1
|
Hao Z, Lu C, Wang M, Li S, Wang Y, Yan Y, Ding Y, Li Y. Systematic investigation on the pharmaceutical components and mechanism of the treatment against zebrafish enteritis by Sporisorium reilianum f. sp. reilianum based on histomorphology and pathology. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118574. [PMID: 39019416 DOI: 10.1016/j.jep.2024.118574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sporisorium reilianum f. sp. reilianum (SSR) is a fungus isolated from a medicinal plant. Recorded in the "Compilation of National Chinese Herbal Medicine" and "Compendium of Materia Medica," it was used for preventing and treating intestinal diseases, enhancing immune function, etc. In this study, we investigated the chemical composition and bioactivity of SSR. Network pharmacology is utilized for predictive analysis and targeting pathway studies of anti-inflammatory bowel disease (IBD) mechanisms. Pharmacological activity against enteritis is evaluated using zebrafish (Danio rerio) as model animals. AIM OF THE STUDY To reveal the treatment of IBD by SSR used as traditional medicine and food, based on molecular biology identification of SSR firstly, and the pharmaceutical components & its toxicities, biological activity & mechanism of SSR were explored. MATERIALS AND METHODS Using chromatography and zebrafish IBD model induced by dextran sulfate sodium (DSS), nine compounds were first identified by nuclear magnetic resonance (NMR). The toxicity of ethanol crude extract and monomers from SSR were evaluated by evaluating the phenotypic characteristics of zebrafish embryos and larvae, histomorphology and pathology of the zebrafish model guided by network pharmacology were conducted. RESULTS The zebrafish embryo development did not show toxicity. The molecular docking and enrichment pathway results predicted that metabolites 3 & 4 (N-trans- feruloyl-3-methoxytyramine & N-cis-feruloyl-3-methoxytyramine) and 7 & 8 (4-N- trans-p-coumaroyltyramine & 4-N-cis--p-coumaroyltyramine) have anti-enteritis activities. This paper lays an experimental foundation for developing new drugs and functional foods.
Collapse
Affiliation(s)
- Zezhuang Hao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Chang Lu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Mengtong Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Shuxia Li
- Jinmanwu Agricultural Science and Technology Development Co., LTD., Liaoyuan, 136200, China.
| | - Ye Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Yuli Yan
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
2
|
Yong GY, Muniandy N, Beishenaliev A, Lau BF, Kue CS. Anti-angiogenic and anti-tumour activities of Lignosus rhinocerus (Cooke) Ryvarden water extracts on HCT116 human colorectal carcinoma cells implanted in chick embryos. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118213. [PMID: 38636576 DOI: 10.1016/j.jep.2024.118213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/29/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The sclerotium of Lignosus rhinocerus (Cooke) Ryvarden is used by the local communities in Southeast Asia and China to treat cancer, asthma, fever, and other ailments based on traditional knowledge. The sclerotial water extracts were previously reported to exhibit cytotoxic, apoptotic, and immunomodulatory activities - providing a scientific basis for its use in treating cancer; however, there is still a lack of evidence on its potential anti-angiogenic activity. AIM OF THE STUDY This study aimed to investigate the toxicity, anti-angiogenic, and anti-tumour activities of the hot-water and cold-water extracts of L. rhinocerus using HCT116 human colorectal carcinoma cells implanted in the chick chorioallantoic membrane (CAM) model. MATERIALS AND METHODS The toxicity of L. rhinocerus extracts towards the chick embryos was determined 24 h post-treatment. The anti-angiogenic activity of the extracts was then investigated at 0.1-10 μg/embryo (6.7-670 μg/mL) at targeted blood vessels. The anti-tumour effect of selected extracts against the HCT116 human colorectal carcinoma cells xenografted onto the chick embryos was also studied. RESULTS The cold-water extracts of L. rhinocerus displayed strong in ovo toxicity (LC50: 1.2-37.7 μg/mL) while the hot-water extracts are non-toxic up to 670 μg/mL. Among the extracts, the hot-water extracts demonstrated the highest anti-angiogenic activity with 44.0 ± 17.7% reduction of capillary diameter (relative to the saline-treated control). Moreover, treatment of the HCT116 cells xenografted onto the chick embryos with the hot-water extracts resulted in smaller tumour size and lower number of blood vessels compared to the saline-treated control. CONCLUSIONS The hot-water extracts of L. rhinocerus sclerotium demonstrated anti-angiogenic and anti-tumour activities but most of the cold-water extracts at similar concentrations were devoid of that. Our findings provide further scientific validation of the medicinal use of the sclerotium in treating cancer and thus, expanding our knowledge on the possible mechanism of its anti-cancer effect apart from direct cytotoxicity, induction of apoptosis and immunomodulation that have been studied thus far.
Collapse
Affiliation(s)
- Gong Yi Yong
- Faculty of Health and Life Sciences, Management and Science University, Seksyen 13, 40100, Shah Alam, Selangor, Malaysia
| | - Nishalini Muniandy
- Faculty of Health and Life Sciences, Management and Science University, Seksyen 13, 40100, Shah Alam, Selangor, Malaysia
| | - Adilet Beishenaliev
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Beng Fye Lau
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Chin Siang Kue
- Faculty of Health and Life Sciences, Management and Science University, Seksyen 13, 40100, Shah Alam, Selangor, Malaysia.
| |
Collapse
|
3
|
Ren S, Zhang Z, Song Q, Ren Z, Xiao J, Li L, Zhang Q. Metabolic exploration of the developmental abnormalities and neurotoxicity of Esculentoside B, the main toxic factor in Phytolaccae radix. Food Chem Toxicol 2023; 176:113777. [PMID: 37080526 DOI: 10.1016/j.fct.2023.113777] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/22/2023]
Abstract
P: radix is a perennial herb, and its extracts have various biological properties that make it a potential candidate for the treatment of tumors, edema, and lymphatic stasis. However, the main factor contributing to its toxicity are not clear. Here, we used a zebrafish toxicological model to study the main toxicity factor of P. radix and explore the potential mechanisms involved. The results revealed that Esculentoside B was the major toxic factor of P. radix. Exposure of zebrafish larvae to Esculentoside B caused developmental abnormalities, neurotoxicity and altered locomotor behavior. The combination of AChE activity and the expression levels of genes relevant to CNS development demonstrated that Esculentoside B is neurotoxic to zebrafish larvae, impairs their CNS development, and that AChE may be a toxic target of Esculentoside B. Metabolomic analysis has revealed that Esculentoside B exposure can disrupt D-Amino acid metabolism, protein export, autophagy, and mTOR signaling pathways in zebrafish larvae. These findings provide insights into the molecular mechanisms underlying EsB-induced neurotoxicity in zebrafish, which can facilitate further research and development of P. radix for safe consumption.
Collapse
Affiliation(s)
- Sipei Ren
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Zhichao Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Qinyang Song
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Zhaoyang Ren
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Jian Xiao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China.
| | - Luqi Li
- Life Science Research Core Services, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shanxi, China; Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China.
| |
Collapse
|
4
|
Camilo CJ, Leite DOD, da S Mendes JW, Dantas AR, de Carvalho NKG, Castro JWG, Salazar GJT, Ferreira MKA, de Meneses JEA, da Silva AW, Dos Santos HS, Tavares JF, Silva JPRE, Rodrigues FFG, Cheon C, Kim B, da Costa JGM. Analysis toxicity by different methods and anxiolytic effect of the aqueous extract Lippia sidoides Cham. Sci Rep 2022; 12:20626. [PMID: 36450779 PMCID: PMC9712538 DOI: 10.1038/s41598-022-23999-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Lippia sidoides Cham. (Verbenaceae) is a species often mentioned in traditional medicine due to the medicinal properties attributed to its leaves, which include antibacterial, antifungal, acaricidal and antioxidant. Several of these actions have been scientifically proven, according to reports in the literature; however, little is known about toxicological aspects of this plant. This work included studies to determine the chemical composition and toxicity tests, using several methods aiming to evaluate the safety for use of the aqueous extract of L. sidoides leaves, in addition, the anxiolytic effect on adult zebrafish was investigated, thus contributing to the pharmacological knowledge and traditional medicine concerning the specie under study. The chemical profile was determined by liquid chromatography coupled to mass spectrometry-HPLC/MS with electrospray ionization. Toxicity was evaluated by zebrafish, Drosophila melanogaster, blood cells, and Artemia salina models. 12 compounds belonging to the flavonoid class were identified. In the toxicity assays, the observed results showed low toxicity of the aqueous extract in all tests performed. In the analysis with zebrafish, the highest doses of the extract were anxiolytic, neuromodulating the GABAa receptor. The obtained results support the safe use of the aqueous extract of L. sidoides leaves for the development of new drugs and for the use by populations in traditional medicine.
Collapse
Affiliation(s)
- Cicera J Camilo
- Postgraduate Program in Ethnobiology and Nature Conservation, Federal Rural University of Pernambuco, R. Dr. Miguel, Parnamirim, PE, 56163-000, Brazil
| | - Débora O D Leite
- Northeast Biotechnology Network-RENORBIO, Graduate Program in Biotechnology, State University of Ceará, Fortaleza, Ceará, 60714-903, Brazil
| | - Johnatan W da S Mendes
- Postgraduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará, 63105-00, Brazil
| | - Alexandro R Dantas
- Natural Products Research Laboratory, Regional University of Cariri, Crato, Ceará, 63105-00, Brazil
| | - Natália K G de Carvalho
- Natural Products Research Laboratory, Regional University of Cariri, Crato, Ceará, 63105-00, Brazil
| | - José W G Castro
- Graduate Program in Biological Diversity and Natural Resources, Regional University of Cariri, Crato, Brazil
| | - Gerson J T Salazar
- Postgraduate Program in Ethnobiology and Nature Conservation, Federal Rural University of Pernambuco, R. Dr. Miguel, Parnamirim, PE, 56163-000, Brazil
| | | | | | - Antonio Wlisses da Silva
- Northeast Biotechnology Network-RENORBIO, Graduate Program in Biotechnology, State University of Ceará, Fortaleza, Ceará, 60714-903, Brazil
| | - Helcio S Dos Santos
- Postgraduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará, 63105-00, Brazil
| | - Josean F Tavares
- Multiuser Laboratory of Characterization and Analysis, Federal University of Paraíba, João Pessoa, 58051-900, Brazil
| | - Joanda P R E Silva
- Multiuser Laboratory of Characterization and Analysis, Federal University of Paraíba, João Pessoa, 58051-900, Brazil
| | - Fabiola F G Rodrigues
- Graduate Program in Biological Diversity and Natural Resources, Regional University of Cariri, Crato, Brazil
| | - Chunhoo Cheon
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Kyungheedae-Ro 26 Dongdaemun-Gu, Seoul, 05254, South Korea
| | - Bonglee Kim
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Kyungheedae-Ro 26 Dongdaemun-Gu, Seoul, 05254, South Korea.
| | - José Galberto Martins da Costa
- Northeast Biotechnology Network-RENORBIO, Graduate Program in Biotechnology, State University of Ceará, Fortaleza, Ceará, 60714-903, Brazil.
- Postgraduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará, 63105-00, Brazil.
- Natural Products Research Laboratory, Regional University of Cariri, Crato, Ceará, 63105-00, Brazil.
| |
Collapse
|
5
|
Wang Q, Li Y, Chen Y, Tian L, Gao D, Liao H, Kong C, Chen X, Junaid M, Wang J. Toxic effects of polystyrene nanoplastics and polybrominated diphenyl ethers to zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2022; 126:21-33. [PMID: 35597397 DOI: 10.1016/j.fsi.2022.05.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Nanoplastics (NPs) are good carriers of persistent organic pollutants (POPs) such as polybrominated diphenyl ethers (PBDEs), and can alter their bioavailability and toxic impacts to aquatic organisms. This study highlights the single and combined toxic effects of polystyrene nanoplastics (PS-NPs) and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47, one of the dominant congeners of PBDEs) on zebrafish embryos after an exposure duration of up to 120 hpf. Results showed that PS-NPs and BDE-47 co-exposure exacerbated the morphological deformities in terms of pericardial edema, yolk sac edema and curved tail in zebrafish larvae. Compared to BDE-47 single exposure, the combined exposure caused lower survival rates, shorter body lengths, and accelerated spontaneous movements. Further, PS-NPs were quickly aggregated on the surface of the embryonic chorions covered almost the entire membrane at 12 and 48 hpf, and concentration dependent accumulation was also found in the brain, mouth, trunk, gills, heart, liver and gastrointestinal tract at the larval stages. During the recovery period (7 days), PS-NPs were released from all the organs, with the highest elimination from the gastrointestinal tract. Histopathological examination revealed that co-exposure caused greater damage to retinal structures, muscle fibers and cartilage tissues. Responses of hypothalamic-pituitary-thyroid axis (CRH, TSHβ, NIS, TTR, Dio2, TG, TRα and TRβ) and reproduction (Esr2 and Vtg1) related genes were also investigated, and results showed that the co-exposure induced more significant upregulated expressions of TSHβ, TG, Doi 2, and TRβ, compared to BDE-47 single exposure. In conclusion, co-exposure to NPs and BDE-47 exacerbated developmental and thyroid toxicity in zebrafish, generally elucidating the toxicological effects mediated by complex chemical interactions between NPs with POPs in the freshwater environment.
Collapse
Affiliation(s)
- Qiuping Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yizheng Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yurou Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Liyan Tian
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Chunmiao Kong
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xikun Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, 530007, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510006, China.
| |
Collapse
|