1
|
Fang Y, Liu J, Xin L, Jiang H, Wen J, Li X, Wang F, He M, Han Q. Xinfeng capsule inhibits lncRNA NONHSAT227927.1/TRAF2 to alleviate NF-κB-p65-induced immuno-inflammation in ankylosing spondylitis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117677. [PMID: 38160870 DOI: 10.1016/j.jep.2023.117677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ankylosing spondylitis (AS) is a chronic rheumatic disease known for its insidious and refractory symptoms, primarily associated with immuno-inflammation in its early stages, that affects the self-perception of patients (SPP). The exploration of long noncoding RNA (lncRNA) in immuno-inflammation of AS has garnered considerable interest. Additionally, the effectiveness of traditional Chinese medicine Xinfeng Capsule (XFC) in mitigating immuno-inflammation in AS has also been observed. However, the specific mechanisms still need to be characterized. AIM OF THE STUDY This study elucidated the mechanism of the lncRNA NONHSAT227927.1/TRAF2/NF-κB axis in the immuno-inflammation of AS and XFC in AS treatment. METHODS LncRNA NONHSAT227927.1 and mRNA expression were assessed utilizing real-time fluorescence quantitative PCR. Protein level was determined using Western blot, and cytokine expression was measured using ELISA. Furthermore, mass spectrometry was used to analyze the binding proteins of lncRNA and rescue experiments were conducted to validate the findings. Inconsistencies in clinical baseline data were addressed using propensity score matching. The association between the XFC effect and indicator changes was evaluated using the Apriori algorithm. RESULTS The study revealed a substantial elevation in the expression of lncRNA NONHSAT227927.1 and tumor necrosis factor receptor-associated factor 2 (TRAF2) in AS-peripheral blood mononuclear cells. Its expression was also notably reduced after XFC treatment. In addition to this, there was a positive correlation between lncRNA NONHSAT227927.1 and TRAF2 with clinical immuno-inflammatory indicators. On the other hand, they showed a negative association with the SPP indicators. In vitro experiments have demonstrated that lncRNA NONHSAT227927.1 activated the nuclear factor (NF)-κB-p65 pathway by promoting TRAF2 expression. This activation resulted in enhanced IL-6 and TNF-α levels and reduced IL-10 and IL-4 levels. Conversely, XFC decreased the expression of lncRNA NONHSAT227927.1 and TRAF2, inhibiting the stimulation of the NF-κB-p65 cascade and restoring balance to the cytokines. The association rule analysis results indicated a strong association between XFC and decreased levels of C-reactive protein, erythrocyte sedimentation rate, and immunoglobulin A. Furthermore, XFC was strongly associated with improved SPP indicators, including general health, vitality, mental health, and role-emotional. CONCLUSIONS LncRNA NONHSAT227927.1 plays a pro-inflammatory role in AS. XFC treatment may reverse lncRNA NONHSAT227927.1 to suppress TRAF2-mediated NF-κB-p65 activation, which in turn suppresses immuno-inflammation and improves SPP, thereby making XFC a promising candidate for therapeutic applications in AS management.
Collapse
Affiliation(s)
- Yanyan Fang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China; Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, 230038, Anhui, China.
| | - Jian Liu
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China; Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, 230038, Anhui, China.
| | - Ling Xin
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China; Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, 230038, Anhui, China.
| | - Hui Jiang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China; Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, 230038, Anhui, China.
| | - Jianting Wen
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China; Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, 230038, Anhui, China.
| | - Xu Li
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China; Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, 230038, Anhui, China.
| | - Fanfan Wang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China; Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, 230038, Anhui, China.
| | - Mingyu He
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China; Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, 230038, Anhui, China.
| | - Qi Han
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China; Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, 230038, Anhui, China.
| |
Collapse
|
2
|
Sun Y, Liu J, Wang J, He M, Chen X, Chen L. Network pharmacology integrated with experimental validation revealed the mechanism of Fengshi Gutong Capsule in the treatment of osteoarthritis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117261. [PMID: 37788787 DOI: 10.1016/j.jep.2023.117261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fengshi Gutong Capsule (FSGTC) is a commonly used Chinese medicine for the treatment of joint pain caused by osteoarthritis (OA). However, the mechanism of action of FSGTC for OA remains unclear. AIM OF THE STUDY This study aimed to explore the alleviating effects and potential mechanisms of action of FSGTC for OA through data mining, network pharmacology, and in vitro experiments. MATERIALS AND METHODS High-performance liquid chromatography (HPLC) was performed to establish the fingerprints of FSGTC and detect the components of FSGTC absorbed in the blood. The effects of FSGTC on inflammation, immunity, and liver and kidney functions in patients with OA were evaluated by mining clinical data. The potential targets and pathways of FSGTC were screened using network pharmacology. Subsequently, CCK-8 assay, flow cytometry, western blotting, RT-qPCR, ELISA, and immunofluorescence were performed in IL-1β-stimulated chondrocytes for further validation. RESULTS Eighty-seven common peaks and 10 components were identified using the HPLC fingerprints of 12 batches of samples, and the similarity was in the range of 0.973-0.998. Retrospective clinical analysis demonstrated a significant reduction in inflammatory response levels among patients with OA who received FSGTC treatment. Network pharmacology analysis revealed that FSGTC potentially targeted processes related to inflammation, oxidative stress, and apoptosis. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT), The nuclear factor-κB (NF-κB), and janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathways were predicted to be the main pathways involved in the therapeutic effects of FSGTC in OA. In vitro, FSGTC-containing serum aided the proliferation of chondrocytes stimulated by IL-1β, while concurrently mitigating apoptosis, suppressing the expression of inflammatory cytokines and oxidative molecules, and inhibiting the degradation of the chondrocyte extracellular matrix (ECM). CONCLUSIONS FSGTC alleviates the inflammatory response in patients with OA. This therapeutic effect was attributed to its anti-inflammatory and antioxidant properties, and its ability to promote IL-1β-induced chondrocyte proliferation, inhibit apoptosis, and prevent the degradation of extracellular matrix. These favorable results were associated with the inhibition of the PI3K/AKT, NF-κB, and JAK2/STAT3 signaling pathways.
Collapse
Affiliation(s)
- Yanqiu Sun
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, 230038, Anhui Province, China; Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui Province, China.
| | - Jian Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, 230038, Anhui Province, China; Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui Province, China.
| | - Jue Wang
- Sinopharm Group Jingfang (Anhui) Pharmaceutical Co., Ltd, Xuancheng City, 242000, Anhui Province, China.
| | - Mingyu He
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, 230038, Anhui Province, China; Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui Province, China.
| | - Xiaolu Chen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, 230038, Anhui Province, China; Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui Province, China.
| | - Li Chen
- Pharmaceutical Department, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, 230038, Anhui Province, China.
| |
Collapse
|
3
|
Wang Y, Li D, Lv Z, Feng B, Li T, Weng X. Efficacy and safety of Gutong Patch compared with NSAIDs for knee osteoarthritis: A real-world multicenter, prospective cohort study in China. Pharmacol Res 2023; 197:106954. [PMID: 37832860 DOI: 10.1016/j.phrs.2023.106954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
The Gutong Patch (GTP) is common in clinical practice for bone diseases. This study compared the efficacy and safety of GTP and nonsteroidal anti-inflammatory drugs (NSAIDs) for KOA patients from 35 medical centers assigned to GTP, selective COX-2 inhibitor (SCI), GTP + SCI, non-selective COX-2 inhibitor (NSCI), and GTP + NSCI groups. The visual analog scale (VAS) pain score, EuroQol-VAS, EuroQol 5D-3 L, time to articular pain relief / disappearance, and joint motion recovery were the efficacy assessments. Safety assessments included contact dermatitis, gastrointestinal disorders, etc. The p-value < 0.05 was considered statistically significant. After statistical analysis, the SCI and GTP + SCI groups showed better improvement of VAS than the GTP group; the time to articular pain relief in the NSCI group was shorter than that in GTP and SCI group; the time to joint motion recovery in the GTP + NSCI group was longer than that in the SCI group. Additionally, the improvement of the quality of life in all groups was significant after treatments. While the incidence of gastrointestinal adverse events in the NSAIDs group was higher than that in the GTP and GTP + NSAIDs groups. GTP and NSAIDs are effective for KOA patients, and GTP is more suitable for KOA patients with cardiovascular and gastrointestinal comorbidities. This study was approved by the Ethics Committee at Peking Union Medical College Hospital (HS-1766) and registered in the Chinese Clinical Trial Registry (ChiCTR2100046391).
Collapse
Affiliation(s)
- Yingjie Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Dandan Li
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Zehui Lv
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Bin Feng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Xisheng Weng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
4
|
Li W, Yu L, Li W, Ge G, Ma Y, Xiao L, Qiao Y, Huang W, Huang W, Wei M, Wang Z, Bai J, Geng D. Prevention and treatment of inflammatory arthritis with traditional Chinese medicine: Underlying mechanisms based on cell and molecular targets. Ageing Res Rev 2023; 89:101981. [PMID: 37302756 DOI: 10.1016/j.arr.2023.101981] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/25/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Inflammatory arthritis, primarily including rheumatoid arthritis, osteoarthritis and ankylosing spondylitis, is a group of chronic inflammatory diseases, whose general feature is joint dysfunction with chronic pain and eventually causes disability in older people. To date, both Western medicine and traditional Chinese medicine (TCM) have developed a variety of therapeutic methods for inflammatory arthritis and achieved excellent results. But there is still a long way to totally cure these diseases. TCM has been used to treat various joint diseases for thousands of years in Asia. In this review, we summarize clinical efficacies of TCM in inflammatory arthritis treatment after reviewing the results demonstrated in meta-analyses, systematic reviews, and clinical trials. We pioneered taking inflammatory arthritis-related cell targets of TCM as the entry point and further elaborated the molecular targets inside the cells of TCM, especially the signaling pathways. In addition, we also briefly discussed the relationship between gut microbiota and TCM and described the role of drug delivery systems for using TCM more accurately and safely. We provide updated and comprehensive insights into the clinical application of TCM for inflammatory arthritis treatment. We hope this review can guide and inspire researchers to further explore mechanisms of the anti-arthritis activity of TCM and make a great leap forward in comprehending the science of TCM.
Collapse
Affiliation(s)
- Wenhao Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Wenming Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Gaoran Ge
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Yong Ma
- Department of Integrated Chinese and Western Medicine, School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Long Xiao
- Translational Medical Innovation Center, Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, Jiangsu, China
| | - Yusen Qiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, Anhui, China
| | - Wenli Huang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230031, Anhui, China
| | - Minggang Wei
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Zhirong Wang
- Translational Medical Innovation Center, Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, Jiangsu, China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, Anhui, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
5
|
Guo W, Liu Y, Li J. Imrecoxib versus celecoxib as postoperative analgesia for patients receiving arthroscopic knee surgery: a randomized, controlled, non-inferiority study. Inflammopharmacology 2022; 30:875-881. [PMID: 35445990 DOI: 10.1007/s10787-022-00938-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/13/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Imrecoxib is a novel cyclooxygenase-2 inhibitor independently developed in China, which exhibits a good efficacy and tolerance in orthopedic disorders. The current study aimed to further compare its efficacy and safety with celecoxib as postoperative analgesia in arthroscopic knee surgery (AKS). METHODS Patients receiving AKS were enrolled and randomly assigned to imrecoxib (n = 64) and celecoxib (n = 62) group to receive analgesia for 72 h after surgery. Pain at rest and movement, pethidine consumption, patient's satisfaction, Lysholm score, and adverse events were assessed after AKS. Meanwhile the upper limit of 95% CI of pain-score mean difference (MD) between imrecoxib and celecoxib was calculated, then, the non-inferiority was defined if the all-time-point upper limits of 95% CI less than 1. RESULTS Imrecoxib was non-inferior to celecoxib for alleviating pain at rest (upper limit of 95% CI of MD ranging from 0.443 to 0.782, all time-point values less than 1); as well as for attenuating pain at movement (upper limit of 95% CI of MD ranging from 0.398 to 0.582, all time-point values less than 1). Moreover, rescue analgesia rate (P = 0.583), pethidine consumption (P = 0.454), patient's satisfaction at 72 h (P = 0.408), and Lysholm score at M3 (P = 0.776) were of no difference between imrecoxib group and celecoxib group. Additionally, the main adverse events in two groups were nausea (P = 0.425), constipation (P = 1.000), vomiting (P = 0.715), headache (P = 1.000), and dizziness (P = 0.667), which were mild and manageable. CONCLUSION Imrecoxib is non-inferior to celecoxib in postoperative analgesia and exhibits an acceptable tolerance in patients undergoing AKS.
Collapse
Affiliation(s)
- Wei Guo
- Department of Anesthesiology, Daqing Oil Field General Hospital, Daqing, 163000, Heilongjiang, China
| | - Ying Liu
- Department of Anesthesiology, Daqing Oil Field General Hospital, Daqing, 163000, Heilongjiang, China
| | - Jingjing Li
- Department of Anesthesiology, Southern University of Science and Technology Hospital, No. 6019 Liuxian Avenue, Xili Street, Nanshan District, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|