1
|
Niu K, Chang L, Zhang R, Jiang Y, Shen X, Lu X, Zhang S, Ma K, Zhao Z, Li M, Hou Y, Wu Y. Bazi Bushen mitigates age-related muscular atrophy by alleviating cellular senescence of skeletal muscle. J Tradit Complement Med 2024; 14:510-521. [PMID: 39262657 PMCID: PMC11385411 DOI: 10.1016/j.jtcme.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/06/2024] [Accepted: 01/21/2024] [Indexed: 09/13/2024] Open
Abstract
Background and aim Muscular atrophy is one of the most common age-related conditions characterized by the deterioration of skeletal muscle structures and impaired functions. It is associated with cellular senescence and chronic inflammation, which impair the function of muscle stem cells. Bazi Bushen (BZBS) is a patent compound Chinese medicine that has been shown to have anti-aging effects in various animal models. In this study, we investigated the effects and mechanisms of BZBS on muscular atrophy in naturally aged mice. Experimental procedure A muscular atrophy model of naturally aged mice (18 months) was employed with administration of BZBS (2 g/kg/d, 1 g/kg/d) and nicotinamide mononucleotide (NMN, 200 mg/kg/d). After six months of drug administration, muscle weight loss, muscle function and muscle histopathology were measured to evaluate the therapeutic effect of BZBS. The expression of cellular senescence, inflammatory and satellite cell-related factors were used to assess the effects of BZBS in inhibiting cellular senescence, reducing inflammation and improving muscle atrophy. Results and conclusion Compared with age matched natural aging mice, we found that BZBS improved muscle strength, mass, and morphology by reducing senescent cells, inflammatory cytokines, and intermyofiber fibrosis in aged muscle tissues. We also found that BZBS prevented the reduction of Pax7 positive stem cells and stimulated the activation and differentiation into myocytes. Our results suggest that BZBS might be a promising intervention in senile muscular atrophy.
Collapse
Affiliation(s)
- Kunxu Niu
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Liping Chang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine-Luobing Theory, Shijiazhuang, 050035, China
| | - Runtao Zhang
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuning Jiang
- College of Traditional Chinese Medicine·College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaogang Shen
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Xuan Lu
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Shixiong Zhang
- College of Traditional Chinese Medicine·College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Kun Ma
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine-Luobing Theory, Shijiazhuang, 050035, China
| | - Zhiqin Zhao
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Mengnan Li
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
| | - Yunlong Hou
- Hebei Medical University, Shijiazhuang, 050017, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
| | - Yiling Wu
- Hebei Medical University, Shijiazhuang, 050017, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
| |
Collapse
|
2
|
Mei J, Ju C, Wang B, Gao R, Zhang Y, Zhou S, Liu E, Zhang L, Meng H, Liu Y, Zhao R, Zhao J, Zhang Y, Zeng W, Li J, Zhang P, Zhao J, Liu Y, Huan L, Huang Y, Zhu F, Liu H, Luo R, Yang Q, Gao S, Wang X, Fang Q, Lu Y, Dong Y, Yin X, Qiu P, Yang Q, Yang L, Xu F. The efficacy and safety of Bazi Bushen Capsule in treating premature aging: A randomized, double blind, multicenter, placebo-controlled clinical trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155742. [PMID: 38838635 DOI: 10.1016/j.phymed.2024.155742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/17/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
PURPOSE It is unclear whether traditional Chinese patent medicines can resist premature aging. This prospective study investigated the effects of Bazi Bushen Capsule (BZBS) which is a traditional Chinese patent medicine for tonifying the kidney essence on premature senility symptoms and quality of life, telomerase activity and telomere length. STUDY DESIGN AND METHODS It was a parallel, multicenter, double-blind, randomized, and placebo-controlled trial. Subjects (n = 530) aged 30-78 years were randomized to receive BZBS or placebo capsules 12 weeks. The primary outcome was the clinical feature of change in kidney deficiency for aging evaluation scale (CFCKD-AES) and tilburg frailty indicator (TFI). The secondary outcomes were SF-36, serum sex hormone level, five times sit-to-stand time (FTSST), 6MWT, motor function test-grip strength, balance test, walking speed, muscle mass measurement, telomerase and telomere length. RESULTS After 12 weeks of treatment, the CFCKD-AES and TFI scores in the BZBS group decreased by 13.79 and 1.50 respectively (6.42 and 0.58 in the placebo group, respectively); The SF-36 in the BZBS group increased by 98.38 (23.79 in the placebo group). The FTSST, motor function test grip strength, balance test, walking speed, and muscle mass in the elderly subgroup were all improved in the BZBS group. The telomerase content in the BZBS group increased by 150.04 ng/ml compared to the placebo group. The fever led one patient in the placebo group to discontinue the trial. One patient in the placebo group withdrew from the trial due to pregnancy. None of the serious AEs led to treatment discontinuation, and 3 AEs (1.14%) were assessed as related to BZBS by the primary investigator. CONCLUSIONS BZBS can improve premature aging symptoms, frailty scores, and quality of life, as well as improve FTSST, motor function: grip strength, balance test, walking speed, and muscle mass in elderly subgroups of patients, and enhance telomerase activity, but it is not significantly associated with increasing telomere length which is important for healthy aging. TRIAL REGISTRY https://www.chictr.org.cn/showproj.html?proj=166181.
Collapse
Affiliation(s)
- Jun Mei
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Chunxiao Ju
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Biqing Wang
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China; Graduate School, Beijing University of Chinese Medicine, Beijing, PR China
| | - Rui Gao
- Clinical Pharmacology Research Institute, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Yanhong Zhang
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Shunlin Zhou
- Department of Rehabilitation, Hebei Yiling Hospital, Shijiazhuang, 050000, PR China
| | - Erjun Liu
- Department of Traditional Chinese Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Lirui Zhang
- Department of Traditional Chinese Medicine, Tangshan Central Hospital, Tangshan, 063000, PR China
| | - Hong Meng
- International school of cosmetics, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Yafeng Liu
- Department of Traditional Chinese Medicine, Shenzhen Third People's Hospital, Shenzhen, 518112, PR China
| | - Ruihua Zhao
- Department of gynaecology, Guang'anmen Hospital China Academy of Chinese Medical Sciences, Beijing, 100053, PR China
| | - Jiajun Zhao
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital, Jinan, 250021, PR China
| | - Ying Zhang
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Wenying Zeng
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Jing Li
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Ping Zhang
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Junnan Zhao
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Yanfei Liu
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Luyao Huan
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Yuxiao Huang
- Department of gynaecology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Fuli Zhu
- Department of gynaecology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Huiyan Liu
- Department of gynaecology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Ran Luo
- Department of gynaecology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Qi Yang
- Department of gynaecology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Shanfeng Gao
- Department of gynaecology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Xiaoyuan Wang
- Department of gynaecology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Qingxia Fang
- Department of gynaecology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - YuHong Lu
- LNKMED Tech Co., Ltd, Beijing, 100000, PR China
| | - Yan Dong
- LNKMED Tech Co., Ltd, Beijing, 100000, PR China
| | - Xueying Yin
- Clinical Pharmacology Research Institute, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Panbo Qiu
- Clinical Pharmacology Research Institute, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Qiaoning Yang
- Clinical Pharmacology Research Institute, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Limin Yang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, PR China
| | - Fengqin Xu
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China.
| |
Collapse
|
3
|
Yan Z, Zhang L, Kang Y, Liu S, Li X, Li L, Rui K, Xiao M, Xie Y. Integrating serum pharmacochemistry and network pharmacology to explore potential compounds and mechanisms of Alpiniae oxyphyllae fructus in the treatment of cellular senescence in diabetic kidney disease. Front Med (Lausanne) 2024; 11:1424644. [PMID: 39021818 PMCID: PMC11251962 DOI: 10.3389/fmed.2024.1424644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
Background Diabetic kidney disease (DKD), one of the microvascular complications in patients with diabetes mellitus, is a common cause of end-stage renal disease. Cellular senescence is believed to be an essential participant in the pathogenesis of DKD. Although there is evidence that Alpiniae oxyphyllae fructus (AOF) can ameliorate DKD progression and organismal senescence, its ability to ameliorate renal cellular senescence in DKD as well as active components and molecular mechanisms remain to be explored. Purpose This study aimed to investigate the role of AOF in the treatment of cellular senescence in DKD and to explore its active components and potential molecular mechanisms. Methods The pharmacological efficacy of AOF in ameliorating cellular senescence in DKD was assessed by establishing DKD mouse models and HK-2 cells under high glucose stress. UHPLC-QTOF-MS was used to screen the active compounds in AOF, which were used in conjunction with network pharmacology to predict the molecular mechanism of AOF in the treatment of cellular senescence in DKD. Results In vivo experiments showed that AOF reduced GLU, mAlb, Scr, BUN, MDA, SOD levels, and ameliorated renal pathological damage and renal cell senescence in DKD mice. In vitro experiments showed that AOF-containing serum improved the decline in HK-2 cell viability and alleviated cellular senescence under high glucose intervention. The results of the UHPLC-QTOF-MS screened 26 active compounds of AOF. The network pharmacological analyses revealed that Cubebin, 2',6'-dihydroxy-4'-methoxydihydrochalcone, Chalcone base + 3O,1Prenyl, Batatasin IV, and Lucidenolactone were the five core compounds and TP53, SRC, STAT3, PIK3CA, and AKT1 are the five core targets of AOF in the treatment of DKD. Molecular docking simulation results showed that the five core compounds had good binding ability to the five core targets. Western blot validated the network pharmacological prediction results and showed that AOF and AOF-containing serum down-regulate the expression of TP53, and phosphorylation of SRC, STAT3, PIK3CA, and AKT. Conclusion Our study shows that AOF may delay the development of cellular senescence in DKD by down-regulating the levels of TP53, and phosphorylation of SRC, STAT3, PIK3CA, and AKT.
Collapse
Affiliation(s)
- Zijie Yan
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, China
| | - Lin Zhang
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, China
| | - Yu Kang
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Shuman Liu
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, China
| | - Xiaoyan Li
- First Clinical College of Medicine of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lidan Li
- First Clinical College of Medicine of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Kai Rui
- Key Laboratory of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Man Xiao
- Key Laboratory of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Yiqiang Xie
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, China
| |
Collapse
|
4
|
Li Y, Wang J, Qiao Y, Li H, Wang Z, Tian M, Che L, Du Y. Serum metabolomics analysis combined with network pharmacology reveals possible mechanisms of postoperative cognitive dysfunction in the treatment of Mongolian medicine Eerdun Wurile basic formula. Biomed Chromatogr 2024; 38:e5858. [PMID: 38501365 DOI: 10.1002/bmc.5858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/20/2024]
Abstract
This study analyzed the endogenous metabolites and metabolic pathways in the serum of Sprague-Dawley (SD) rats gavaged with the Eerdun Wurile basic formula (EWB) using metabolomics methods and network pharmacology to explore the possible mechanism of action of the EWB in improving postoperative cognitive dysfunction (POCD). SD rats were divided into the basic formula group, which received the EWB, and the control group, which received equal amounts of distilled water. The blood was collected from the abdominal aorta and analyzed for metabolite profiles using ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS). Network pharmacology predicts the targets of the differential metabolites and disease targets; takes the intersection and constructs a "metabolite-disease-target" network; and performs protein-protein interaction, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes analyses. A total of 56 metabolites were selected for significant differences between the groups, mainly affecting amphetamine addiction, alcoholism, and regulation of lipolysis in adipocytes. A total of 177 potential targets for differential metabolite action in POCD were selected. The PI3K-Akt pathway, the HIF-1 pathway, and the FoxO pathway were in key positions. The studies have shown that EWB could improve POCD through multicomponents, multitargets, and multipathways, providing new possibilities and reference values for the treatment of POCD.
Collapse
Affiliation(s)
- Yan Li
- Inner Mongolia Medical University, Hohhot, China
| | - Jiaxin Wang
- Inner Mongolia Medical University, Hohhot, China
| | - Yun Qiao
- Inner Mongolia Medical University, Hohhot, China
| | - Huiru Li
- Inner Mongolia Medical University, Hohhot, China
| | - Zhe Wang
- Inner Mongolia Medical University, Hohhot, China
| | - Mengke Tian
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Limuge Che
- Medicine Innovation Center for Nationalities, Inner Mongolia Medical University, Hohhot, China
| | - Yiri Du
- Department of Anesthesiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
5
|
Ding X, Ma X, Meng P, Yue J, Li L, Xu L. Potential Effects of Traditional Chinese Medicine in Anti-Aging and Aging-Related Diseases: Current Evidence and Perspectives. Clin Interv Aging 2024; 19:681-693. [PMID: 38706635 PMCID: PMC11070163 DOI: 10.2147/cia.s447514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
Aging and aging-related diseases present a global public health problem. Therefore, the development of efficient anti-aging drugs has become an important area of research. Traditional Chinese medicine is an important complementary and alternative branch of aging-related diseases therapy. Recently, a growing number of studies have revealed that traditional Chinese medicine has a certain delaying effect on the progression of aging and aging-related diseases. Here, we review the progress in research into using traditional Chinese medicine for aging and aging-related diseases (including neurodegenerative diseases, cardiovascular diseases, diabetes, and cancer). Furthermore, we summarize the potential mechanisms of action of traditional Chinese medicine and provide references for further studies on aging and aging-related diseases.
Collapse
Affiliation(s)
- Xue Ding
- Department of Medical, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Xiuxia Ma
- Department of AIDS Clinical Research Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Pengfei Meng
- Department of the First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Jingyu Yue
- Department of AIDS Clinical Research Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Liangping Li
- Department of Graduate, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Liran Xu
- Department of the First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| |
Collapse
|
6
|
Zhang Y, Wang T, Song Y, Chen M, Hou B, Yao B, Ma K, Song Y, Wang S, Zhang D, Liang J, Wei C. Mechanism of Bazi Bushen capsule in delaying the senescence of mesenchymal stem cells based on network pharmacology and experimental validation. Heliyon 2024; 10:e27646. [PMID: 38509951 PMCID: PMC10950659 DOI: 10.1016/j.heliyon.2024.e27646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Ageing is becoming an increasingly serious problem; therefore, there is an urgent need to find safe and effective anti-ageing drugs. Aims To investigate the effects of Bazi Bushen capsule (BZBS) on the senescence of mesenchymal stem cells (MSCs) and explore its mechanism of action. Methods Network pharmacology was used to predict the targets of BZBS in delaying senescence in MSCs. For in vitro studies, MSCs were treated with D-gal, BZBS, and NMN, and cell viability, cell senescence, stemness-related genes, and cell cycle were studied using cell counting kit-8 (CCK-8) assay, SA-β-galactosidase (SA-β-gal) staining, Quantitative Real-Time PCR (qPCR) and flow cytometry (FCM), respectively. Alkaline phosphatase (ALP), alizarin red, and oil red staining were used to determine the osteogenic and lipid differentiation abilities of MSCs. Finally, the expression of senescence-related genes and cyclin-related factors was detected by qPCR and western blotting. Results Network pharmacological analysis suggested that BZBS delayed cell senescence by interfering in the cell cycle. Our in vitro studies suggested that BZBS could significantly increase cell viability (P < 0.01), decrease the quantity of β-galactosidase+ cells (P < 0.01), downregulate p16 and p21 (P < 0.05, P < 0.01), improve adipogenic and osteogenic differentiation, and upregulate Nanog, OCT4 and SOX2 genes (P < 0.05, P < 0.01) in senescent MSCs. Moreover, BZBS significantly reduced the proportion of senescent MSCs in the G0/G1 phase (P < 0.01) and enhanced the expression of CDK4, Cyclin D1, and E2F1 (P < 0.05, P < 0.01, respectively). Upon treatment with HY-50767A, a CDK4 inhibitor, the upregulation of E2F1 was no longer observed in the BZBS group. Conclusions BZBS can protect MSCs against D-gal-induced senescence, which may be associated with cell cycle regulation via the Cyclin D1/CDK4/E2F1 signalling pathway.
Collapse
Affiliation(s)
- Yaping Zhang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Tongxing Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Hebei Province, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
| | - Yanfei Song
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Hebei Province, Shijiazhuang, 050035, China
- Shijiazhuang Compound Traditional Chinese Medicine Technology Innovation Center, Shijiazhuang, 050035, China
| | - Meng Chen
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Hebei Province, Shijiazhuang, 050035, China
- Shijiazhuang Compound Traditional Chinese Medicine Technology Innovation Center, Shijiazhuang, 050035, China
| | - Bin Hou
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Hebei Province, Shijiazhuang, 050035, China
| | - Bing Yao
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Hebei Province, Shijiazhuang, 050035, China
- Shijiazhuang Compound Traditional Chinese Medicine Technology Innovation Center, Shijiazhuang, 050035, China
| | - Kun Ma
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Hebei Province, Shijiazhuang, 050035, China
- Hebei Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, Shijiazhuang, 050035, China
| | - Yahui Song
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Hebei Province, Shijiazhuang, 050035, China
| | - Siwei Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Hebei Province, Shijiazhuang, 050035, China
| | - Dan Zhang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Hebei Province, Shijiazhuang, 050035, China
| | - Junqing Liang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Hebei Province, Shijiazhuang, 050035, China
| | - Cong Wei
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Hebei Province, Shijiazhuang, 050035, China
| |
Collapse
|
7
|
Zou M, Wang D, Chen Y, Yang C, Xu S, Dai Y. Dajianzhong decoction ameliorated D-gal-induced cognitive aging by triggering mitophagy in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117212. [PMID: 37783403 DOI: 10.1016/j.jep.2023.117212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dajianzhong decoction (DJZ) is a classical famous formula for treating yang-deficiency-syndrome in traditional Chinese medicine and recorded in Jin-Kui-Yao-Lue in Dynasty of Dong Han. Cognitive aging can present similar features of mitochondrial energy deficits to the clinical features of Yang deficiency. However, there is poor understanding of the effects of DJZ treatment on mitophagy in cognitive aging. AIM OF THE STUDY The aims of this work were to decipher the effectiveness and mechanism of DJZ against cognitive aging, focusing on mitophagy. MATERIALS AND METHODS YFP-Parkin HeLa cells, D-galactose (D-gal) -induced mice (500 mg/kg for 35 d, s. c.) and SH-SY5Y cells (80 mg/ml for 6 h) were established. Firstly, the formation of YFP-Parkin puncta (a well-known mitophagy marker) in YFP-Parkin HeLa cells was employed to discover the mitophagy induction of DJZ. Moreover, the genes and proteins related to PINK1/Parkin pathway and mitochondrial functions were evaluated after treatment with DJZ in vivo (3.5 g/kg or 1.75 g/kg, i. g, 35 d) and in vitro (0.2, 2 and 20 μg/ml, 12 h). Furthermore, the effectiveness of DJZ (3.5 g/kg or 1.75 g/kg, i. g) for alleviating cognitive aging and nerve damage was measured in D-gal mice. Finally, siPINK1 was applied to reverse validation of DJZ in vitro. RESULTS The formation of YFP-Parkin puncta in YFP-Parkin HeLa cells was markedly induced by DJZ in a dose-dependent manner. The immunofluorescence intensity of Parkin and the protein expression of Parkin in mitochondrial membrane in D-gal mice were significantly increased after treatment of DJZ. The inhibition of PINK1/Parkin pathway in D-gal-induced mice and SH-SY5Y cells was significantly activated by DJZ. Simultaneously, the impairment of mitochondrial functions induced by D-gal were markedly reversed by DJZ. In addition, DJZ significantly ameliorated the neuropathological injury and cognitive declines in D-gal mice. Finally, after PINK1 was knocked down by siPINK1 in vitro, the neuroprotective effects of DJZ and the Parkin enhancement effect of DJZ were markedly reversed. CONCLUSION Our findings firstly showed DJZ could relieve cognitive aging through facilitating PINK1/Parkin-mediated mitophagy to protect against mitochondrial functions, indicating DJZ may be regarded as a promising intervention in cognitive aging.
Collapse
Affiliation(s)
- Mi Zou
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Dan Wang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Yuanyuan Chen
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chuan Yang
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shijun Xu
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yuan Dai
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| |
Collapse
|
8
|
Xu Z, Man SS, Gong BY, Li ZD, Zhou HF, Peng YF, Zhao SW, Hou YL, Wang L, Bian YH. Bazi Bushen maintains intestinal homeostasis through inhibiting TLR4/NFκB signaling pathway and regulating gut microbiota in SAMP6 mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7273-7283. [PMID: 37450639 DOI: 10.1002/jsfa.12812] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Bazi Bushen is a Chinese patented medicine with multiple health benefits and geroprotective effects, yet, no research has explored its effects on intestinal homeostasis. In this study, we aimed to investigate the effect of Bazi Bushen on intestinal inflammation and the potential mechanism of gut microbiota dysbiosis and intestinal homeostasis in senescence-accelerated mouse prone 6 (SAMP6). The hematoxylin and eosin (H&E) staining and immunohistochemistry were performed to assess the function of the intestinal mucosal barrier. The enzyme-linked immunosorbent assay (ELISA) and Western blotting were used to determine the level of intestinal inflammation. The aging-related β-galactosidase (SA-β-gal) staining and Western blotting were used to measure the extent of intestinal aging. The 16S ribosomal RNA (16S rRNA) was performed to analyze the change in gut microbiota composition and distribution. RESULTS Bazi Bushen exerted remarkable protective effects in SAMP6, showing a regulated mucosal barrier and increased barrier integrity. It also suppressed intestinal inflammation through down-regulating pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α) and inhibiting TLR4/NFκB signaling pathway (MYD88, p-p65, and TLR4). Bazi Bushen improved intestinal aging by reducing the area of SA-β-gal-positive cells and the expression of senescence markers p16, p21, and p53. In addition, Bazi Bushen effectively rebuilt the gut microbiota ecosystem by decreasing the abundance of Bacteroides and Klebsiella, whiles increasing the ratio of Lactobacillus/Bacteroides and the abundance of Akkermansia. CONCLUSION Our study shows that Bazi Bushen could serve as a potential therapy for maintaining intestinal homeostasis. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhe Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shan-Shan Man
- Pharmaceutical Department, Tianjin Second People's Hospital, Tianjin, China
| | - Bo-Yang Gong
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhao-Dong Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hui-Fang Zhou
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan-Fei Peng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shu-Wu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yun-Long Hou
- National Key Laboratory of Luobing Research and Innovative Chinese Medicine, Hebei, China
| | - Li Wang
- Pharmaceutical Department, Tianjin Second People's Hospital, Tianjin, China
| | - Yu-Hong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
9
|
Xu Z, Gong B, Li Z, Wang Y, Zhao Z, Xie L, Peng Y, Zhao S, Zhou H, Bian Y. Bazi Bushen alleviates skin senescence by orchestrating skin homeostasis in SAMP6 mice. J Cell Mol Med 2023; 27:2651-2660. [PMID: 37614114 PMCID: PMC10494291 DOI: 10.1111/jcmm.17833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/12/2023] [Accepted: 06/24/2023] [Indexed: 08/25/2023] Open
Abstract
Bazi Bushen, a Chinese-patented drug with the function of relieving fatigue and delaying ageing, has been proven effective for extenuating skin senescence. To investigate the potential mechanism, senescence-accelerated mouse prone 6 (SAMP6) was intragastrically administered with Bazi Bushen for 9 weeks to induce skin homeostasis. Skin homeostasis is important in mitigating skin senescence, and it is related to many factors such as oxidative stress, SASP, apoptosis, autophagy and stem cell. In our study, skin damage in SAMP6 mice was observed using HE, Masson and SA-β-gal staining. The content of hydroxyproline and the activities of SOD, MDA, GSH-PX and T-AOC in the skin were measured using commercial assay kits. The level of SASP factors (IL-6, IL-1β, TNF-α, MMP2 and MMP9) in skin were measured using ELISA kits. The protein expressions of p16, p21, p53, Bax, Bcl-2, Cleaved caspase-3, LC3, p62, Beclin1, OCT4, SOX2 and NANOG were measured by western blotting. The expression of ITGA6 and COL17A1 was measured by immunofluorescence staining and western blotting. Our findings demonstrated that Bazi Bushen alleviated skin senescence by orchestrating skin homeostasis, reducing the level of oxidative stress and the expression of SASP, regulating the balance of apoptosis and autophagy and enhancing the protein expressions of ITGA6 and COL17A1 to improve skin structure in SAMP6 mice. This study indicated that Bazi Bushen could serve as a potential therapy for alleviating skin senescence.
Collapse
Affiliation(s)
- Zhe Xu
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Boyang Gong
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Zhaodong Li
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Ying Wang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Zeyu Zhao
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Lulu Xie
- School of MedicineNankai UniversityTianjinChina
| | - Yanfei Peng
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Shuwu Zhao
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Huifang Zhou
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yuhong Bian
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| |
Collapse
|
10
|
Wang T, Chen M, Li H, Ding G, Song Y, Hou B, Yao B, Wang Z, Hou Y, Liang J, Wei C, Jia Z. Repositioning of clinically approved drug Bazi Bushen capsule for treatment of Aizheimer's disease using network pharmacology approach and in vitro experimental validation. Heliyon 2023; 9:e17603. [PMID: 37449101 PMCID: PMC10336525 DOI: 10.1016/j.heliyon.2023.e17603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Aims To explore the new indications and key mechanism of Bazi Bushen capsule (BZBS) by network pharmacology and in vitro experiment. Methods The ingredients library of BZBS was constructed by retrieving multiple TCM databases. The potential target profiles of the components were predicted by target prediction algorithms based on different principles, and validated by using known activity data. The target spectrum of BZBS with high reliability was screened by considering the source of the targets and the node degree in compound-target (C-T) network. Subsequently, new indications for BZBS were predicted by disease ontology (DO) enrichment analysis and initially validated by GO and KEGG pathway enrichment analysis. Furthermore, the target sets of BZBS acting on AD signaling pathway were identified by intersection analysis. Based on STRING database, the PPI network of target was constructed and their node degree was calculated. Two Alzheimer's disease (AD) cell models, BV-2 and SH-SY5Y, were used to preliminarily verify the anti-AD efficacy and mechanism of BZBS in vitro. Results In total, 1499 non-repeated ingredients were obtained from 16 herbs in BZBS formula, and 1320 BZBS targets with high confidence were predicted. Disease enrichment results strongly suggested that BZBS formula has the potential to be used in the treatment of AD. GO and KEGG enrichment results provide a preliminary verification of this point. Among them, 113 functional targets of BZBS belong to AD pathway. A PPI network containing 113 functional targets and 1051 edges for the treatment of AD was constructed. In vitro experiments showed that BZBS could significantly reduce the release of TNF-α and IL-6 and the expression of COX-2 and PSEN1 in Aβ25-35-induced BV-2 cells, which may be related to the regulation of ERK1/2/NF-κB signaling pathway. BZBS reduced the apoptosis rate of Aβ25-35 induced SH-SY5Y cells, significantly increased mitochondrial membrane potential, reduced the expression of Caspase3 active fragment and PSEN1, and increased the expression of IDE. This may be related to the regulation of GSK-3β/β-catenin signaling pathway. Conclusions BZBS formula has a potential use in the treatment of AD, which is achieved through regulation of ERK1/2, NF-κB signaling pathways, and GSK-3β/β-catenin signaling pathway. Furthermore, the network pharmacology technology is a feasible drug repurposing strategy to reposition new clinical use of approved TCM and explore the mechanism of action. The study lays a foundation for the subsequent in-depth study of BZBS in the treatment of AD and provides a basis for its application in the clinical treatment of AD.
Collapse
Affiliation(s)
- Tongxing Wang
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, 050035, PR China
- Hebei Yiling Pharmaceutical Research Institute, Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, 050035, PR China
| | - Meng Chen
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, 050035, PR China
- Hebei Yiling Pharmaceutical Research Institute, Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, 050035, PR China
| | - Huixin Li
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, 050035, PR China
- Hebei Yiling Pharmaceutical Research Institute, Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, 050035, PR China
| | - Guoyuan Ding
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, 050035, PR China
- Hebei Yiling Pharmaceutical Research Institute, Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, 050035, PR China
| | - Yanfei Song
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, 050035, PR China
- Hebei Yiling Pharmaceutical Research Institute, Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, 050035, PR China
| | - Bin Hou
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, 050035, PR China
- Hebei Yiling Pharmaceutical Research Institute, Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, 050035, PR China
| | - Bing Yao
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, 050035, PR China
- Hebei Yiling Pharmaceutical Research Institute, Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, 050035, PR China
| | - Zhixin Wang
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, 050035, PR China
- Hebei Yiling Pharmaceutical Research Institute, Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, 050035, PR China
| | - Yunlong Hou
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, 050035, PR China
- Hebei Yiling Pharmaceutical Research Institute, Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, 050035, PR China
| | - Junqing Liang
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, 050035, PR China
- Hebei Yiling Pharmaceutical Research Institute, Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, 050035, PR China
| | - Cong Wei
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, 050035, PR China
- Hebei Yiling Pharmaceutical Research Institute, Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, 050035, PR China
- Key Disciplines of State Administration of TCM for Collateral Disease, Shijiazhuang, 050035, PR China
| | - Zhenhua Jia
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, 050035, PR China
- Hebei Yiling Pharmaceutical Research Institute, Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, 050035, PR China
- Key Disciplines of State Administration of TCM for Collateral Disease, Shijiazhuang, 050035, PR China
| |
Collapse
|
11
|
A Systematic Review of In Vivo Studies of the Efficacy of Herbal Medicines for Anti-Aging in the Last Five Years. Pharmaceuticals (Basel) 2023; 16:ph16030448. [PMID: 36986547 PMCID: PMC10054545 DOI: 10.3390/ph16030448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Background: The world’s population is rapidly aging, and attention to and research on the increase in life expectancy and age-related diseases are needed. This study aimed to review the in vivo studies on the anti-aging effects of herbal medicines. Methods: In vivo studies of single or complex herbal medicines for anti-aging that were published in the last five years were included in this review. The following databases were used: PubMed, Scopus, ScienceDirect, Web of Science and EMBASE. Results: A total of 41 studies were considered eligible for the review. The articles were classified into body organs and functions, experimental country, herbal medicine, extraction method, administration route, dosage, duration, animal model, aging-induced method, sex, number of animals per group, and outcomes and mechanisms A single herbal extract was used in a total of 21 studies including Alpinia oxyphylla Miq., Acanthopanax senticosus and Lyceum barbarum, and a multi-compound herbal prescription was used in a total of 20 studies, including Modified Qiongyu paste, Wuzi Yanzong recipe, etc. Each herbal medicine had anti-aging effects on learning and memory, cognition, emotion, internal organs, gastrointestinal tracts, sexual functions, musculoskeletal function and so on. The common mechanisms of action were antioxidant and anti-inflammatory, and various effects and mechanisms for each organ and function were identified. Conclusions: Herbal medicine exhibited beneficial effects on anti-aging in various parts of the body and its function. Further investigation of the appropriate herbal medicine prescriptions and their components is recommended.
Collapse
|
12
|
Wang Y, Tang B, Li H, Zheng J, Zhang C, Yang Z, Tan X, Luo P, Ma L, Wang Y, Long L, Chen Z, Xiao Z, Ma L, Zhou J, Wang Y, Shi C. A small-molecule inhibitor of Keap1-Nrf2 interaction attenuates sepsis by selectively augmenting the antibacterial defence of macrophages at infection sites. EBioMedicine 2023; 90:104480. [PMID: 36863256 PMCID: PMC9996215 DOI: 10.1016/j.ebiom.2023.104480] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Macrophages at infection sites are considered as the promising therapeutic targets to prevent sepsis development. The Nrf2/Keap1 system acts as a critical modulator of the antibacterial activity of macrophages. Recently, Keap1-Nrf2 protein-protein interaction (PPI) inhibitors have emerged as safer and stronger Nrf2 activators; however, their therapeutic potential in sepsis remains unclear. Herein, we report a unique heptamethine dye, IR-61, as a Keap1-Nrf2 PPI inhibitor that preferentially accumulates in macrophages at infection sites. METHODS A mouse model of acute lung bacterial infection was used to investigate the biodistribution of IR-61. SPR study and CESTA were used to detect the Keap1 binding behaviour of IR-61 in vitro and in cells. Established models of sepsis in mice were used to determine the therapeutic effect of IR-61. The relationship between Nrf2 levels and sepsis outcomes was preliminarily investigated using monocytes from human patients. FINDINGS Our data showed that IR-61 preferentially accumulated in macrophages at infection sites, enhanced bacterial clearance, and improved outcomes in mice with sepsis. Mechanistic studies indicated that IR-61 potentiated the antibacterial function of macrophages by activating Nrf2 via direct inhibition of the Keap1-Nrf2 interaction. Moreover, we observed that IR-61 enhanced the phagocytic ability of human macrophages, and the expression levels of Nrf2 in monocytes might be associated with the outcomes of sepsis patients. INTERPRETATIONS Our study demonstrates that the specific activation of Nrf2 in macrophages at infection sites is valuable for sepsis management. IR-61 may prove to be a Keap1-Nrf2 PPI inhibitor for the precise treatment of sepsis. FUNDING This work was supported by the National Natural Science Foundation of China (Major program 82192884), the Intramural Research Project (Grants: 2018-JCJQ-ZQ-001 and 20QNPY018), and the Chongqing National Science Foundation (CSTB2022NSCQ-MSX1222).
Collapse
Affiliation(s)
- Yawei Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China; Department of Pulmonary and Critical Care Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Binlin Tang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China; Oncology Department, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Huijuan Li
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Jiancheng Zheng
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Can Zhang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Zeyu Yang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Xu Tan
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Yang Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Lei Long
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Zelin Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Zhenliang Xiao
- Department of Pulmonary and Critical Care Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Lijie Ma
- Department of Pulmonary and Critical Care Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Jing Zhou
- Department of Pulmonary and Critical Care Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Yu Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China.
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
13
|
He Y, Su Y, Duan C, Wang S, He W, Zhang Y, An X, He M. Emerging role of aging in the progression of NAFLD to HCC. Ageing Res Rev 2023; 84:101833. [PMID: 36565959 DOI: 10.1016/j.arr.2022.101833] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
With the aging of global population, the incidence of nonalcoholic fatty liver disease (NAFLD) has surged in recent decades. NAFLD is a multifactorial disease that follows a progressive course, ranging from simple fatty liver, nonalcoholic steatohepatitis (NASH) to liver cirrhosis and hepatocellular carcinoma (HCC). It is well established that aging induces pathological changes in liver and potentiates the occurrence and progression of NAFLD, HCC and other age-related liver diseases. Studies of senescent cells also indicate a pivotal engagement in the development of NAFLD via diverse mechanisms. Moreover, nicotinamide adenine dinucleotide (NAD+), silence information regulator protein family (sirtuins), and mechanistic target of rapamycin (mTOR) are three vital and broadly studied targets involved in aging process and NAFLD. Nevertheless, the crucial role of these aging-associated factors in aging-related NAFLD remains underestimated. Here, we reviewed the current research on the roles of aging, cellular senescence and three aging-related factors in the evolution of NAFLD to HCC, aiming at inspiring promising therapeutic targets for aging-related NAFLD and its progression.
Collapse
Affiliation(s)
- Yongyuan He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinghong Su
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengcheng Duan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyuan Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Basic Medicine, Kunming Medical University, China
| | - Yingting Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofei An
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ming He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| |
Collapse
|
14
|
Hou JY, Xu H, Cao GZ, Tian LL, Wang LH, Zhu NQ, Zhang JJ, Yang HJ. Multi-omics reveals Dengzhan Shengmai formulation ameliorates cognitive impairments in D-galactose-induced aging mouse model by regulating CXCL12/CXCR4 and gut microbiota. Front Pharmacol 2023; 14:1175970. [PMID: 37101548 PMCID: PMC10123283 DOI: 10.3389/fphar.2023.1175970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 04/28/2023] Open
Abstract
Dengzhan Shengmai (DZSM), a traditional Chinese medicine formulation, has been administered extensively to elderly individuals with cognitive impairment (CI). However, the underlying mechanisms by which Dengzhan Shengmai improves cognitive impairment remains unknown. This study aimed to elucidate the underlying mechanism of the effect of Dengzhan Shengmai on aging-associated cognitive impairment via a comprehensive combination of transcriptomics and microbiota assessment. Dengzhan Shengmai was orally administered to a D-galactose-induced aging mouse model, and evaluation with an open field task (OFT), Morris water maze (MWM), and histopathological staining was performed. Transcriptomics and 16S rDNA sequencing were applied to elucidate the mechanism of Dengzhan Shengmai in alleviating cognitive deficits, and enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (PCR), and immunofluorescence were employed to verify the results. The results first confirmed the therapeutic effects of Dengzhan Shengmai against cognitive defects; specifically, Dengzhan Shengmai improved learning and impairment, suppressed neuro loss, and increased Nissl body morphology repair. Comprehensive integrated transcriptomics and microbiota analysis indicated that chemokine CXC motif receptor 4 (CXCR4) and its ligand CXC chemokine ligand 12 (CXCL12) were targets for improving cognitive impairments with Dengzhan Shengmai and also indirectly suppressed the intestinal flora composition. Furthermore, in vivo results confirmed that Dengzhan Shengmai suppressed the expression of CXC motif receptor 4, CXC chemokine ligand 12, and inflammatory cytokines. This suggested that Dengzhan Shengmai inhibited CXC chemokine ligand 12/CXC motif receptor 4 expression and modulated intestinal microbiome composition by influencing inflammatory factors. Thus, Dengzhan Shengmai improves aging-related cognitive impairment effects via decreased CXC chemokine ligand 12/CXC motif receptor 4 and inflammatory factor modulation to improve gut microbiota composition.
Collapse
Affiliation(s)
- Jing-Yi Hou
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences and MEGAROBO, Beijing, China
- Postdoctoral Mobile Research Station of China Academy of Chinese Medicine Sciences, Beijing, China
| | - He Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guang-Zhao Cao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang-Liang Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-Han Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences and MEGAROBO, Beijing, China
- Postdoctoral Mobile Research Station of China Academy of Chinese Medicine Sciences, Beijing, China
| | - Nai-Qiang Zhu
- Postdoctoral Mobile Research Station of China Academy of Chinese Medicine Sciences, Beijing, China
| | - Jing-Jing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jing-Jing Zhang, ; Hong-Jun Yang,
| | - Hong-Jun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences and MEGAROBO, Beijing, China
- *Correspondence: Jing-Jing Zhang, ; Hong-Jun Yang,
| |
Collapse
|
15
|
Ji C, Wei C, Li M, Shen S, Zhang S, Hou Y, Wu Y. Bazi Bushen capsule attenuates cognitive deficits by inhibiting microglia activation and cellular senescence. PHARMACEUTICAL BIOLOGY 2022; 60:2025-2039. [PMID: 36263579 PMCID: PMC9590440 DOI: 10.1080/13880209.2022.2131839] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/16/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Bazi Bushen capsule (BZBS) has anti-ageing properties and is effective in enhancing memory. OBJECTIVE To find evidence supporting the mechanisms and biomarkers by which BZBS functions. MATERIALS AND METHODS Male C57BL/6J mice were randomly divided into five groups: normal, ageing, β-nicotinamide mononucleotide capsule (NMN), BZBS low-dose (LD-BZ) and BZBS high-dose (HD-BZ). The last four groups were subcutaneously injected with d-galactose (d-gal, 100 mg/kg/d) to induce the ageing process. At the same time, the LD-BZ, HD-BZ and NMN groups were intragastrically injected with BZBS (1 and 2 g/kg/d) and NMN (100 mg/kg/d) for treatment, respectively. After 60 days, the changes in overall ageing status, brain neuron morphology, expression of p16INK4a, proliferating cell nuclear antigen (PCNA), ionized calcium-binding adapter molecule 1 (Iba1), postsynaptic density protein 95 (PSD95), CD11b, Arg1, CD206, Trem2, Ym1 and Fizz1, and the senescence-associated secretory phenotype (SASP) factors were observed. RESULTS Compared with the mice in the ageing group, the HD-BZ mice exhibited obvious improvements in strength, endurance, motor coordination, cognitive function and neuron injury. The results showed a decrease in p16INK4a, Iba1 and the upregulation of PCNA, PSD95 among brain proteins. The brain mRNA exhibited downregulation of Iba1 (p < 0.001), CD11b (p < 0.001), and upregulation of Arg1 (p < 0.01), CD206 (p < 0.05), Trem2 (p < 0.001), Ym1 (p < 0.01), Fizz1 (p < 0.05) and PSD95 (p < 0.01), as well as improvement of SASP factors. CONCLUSIONS BZBS improves cognitive deficits via inhibition of cellular senescence and microglia activation. This study provides experimental evidence for the wide application of BZBS in clinical practice for cognitive deficits.
Collapse
Affiliation(s)
- Chuanyuan Ji
- School of Traditional Chinese Medicine & School of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
| | - Cong Wei
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, China
| | - Mengnan Li
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, China
| | - Shuang Shen
- School of Traditional Chinese Medicine & School of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shixiong Zhang
- School of Traditional Chinese Medicine & School of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
| | - Yunlong Hou
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, China
| | - Yiling Wu
- School of Traditional Chinese Medicine & School of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
16
|
Fagerli E, Escobar I, Ferrier FJ, Jackson CW, Perez-Lao EJ, Perez-Pinzon MA. Sirtuins and cognition: implications for learning and memory in neurological disorders. Front Physiol 2022; 13:908689. [PMID: 35936890 PMCID: PMC9355297 DOI: 10.3389/fphys.2022.908689] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Sirtuins are an evolutionarily conserved family of regulatory proteins that function in an NAD+ -dependent manner. The mammalian family of sirtuins is composed of seven histone deacetylase and ADP-ribosyltransferase proteins (SIRT1-SIRT7) that are found throughout the different cellular compartments of the cell. Sirtuins in the brain have received considerable attention in cognition due to their role in a plethora of metabolic and age-related diseases and their ability to induce neuroprotection. More recently, sirtuins have been shown to play a role in normal physiological cognitive function, and aberrant sirtuin function is seen in pathological cellular states. Sirtuins are believed to play a role in cognition through enhancing synaptic plasticity, influencing epigenetic regulation, and playing key roles in molecular pathways involved with oxidative stress affecting mitochondrial function. This review aims to discuss recent advances in the understanding of the role of mammalian sirtuins in cognitive function and the therapeutic potential of targeting sirtuins to ameliorate cognitive deficits in neurological disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Miguel A. Perez-Pinzon
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
17
|
Peng D, Qing X, Guan L, Li HY, Qiao L, Chen YB, Cai YF, Wang Q, Zhang SJ. Carnosine improves cognitive impairment through promoting SIRT6 expression and inhibiting ER stress in a diabetic encephalopathy model. Rejuvenation Res 2022; 25:79-88. [PMID: 35302398 DOI: 10.1089/rej.2022.0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Diabetic encephalopathy is one of complications of diabetes mellitus. Carnosine is a dipeptide composed of β-alanine and L-histidine. Study has shown that carnosine could ameliorate cognitive impairment in animal model with diabetes mellitus. However, the mechanism remains unclear. An animal model of type 2 diabetes (db/db mice) was used in this study. The animals were treated with 0.9 % saline or carnosine (100 mg/kg) for 8 weeks. Morris water maze was tested after drug administration. Oxidative stress-related factors malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX), and pro-inflammatory factors inducible nitric oxide synthase (iNOS) were measured. Synapse-related protein postsynapticdensity 95 (PSD95) and brain-derived neurotrophic factor (BDNF) were detected by western blot. Besides, the expressions of sirtuin 6 (SIRT6), binding immunoglobulin protein (BIP), protein kinase R-like endoplasmic reticulum kinase (PERK), phospho-protein kinase R-like endoplasmic reticulum kinase (P-PERK), inositol-requiring enzyme-1α (IRE1α), phospho-inositol-requiring enzyme-1α (P-IRE1α), activating transcription factor 6 (ATF6), C/EBP-homologous protein (CHOP) in the hippocampus of the brain were detected. The results showed that treatment with carnosine ameliorated cognitive impairment in db/db mice. Carnosine reduced neuronal oxidative stress damage and iNOS expression in db/db mice. Meanwhile, carnosine relieved neurodegeneration in the hippocampus of db/db mice. Furthermore, carnosine promoted the expression of SIRT6 and reduced the expressions of endoplasmic reticulum (ER) related factors (BIP, P-PERK, P-IRE1α, ATF6, CHOP). In conclusion, these data suggested that the protective effect of carnosine against diabetic encephalopathy might be related to SIRT6/ER stress pathway.
Collapse
Affiliation(s)
- Dong Peng
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Xia Qing
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Li Guan
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, China;
| | - Hong-Ying Li
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Lijun Qiao
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Yun-Bo Chen
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Ye-Feng Cai
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Qi Wang
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, China;
| | - Shi-Jie Zhang
- Guangzhou University of Chinese Medicine, 47879, Guangzhou University of Chinese Medicine, Guangzhou, China, 510006;
| |
Collapse
|