1
|
Dong S, Zhang JY, Zhao JL, Li GQ, Yan BX, Lv CN, Yuan JZ, Lu JC. Three new phenols and one new lignan from Clematis terniflora var. manshurica (Rupr.) Ohwi with their anti-inflammatory activity. Fitoterapia 2024; 177:106043. [PMID: 38801893 DOI: 10.1016/j.fitote.2024.106043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Three undescribed phenols, mandshusica C-E (1-3) and a new lignan, mandshusica F (5), along with six known compounds (4, 6-10) were isolated from the roots and rhizomes of Clematis terniflora var. manshurica (Rupr.) Ohwi. Their structures were elucidated by extensive spectroscopic analysis as well as NMR and ECD calculations. Moreover, the possible biosynthetic pathways of compounds 1-3 were also discussed. All compounds were evaluated for their anti-inflammatory activities in LPS-induced RAW 264.7 cells. Compounds 1, 3, 4 significantly reduced the levels of NO and TNF-α, while compounds 2 and 8 significantly inhibited NO production in LPS-induced RAW264.7 cells.
Collapse
Affiliation(s)
- Sheng Dong
- Department of Pharmaceutical Botany and Authentication of TCM, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jing-Yu Zhang
- Department of Pharmaceutical Botany and Authentication of TCM, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jia-Long Zhao
- Department of Pharmaceutical Botany and Authentication of TCM, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guo-Qiang Li
- Department of Pharmaceutical Botany and Authentication of TCM, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bing-Xin Yan
- Department of Pharmaceutical Botany and Authentication of TCM, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chong-Ning Lv
- Department of Pharmaceutical Botany and Authentication of TCM, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiu-Zhi Yuan
- Department of Pharmaceutical Botany and Authentication of TCM, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China..
| | - Jin-Cai Lu
- Department of Pharmaceutical Botany and Authentication of TCM, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China..
| |
Collapse
|
2
|
Yang YN, Zhan JG, Cao Y, Wu CM. From ancient wisdom to modern science: Gut microbiota sheds light on property theory of traditional Chinese medicine. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:413-444. [PMID: 38937158 DOI: 10.1016/j.joim.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
The property theory of traditional Chinese medicine (TCM) has been practiced for thousands of years, playing a pivotal role in the clinical application of TCM. While advancements in energy metabolism, chemical composition analysis, machine learning, ion current modeling, and supercritical fluid technology have provided valuable insight into how aspects of TCM property theory may be measured, these studies only capture specific aspects of TCM property theory in isolation, overlooking the holistic perspective inherent in TCM. To systematically investigate the modern interpretation of the TCM property theory from multidimensional perspectives, we consulted the Chinese Pharmacopoeia (2020 edition) to compile a list of Chinese materia medica (CMM). Then, using the Latin names of each CMM and gut microbiota as keywords, we searched the PubMed database for relevant research on gut microbiota and CMM. The regulatory patterns of different herbs on gut microbiota were then summarized from the perspectives of the four natures, the five flavors and the meridian tropism. In terms of the four natures, we found that warm-natured medicines promoted the colonization of specific beneficial bacteria, while cold-natured medicines boosted populations of some beneficial bacteria while suppressing pathogenic bacteria. Analysis of the five flavors revealed that sweet-flavored and bitter-flavored CMMs positively influenced beneficial bacteria while inhibiting harmful bacteria. CMMs with different meridian tropism exhibited complex modulative patterns on gut microbiota, with Jueyin (Liver) and Taiyin (Lung) meridian CMMs generally exerting a stronger effect. The gut microbiota may be a biological indicator for characterizing the TCM property theory, which not only enhances our understanding of classic TCM theory but also contributes to its scientific advancement and application in healthcare. Please cite this article as: Yang YN, Zhan JG, Cao Y, Wu CM. From ancient wisdom to modern science: Gut microbiota sheds light on property theory of traditional Chinese medicine. J Integr Med 2024; 22(4): 413-445.
Collapse
Affiliation(s)
- Ya-Nan Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jia-Guo Zhan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Cao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chong-Ming Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
3
|
Shao P, Dong S, Mu LT, Han L, Lv CN, Yuan JZ, Lu JC. Two new anti-inflammatory compounds from the roots and rhizomes of Clematis terniflora var . manshurica (Rupr.) Ohwi. Nat Prod Res 2024; 38:1874-1881. [PMID: 37395431 DOI: 10.1080/14786419.2023.2227912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
Two new compounds named mandshurica A (1) and mandshurica B (2), together with four known lignans (3-6) were isolated from the roots and rhizomes of Clematis terniflora var. manshurica (Rupr.) Ohwi. The structures of the new compounds were elucidated by HR-ESI-MS, 1D and 2D NMR spectroscopy. Moreover, the anti-inflammatory activity of compounds 1 and 2 were evaluated against lipopolysaccharide-induced mouse macrophage RAW264.7 cells. Compounds 1 and 2 displayed significant inhibitory effect on NO production, and compound 2 exhibited obvious inhibition on the pro-inflammatory cytokines TNF-α. Both new compounds showed potential anti-inflammatory activity.
Collapse
Affiliation(s)
- Ping Shao
- Department of Pharmaceutical Botany and Authentication of TCM, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Research and Development Center, NERC for the Pharmaceutics of Traditional Chinese Medicines, Benxi, China
| | - Sheng Dong
- Department of Pharmaceutical Botany and Authentication of TCM, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Lin-Tong Mu
- Department of Pharmaceutical Botany and Authentication of TCM, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Ling Han
- Research and Development Center, NERC for the Pharmaceutics of Traditional Chinese Medicines, Benxi, China
| | - Chong-Ning Lv
- Department of Pharmaceutical Botany and Authentication of TCM, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jiu-Zhi Yuan
- Department of Pharmaceutical Botany and Authentication of TCM, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jin-Cai Lu
- Department of Pharmaceutical Botany and Authentication of TCM, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
4
|
Chen S, Zeng J, Li R, Zhang Y, Tao Y, Hou Y, Yang L, Zhang Y, Wu J, Meng X. Traditional Chinese medicine in regulating macrophage polarization in immune response of inflammatory diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117838. [PMID: 38310986 DOI: 10.1016/j.jep.2024.117838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Numerous studies have demonstrated that various traditional Chinese medicines (TCMs) exhibit potent anti-inflammatory effects against inflammatory diseases mediated through macrophage polarization and metabolic reprogramming. AIM OF THE STUDY The objective of this review was to assess and consolidate the current understanding regarding the pathogenic mechanisms governing macrophage polarization in the context of regulating inflammatory diseases. We also summarize the mechanism action of various TCMs on the regulation of macrophage polarization, which may contribute to facilitate the development of natural anti-inflammatory drugs based on reshaping macrophage polarization. MATERIALS AND METHODS We conducted a comprehensive review of recently published articles, utilizing keywords such as "macrophage polarization" and "traditional Chinese medicines" in combination with "inflammation," as well as "macrophage polarization" and "inflammation" in conjunction with "natural products," and similar combinations, to search within PubMed and Google Scholar databases. RESULTS A total of 113 kinds of TCMs (including 62 components of TCMs, 27 TCMs as well as various types of extracts of TCMs and 24 Chinese prescriptions) was reported to exert anti-inflammatory effects through the regulation of key pathways of macrophage polarization and metabolic reprogramming. CONCLUSIONS In this review, we have analyzed studies concerning the involvement of macrophage polarization and metabolic reprogramming in inflammation therapy. TCMs has great advantages in regulating macrophage polarization in treating inflammatory diseases due to its multi-pathway and multi-target pharmacological action. This review may contribute to facilitate the development of natural anti-inflammatory drugs based on reshaping macrophage polarization.
Collapse
Affiliation(s)
- Shiyu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiuseng Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Rui Li
- The Affiliated Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, PR China
| | - Yingrui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yiwen Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Ya Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Lu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yating Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiasi Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
5
|
Li Q, Chen Y, Liu H, Tian Y, Yin G, Xie Q. Targeting glycolytic pathway in fibroblast-like synoviocytes for rheumatoid arthritis therapy: challenges and opportunities. Inflamm Res 2023; 72:2155-2167. [PMID: 37940690 DOI: 10.1007/s00011-023-01807-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by hyperplastic synovium, pannus formation, immune cell infiltration, and potential articular cartilage damage. Notably, fibroblast-like synoviocytes (FLS), especially rheumatoid arthritis fibroblast-like synoviocytes (RAFLS), exhibit specific overexpression of glycolytic enzymes, resulting in heightened glycolysis. This elevated glycolysis serves to generate ATP and plays a pivotal role in immune regulation, angiogenesis, and adaptation to hypoxia. Key glycolytic enzymes, such as hexokinase 2 (HK2), phosphofructose-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), and pyruvate kinase M2 (PKM2), significantly contribute to the pathogenic behavior of RAFLS. This increased glycolysis activity is regulated by various signaling pathways. MATERIALS AND METHODS A comprehensive literature search was conducted to retrieve relevant studies published from January 1, 2010, to the present, focusing on RAFLS glycolysis, RA pathogenesis, glycolytic regulation pathways, and small-molecule drugs targeting glycolysis. CONCLUSION This review provides a thorough exploration of the pathological and physiological characteristics of three crucial glycolytic enzymes in RA. It delves into their putative regulatory mechanisms, shedding light on their significance in RAFLS. Furthermore, the review offers an up-to-date overview of emerging small-molecule candidate drugs designed to target these glycolytic enzymes and the upstream signaling pathways that regulate them. By enhancing our understanding of the pathogenic mechanisms of RA and highlighting the pivotal role of glycolytic enzymes, this study contributes to the development of innovative anti-rheumatic therapies.
Collapse
Affiliation(s)
- Qianwei Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuehong Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yunru Tian
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Geng Yin
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.
- Department of General Practice, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Liu Y, Li H, Chen L, Zhao H, Liu J, Gong S, Ma D, Chen C, Zeng S, Long H, Ren W. Mechanism and Pharmacodynamic Substance Basis of Raw and Wine-Processed Evodia rutaecarpa on Smooth Muscle Cells of Dysmenorrhea Mice. Pain Res Manag 2023; 2023:7711988. [PMID: 37305097 PMCID: PMC10250099 DOI: 10.1155/2023/7711988] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
Objectives Evodia rutaecarpa (ER) is a well-known herbal Chinese medicine traditionally used for analgesia in dysmenorrhea, headaches, abdominal pain, etc. Notably, the analgesic effect of wine-processed Evodia rutaecarpa (PER) was more potent than that of raw ER. This research aimed to investigate the mechanism and pharmacodynamic substance basis of raw ER and PER on smooth muscle cells of dysmenorrhea mice. Methods Metabolomics methods based on UPLC-Q-TOF-MS were utilized to analyse the differential components of ER before and after wine processing. Afterwards, the uterine smooth muscle cells were isolated from the uterine tissue of dysmenorrhea and normal mice. The isolated dysmenorrhea uterine smooth muscle cells were randomly divided into four groups: model group, 7-hydroxycoumarin group (1 mmol/L), chlorogenic acid (1 mmol/L), and limonin (50 μmol/L). The normal group consisted of the isolated normal mouse uterine smooth muscle cells, which were repeated 3 times in each group. The cell contraction and the expression of P2X3 and Ca2+ in vitro were determined using immunofluorescence staining and laser confocal; ELISA was used for detection of PGE2, ET-1, and NO content after 7-hydroxycoumarin, chlorogenic acid, and limonin administered for 24 h. Results The metabolomics results suggested that seven differential compounds were identified in the extracts of raw ER and PER, including chlorogenic acid, 7-hydroxycoumarin, hydroxy evodiamine, laudanosine, evollionines A, limonin, and 1-methyl-2-[(z)-4-nonenyl]-4 (1H)-quinolone. The in vitro results showed that 7-hydroxycoumarin, chlorogenic acid, and limonin were able to inhibit cell contraction and PGE2, ET-1, P2X3, and Ca2+ in dysmenorrhea mouse uterine smooth muscle cells and increase the content of NO. Conclusion Our finding suggested that the compounds of the PER were different from those of the raw ER, and 7-hydroxycoumarin, chlorogenic acid, and limonin could improve dysmenorrhea in mice whose uterine smooth muscle cell contraction was closed with endocrine factors and P2X3-Ca2+ pathway.
Collapse
Affiliation(s)
- Yeqian Liu
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| | - Hong Li
- Department of Pharmacy, The Second People's Hospital of Anhui Province, No. 1868 Dangshan Road, Hefei, Anhui Province, China
| | - Lei Chen
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| | - Hongxia Zhao
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| | - Jian Liu
- Center for Medical Research and Innovation, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| | - Shan Gong
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| | - Danfeng Ma
- Department of Pharmacy, The Children's Hospital of Hunan Province, No. 86 Ziyuan Road, Changsha, Hunan Province, China
| | - Chunming Chen
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| | - Shuiqing Zeng
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| | - Hongping Long
- Center for Medical Research and Innovation, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| | - Weiqiong Ren
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| |
Collapse
|
7
|
Zhou H, Huang L, Zhan K, Liu X. Wenhua Juanbi Recipe Attenuates Rheumatoid Arthritis via Inhibiting miRNA-146a-Mediated Autophagy. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1768052. [PMID: 36440364 PMCID: PMC9683957 DOI: 10.1155/2022/1768052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 08/23/2023]
Abstract
Background Wenhua Juanbi Recipe (WJR) is widely used for the treatment of rheumatoid arthritis (RA) in China. However, its mechanism of action remains unclear. This study was designed to investigate the potential therapeutic effects of WJR on the proliferation and apoptosis of synovial fibroblasts in RA and its efficacy in inhibiting miRNA-146a-mediated cellular autophagy. Methods A collagen-induced arthritis (CIA) Wistar rat model was established. The model rats were administered WJR or methotrexate (MTX) to assess the therapeutic effect of the drugs. The chemical components of WJR were analyzed using UPLC-Q/TOF-MS. Histological changes; miRNA-146a, ATG5, ATG7, ATG12, Beclin1, LC3II, Bax, and Bcl2 expression; synovial apoptosis; and cellular proliferation were assessed. Primary synovial fibroblasts (FLS) were cultured in vitro using tissue block and transfected with miRNA-146a; an autophagy inducer was added to FLS, inhibiting the PI3K/AKT/mTOR pathway. FLS were cocultured with WJR-containing serum to observe the effects of miRNA-146a-mediated autophagy via the PI3K/AKT/mTOR pathway on CIA-affected rats. Results Forty and thirty-one compounds were identified in WJR in the positive and negative ion modes, respectively. WJR significantly reduced toe swelling, arthritis scores, and expression of miRNA-146a and autophagy genes (ATG5, ATG7, ATG12, Beclin1, LC32, and Bcl2). Moreover, Bax expression, apoptosis, and attenuated proliferation were observed in rats. WJR could, therefore, regulate autophagy by influencing the miRNA-146a-mediated PI3K/AKT/mTOR pathway, which induces apoptosis and proliferation of FLS. Conclusion WJR can inhibit autophagy, apoptosis, and proliferation in a CIA rat model by inhibiting the miRNA-146a-mediated PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Haili Zhou
- Second Clinical College, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang 310000, China
| | - Liuyun Huang
- Second Clinical College, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang 310000, China
| | - Kuijun Zhan
- Second Clinical College, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang 310000, China
| | - Xide Liu
- Department of Arthropathy, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
8
|
Guo S, Liu Y, Li Z, He M, Wu W. The complete chloroplast genome sequence of Clematis chinensis Osbeck. MITOCHONDRIAL DNA PART B 2022; 7:2015-2017. [DOI: 10.1080/23802359.2022.2148823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Song Guo
- College of Food and Biochemical Engineering, Guangxi Science and Technology Normal University, Laibin, PR China
- Key Laboratory for Zhuang and Yao Pharmaceutical Quality Biology, Guangxi Science & Technology Normal University, Laibin, PR China
| | - Yu Liu
- Guangxi Botanical Garden of Medicinal Plants, Nanning, PR China
| | - Zeyang Li
- College of Food and Biochemical Engineering, Guangxi Science and Technology Normal University, Laibin, PR China
- Key Laboratory for Zhuang and Yao Pharmaceutical Quality Biology, Guangxi Science & Technology Normal University, Laibin, PR China
| | - Mingxian He
- College of Food and Biochemical Engineering, Guangxi Science and Technology Normal University, Laibin, PR China
- Key Laboratory for Zhuang and Yao Pharmaceutical Quality Biology, Guangxi Science & Technology Normal University, Laibin, PR China
| | - Wuwei Wu
- Guangxi Botanical Garden of Medicinal Plants, Nanning, PR China
| |
Collapse
|
9
|
Niu S, Zhu X, Zhang J, Ma Y, Lang X, Luo L, Li W, Zhao Y, Zhang Z. Arsenic trioxide modulates the composition and metabolic function of the gut microbiota in a mouse model of rheumatoid arthritis. Int Immunopharmacol 2022; 111:109159. [PMID: 35987143 DOI: 10.1016/j.intimp.2022.109159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
The mechanism of rheumatoid arthritis (RA) has been widely investigated, and studies on the use of arsenic trioxide (ATO) in the treatment of RA have been reported in recent years. However, the exact mechanism of action of ATO in RA remains unclear. This study explores alterations in the gut microbiota and metabolism during ATO treatment in a mouse model of RA and provides an integrative analysis of the biomechanism. The purpose of this study was to verify whether ATO can alleviate RA by altering the gut microbiota. In this study, the mice were randomly divided into four different groups: the normal control (NC) group, the collagen-induced arthritis (CIA) group, the ATO 1.0 mg/kg/day group, and the ATO 2.0 mg/kg/day group. Fecal samples were collected. Through 16S rDNA gene sequencing and metabolomic analysis, the effect of ATO on the composition and metabolites of gut microbiota in CIA mice was investigated. The results showed that compared with NC mice, CIA mice showed differences at both the phylum level (Firmicutes and Bacteroidetes) and the genus level (Muribaculaceae_unclassified and Alistipes). Meanwhile, many metabolites were significantly changed between the two groups, including benzoic acid and (s)-2-acetolactate. However, these alterations were partially reversed in ATO-treated CIA mice. These results indicated that ATO treatment modulated gut microbiota disorder and improved fecal metabolite abnormalities. In conclusion, this study provided important evidence for alterations of the gut microbiota and metabolites and the role of these alterations in a potential novel mechanism of ATO treatment in RA.
Collapse
Affiliation(s)
- Sijia Niu
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng St., Nangang District, Harbin, China
| | - Xiaoying Zhu
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng St., Nangang District, Harbin, China
| | - Juan Zhang
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng St., Nangang District, Harbin, China
| | - Yeye Ma
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng St., Nangang District, Harbin, China
| | - Xueying Lang
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng St., Nangang District, Harbin, China
| | - Lili Luo
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng St., Nangang District, Harbin, China
| | - Wenjing Li
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng St., Nangang District, Harbin, China
| | - Yanping Zhao
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng St., Nangang District, Harbin, China
| | - Zhiyi Zhang
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng St., Nangang District, Harbin, China.
| |
Collapse
|
10
|
Jo HG, Seo J, Lee D. Clinical evidence construction of East Asian herbal medicine for inflammatory pain in rheumatoid arthritis based on integrative data mining approach. Pharmacol Res 2022; 185:106460. [PMID: 36152738 DOI: 10.1016/j.phrs.2022.106460] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic inflammatory disease that leads to a significant social burden. East Asian herbal medicine (EAHM) has long been used to treat RA. Therefore, a systematic study of how EAHM treatments can be developed into new drugs using specific materials is needed. METHODS Eleven databases containing literature in English, Korean, Chinese, and Japanese were searched for randomized controlled trials comparing EAHM with conventional medicine (CM). A meta-analysis was performed on the variable data to assess their effects on inflammatory pain. Subsequently, we searched for core materials and combinations of core material-based data mining methods. RESULTS A total of 186 trials involving 19,716 patients with RA met the inclusion criteria. According to the meta-analysis, EAHM had a significantly superior effect on continuous pain intensity, tender joint count, and response rate. Patients treated with EAHM had a significantly reduced incidence of adverse events compared with those treated with CM. Based on additional analysis of the EAHM formula data included in this meta-analysis, 21 core materials and five core herbal combinations were identified. CONCLUSION EAHM remedies for RA have the adequate potential for use as candidate materials for treating inflammatory pain in RA. The candidate core herbs evaluated in this study act on multiple pathways and are expected to provide pain relief, sustained inflammation suppression, immune regulation, and prevention of joint destruction. It seems worthwhile to conduct follow-up research on drug development using the core materials derived from this review.
Collapse
Affiliation(s)
- Hee-Geun Jo
- BS Healthcare Co., Ltd., 11 Teheran-ro 33-gil, Gangnam-gu, Seoul 06141, Republic of Korea; Allbarun Kyunghee Korean Medicine Clinic, 18, Pungmu-ro 146-gil, Gimpo, Gyeonggi-do, Republic of Korea; Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea.
| | - Jihye Seo
- BS Healthcare Co., Ltd., 11 Teheran-ro 33-gil, Gangnam-gu, Seoul 06141, Republic of Korea; Allbarun Kyunghee Korean Medicine Clinic, 18, Pungmu-ro 146-gil, Gimpo, Gyeonggi-do, Republic of Korea; Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea
| | - Donghun Lee
- BS Healthcare Co., Ltd., 11 Teheran-ro 33-gil, Gangnam-gu, Seoul 06141, Republic of Korea; Allbarun Kyunghee Korean Medicine Clinic, 18, Pungmu-ro 146-gil, Gimpo, Gyeonggi-do, Republic of Korea; Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea.
| |
Collapse
|
11
|
Shen Y, Fan X, Qu Y, Tang M, Huang Y, Peng Y, Fu Q. Magnoflorine attenuates inflammatory responses in RA by regulating the PI3K/Akt/NF-κB and Keap1-Nrf2/HO-1 signalling pathways in vivo and in vitro. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154339. [PMID: 35870375 DOI: 10.1016/j.phymed.2022.154339] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/02/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND As a prolonged autoimmune disorder, rheumatoid arthritis (RA) is characterised by synovial hyperplasia and the erosion of bone and cartilage. Magnoflorine (MAG) is the main component purified from Clematis manshurica Rupr. Recent studies have shown that MAG has anti-inflammatory, antioxidant, and immunosuppressive effects, which are relevant to anti-RA activities. OBJECTIVE The current investigation was conducted to explore the anti-RA effects of MAG and to discover the possible molecular mechanisms. METHODS In vitro experiments, CCK-8, wound healing, and transwell assays were utilized to evaluate the anti-proliferative, anti-migratory, and anti-invasive activities of MAG, respectively. The rate of cell distribution and cell apoptosis were evaluated by flow cytometry. ROS generation was detected by DCFH-DA staining. Western blotting, quantitative real-time polymerase chain reaction assay, and immunofluorescent staining were employed to test the anti-RA effect of MAG as well as to explore the potential mechanisms by evaluating related gene and protein expression. For in vivo experiments, an adjuvant-induced arthritis (AIA) rat model was established. The related parameters were measured in rats. Then, rats were sacrificed, and ankle joints were collected for histopathological analysis and observation. RESULTS MAG significantly decreased the proliferation, migration, invasion, and reactive oxygen species levels in IL-1β-treated MH7A cells. Furthermore, MAG promoted cell apoptosis by increasing Bax levels and decreasing Bcl-2 levels. MAG also induced cell cycle arrest. Inflammatory cytokines (iNOS, COX-2, IL-6, and IL-8) and MMPs (MMP-1, 2, 3, 9, and 13) were reduced by MAG treatment. Molecular analysis revealed that MAG exerted anti-RA effects by partly inhibiting the PI3K/Akt/NF-κB signalling axis and activating the Keap1-Nrf2/HO-1 signalling pathway. In vivo studies have revealed that MAG treatment substantially improved severe symptoms in AIA rats, and these curative effects were linked to the attenuation of inflammatory responses. CONCLUSION These results first suggested that MAG exhibits anti-arthritic effects in IL-1β-treated MH7A cells and AIA rat models. Thus, MAG may be used as a new drug to treat RA clinically.
Collapse
Affiliation(s)
- Yue Shen
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Xinting Fan
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Yuhan Qu
- School of Food and Biological engineering, Chengdu university, Chengdu 610106, China
| | - Min Tang
- School of Food and Biological engineering, Chengdu university, Chengdu 610106, China
| | - Yuehui Huang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Yi Peng
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Qiang Fu
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China.
| |
Collapse
|
12
|
Yi O, Lin Y, Hu M, Hu S, Su Z, Liao J, Liu B, Liu L, Cai X. Lactate metabolism in rheumatoid arthritis: Pathogenic mechanisms and therapeutic intervention with natural compounds. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154048. [PMID: 35316725 DOI: 10.1016/j.phymed.2022.154048] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/26/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a common chronic and systemic autoimmune disease characterized by persistent inflammation and hyperplasia of the synovial membrane, the degradation of cartilage, and the erosion of bones in diarthrodial joints. The inflamed joints of patients with RA have been recognized to be a site of hypoxic microenvironment which results in an imbalance of lactate metabolism and the accumulation of lactate. Lactate is no longer considered solely a metabolic waste product of glycolysis, but also a combustion aid in the progression of RA from the early stages of inflammation to the late stages of bone destruction. PURPOSE To review the pathogenic mechanisms of lactate metabolism in RA and investigate the potential of natural compounds for treating RA linked to the regulation of imbalance in lactate metabolism. METHODS Research advances in our understanding of lactate metabolism in the pathogenesis of RA and novel pharmacological approaches of natural compounds by targeting lactate metabolic signaling were comprehensively reviewed and deeply discussed. RESULTS Lactate produced by RA synovial fibroblasts (RASFs) acts on targeted cells such as T cells, macrophages, dendritic cells and osteoclasts, and affects their differentiation, activation and function to accelerate the development of RA. Many natural compounds show therapeutic potential for RA by regulating glycolytic rate-limiting enzymes to limit lactate production, and affecting monocarboxylate transporter and acetyl-CoA carboxylase to inhibit lactate transport and conversion. CONCLUSION Regulation of imbalance in lactate metabolism offers novel therapeutic approaches for RA, and natural compounds capable of targeting lactate metabolic signaling constitute potential candidates for development of drugs RA.
Collapse
Affiliation(s)
- Ouyang Yi
- Institute of Innovation and Applied Research in Chinese Medicine and Department of Rheumatology of The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Ye Lin
- Institute of Innovation and Applied Research in Chinese Medicine and Department of Rheumatology of The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Mingyue Hu
- Institute of Innovation and Applied Research in Chinese Medicine and Department of Rheumatology of The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Shengtao Hu
- Institute of Innovation and Applied Research in Chinese Medicine and Department of Rheumatology of The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Zhaoli Su
- Institute of Innovation and Applied Research in Chinese Medicine and Department of Rheumatology of The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jin Liao
- Institute of Innovation and Applied Research in Chinese Medicine and Department of Rheumatology of The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 030027, China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine and Department of Rheumatology of The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| |
Collapse
|