID: 38647851 PMCID: PMC10991372 DOI: 10.1186/s40643-024-00734-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/16/2024] [Indexed: 04/25/2024] Open
Abstract
This comprehensive review systematically examines the multifarious aspects of Nelumbo nucifera, elucidating its ecological, nutritional, medicinal, and biomimetic significance. Renowned both culturally and scientifically, Nelumbo nucifera manifests remarkable adaptability, characterized by its extensive distribution across varied climatic regions, underpinned by its robust rhizome system and prolific reproductive strategies. Ecologically, this species plays a crucial role in aquatic ecosystems, primarily through biofiltration, thereby enhancing habitat biodiversity. The rhizomes and seeds of Nelumbo nucifera are nutritionally significant, being rich sources of dietary fiber, essential vitamins, and minerals, and have found extensive culinary applications. From a medicinal perspective, diverse constituents of Nelumbo nucifera exhibit therapeutic potential, including anti-inflammatory, antioxidant, and anti-cancer properties. Recent advancements in preservation technology and culinary innovation have further underscored its role in the food industry, highlighting its nutritional versatility. In biomimetics, the unique "lotus effect" is leveraged for the development of self-cleaning materials. Additionally, the transformation of Nelumbo nucifera into biochar is being explored for its potential in sustainable environmental practices. This review emphasizes the critical need for targeted conservation strategies to protect Nelumbo nucifera against the threats posed by climate change and habitat loss, advocating for its sustainable utilization as a species of significant value.
Collapse
Affiliation(s)
- Hang Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Simai He
- School of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Qi Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zisen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shibin Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
E S, Shang ZC, Qin SH, Li KL, Liu YN, Wu JL, Yan F, Cai W. A Systematic Method for the Identification of Aporphine Alkaloid Constituents in Sabia schumanniana Diels Using UHPLC-Q-Exactive Orbitrap/Mass Spectrometry. Molecules 2022; 27:molecules27217643. [PMID: 36364479 PMCID: PMC9656101 DOI: 10.3390/molecules27217643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/14/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Sabia schumanniana Diels (SSD) is a plant whose stems are used in traditional folk medicine for the treatment of lumbago and arthralgia. Previous studies have revealed chemical constituents of SSD, including triterpenoids and aporphine alkaloids. Aporphine alkaloids contain a variety of active components, which might facilitate the effective treatment of lumbago and arthralgia. However, only 5-oxoaporphine (fuseine) has been discovered in SSD to date. In this study, we sought to systematically identify the aporphine alkaloids in SSD. We established a fast and reliable method for the detection and identification of these aporphine alkaloids based on ultra-high-performance liquid chromatography (UHPLC)-Q-Exactive-Orbitrap/mass spectrometry combined with parallel reaction monitoring (PRM). We separated all of the analyzed samples using a Thermo Scientific Hypersil GOLD™ aQ C18 column (100 mm × 2.1 mm, 1.9 μm). Finally, we identified a total of 70 compounds by using data such as retention times and diagnostic ions. No fewer than 69 of these SSD aporphine alkaloids have been reported here for the first time. These findings may assist in future studies concerning this plant and will ultimately contribute to the research and development of new drugs.
Collapse
Affiliation(s)
- Shuai E
- School of Pharmacy, Weifang Medical University, Weifang 261000, China
| | - Zi-Chao Shang
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Shi-han Qin
- School of Pharmacy, Weifang Medical University, Weifang 261000, China
| | - Kai-lin Li
- School of Pharmacy, Weifang Medical University, Weifang 261000, China
| | - Yan-nan Liu
- Nursing School, Hunan University of Medicine, Huaihua 418000, China
| | - Ji-Li Wu
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Fang Yan
- School of Pharmacy, Weifang Medical University, Weifang 261000, China
- Correspondence: (F.Y.); (W.C.)
| | - Wei Cai
- School of Pharmacy, Weifang Medical University, Weifang 261000, China
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
- Correspondence: (F.Y.); (W.C.)
| |
Collapse
|
3
|
Sun J, Fan J, Li T, Yan X, Jiang Y. Nuciferine Protects Against High-Fat Diet-Induced Hepatic Steatosis via Modulation of Gut Microbiota and Bile Acid Metabolism in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12014-12028. [PMID: 36106619 DOI: 10.1021/acs.jafc.2c04817] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Our previous study showed that nuciferine (NF) attenuated non-alcoholic fatty liver disease (NAFLD), which is attributed to a high-fat diet (HFD) through reinforcing intestinal barrier functions, regulating lipid metabolism, and improving inflammation. To clarify whether other mechanisms contribute to the anti-NAFLD efficacy of NF, the present study investigated the influence of NF on bile acid (BA) metabolism and gut microbiota in HFD-fed rats. The data demonstrated that NF changed the composition of colonic BA, particularly elevating conjugated BA and non-12OH BA levels. As shown by downregulated protein levels of FXR, FGF15, FGFR4, and ASBT and upregulated protein levels of CYP7A1 and CYP27A1, NF inhibited ileal FXR signaling, promoted BA synthesis, suppressed BA reabsorption, and facilitated fecal BA excretion. NF might affect hepatic FXR signaling, BA conjugation, and enterohepatic circulation by the changed mRNA levels of Fxr, Shp, Baat, Bacs, Bsep, Ntcp, Ibabp, and Ostα/β. Meanwhile, NF regulated the gut microbiota, characterized by decreased BSH-producing genus, 7α-dehydroxylation genus, and increased taurine metabolism-related genus. Spearman rank correlation analysis implied that Colidextribacter, Adlercreutzia, Family_XIII_AD3011_group, Lachnospiraceae_UCG-010, Eisenbergiella, and UCG-005 were robustly associated with particular BA monomers. In conclusion, our experiment results suggested that NF could exert a mitigating effect on NAFLD via regulating BA metabolism and modulating the gut microbiota.
Collapse
Affiliation(s)
- Jingyue Sun
- College of Biosystems Engineering and Food Science, Zhejiang University, No.866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Jiemin Fan
- College of Biosystems Engineering and Food Science, Zhejiang University, No.866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Tingting Li
- College of Biosystems Engineering and Food Science, Zhejiang University, No.866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Xiaoxue Yan
- College of Biosystems Engineering and Food Science, Zhejiang University, No.866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Yihong Jiang
- College of Biosystems Engineering and Food Science, Zhejiang University, No.866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| |
Collapse
|
4
|
Lactucin & Lactucopicrin ameliorates FFA-induced steatosis in HepG2 cells via modulating lipid metabolism. J Pharmacol Sci 2022; 150:110-122. [DOI: 10.1016/j.jphs.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/09/2022] [Accepted: 07/28/2022] [Indexed: 11/19/2022] Open
|
5
|
Rangelov Kozhuharov V, Ivanov K, Ivanova S. Higenamine in Plants as a Source of Unintentional Doping. PLANTS (BASEL, SWITZERLAND) 2022; 11:354. [PMID: 35161335 PMCID: PMC8838985 DOI: 10.3390/plants11030354] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Higenamine is a β2 agonist of plant origin. The compound has been included in WADA's prohibited list since 2017. Higenamine may be detected in different plants and many food supplements of natural origin. METHODS Our literature search was conducted through PubMed, Science Direct, Google Scholar, and Web of Science studies investigating the presence of higenamine in plants that are used in traditional folk medicine or included in food supplements. Our study aimed to assess the risk of adverse analytical findings caused by higenamine-containing plants. RESULTS Based on our literature search, Nelumbo nucifera, Tinospora crispa, Nandina domestica, Gnetum parvifolium, Asarum siebodii,Asarum heterotropoides, Aconitum carmichaelii, and Aristolochia brasiliensis are higenamine-containing plants. Based on data from Eastern folk medicine, these plants can provide numerous health benefits. Professional athletes likely ingest these plants without knowing that they contain higenamine; these herbs are used in treatments for different conditions and various foods/food supplements in addition to folk medicine. CONCLUSION Athletes and their teams must be aware of the issues associated with the use of plant-based products. They should avoid consuming higenamine-containing plants during and outside of competition periods.
Collapse
Affiliation(s)
- Vanya Rangelov Kozhuharov
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (K.I.); (S.I.)
| | | | | |
Collapse
|