1
|
Ho JSS, Ping TL, Paudel KR, El Sherkawi T, De Rubis G, Yeung S, Hansbro PM, Oliver BGG, Chellappan DK, Sin KP, Dua K. Exploring Bioactive Phytomedicines for Advancing Pulmonary Infection Management: Insights and Future Prospects. Phytother Res 2024. [PMID: 39385504 DOI: 10.1002/ptr.8334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 10/12/2024]
Abstract
Pulmonary infections have a profound influence on global mortality rates. Medicinal plants offer a promising approach to address this challenge, providing nontoxic alternatives with higher levels of public acceptance and compliance, particularly in regions where access to conventional medications or diagnostic resources may be limited. Understanding the pathophysiology of viruses and bacteria enables researchers to identify biomarkers essential for triggering diseases. This knowledge allows the discovery of biological molecules capable of either preventing or alleviating symptoms associated with these infections. In this review, medicinal plants that have an effect on COVID-19, influenza A, bacterial and viral pneumonia, and tuberculosis are discussed. Drug delivery has been briefly discussed as well. It examines the effect of bioactive constituents of these plants and synthesizes findings from in vitro, in vivo, and clinical studies conducted over the past decade. In conclusion, many medicinal plants can be used to treat pulmonary infections, but further in-depth studies are needed as most of the current studies are only at preliminary stages. Extensive investigation and clinical studies are warranted to fully elucidate their mechanisms of action and optimize their use in clinical practice.
Collapse
Affiliation(s)
- Joyce Siaw Syuen Ho
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Teh Li Ping
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Keshav Raj Paudel
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and the University of Technology Sydney, Sydney, Australia
| | - Tammam El Sherkawi
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, Australia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
| | - Philip M Hansbro
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and the University of Technology Sydney, Sydney, Australia
| | - Brian Gregory George Oliver
- School of Life Science, University of Technology Sydney, Ultimo, Australia
- Woolcock Institute of Medical Research, Macquarie University, Sydney, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Keng Pei Sin
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
2
|
Shi T, Lin J, Liang S, Song Y, Zhao X, Xiao M, Ti H. Sangbaipi decoction exerted in vitro and in vivo anti-influenza effect through inhibiting viral proteins. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118258. [PMID: 38663783 DOI: 10.1016/j.jep.2024.118258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024]
Abstract
HEADINGS ETHNOPHARMACOLOGICAL RELEVANCE Sangbaipi Decoction (SBPD) is an effective treatment for lung diseases caused by phlegm-heat obstruction according to Jingyue Quanshu, and soothes panting by purging the lung meridian. It is composed of anti-pyretic herbs (e.g., Scutellaria baicalensis Georgi and Coptis chinensis Franch.) and antitussive herbs (e.g., Cortex Mori and Armeniacae Semen Amarum). Therefore, we hypothesized that SBPD has therapeutic effects on lung injury caused by influenza virus. AIM OF THE STUDY This study aimed to explore anti-influenza activity, active components, and mechanisms of SBPD. MATERIALS AND METHODS The anti-influenza activities of SBPD were determined in 48 h drug-treated MDCK cell model using CPE and plaque reduction assays, and 24 h drug-treated A549 cells using qRT-PCR. The in vivo efficacy of SBPD (1.0 g/kg/day and 0.5 g/kg/day) was evaluated in PR8 infected BALB/c mice. The chemical component was assessed through HPLC-Q-TOF MS/MS analysis. Network pharmacology was built via TCMSP, GeneCards, DisgeNet, OMIM, DrugBank databases, and Cytoscape software. Additionally, TOA, HI and NAI assays were employed to investigate impact on the virus replication cycle with different concentrations of SBPD (2.5 mg/mL, 1.25 mg/mL, or 0.625 mg/mL). RESULTS In MDCK infected with viruses A/PR/8/34, A/Hong Kong/1/68, or A/California/4/2009, the IC50 values of SBPD were 0.80 mg/mL, 1.20 mg/mL, and 1.25 mg/mL. In A549 cells, SBPD treatment reduced cytokine expression (e.g., TNF-α, IL-6, IL-1β) (p < 0.05). In PR8 infected BALB/c mice, SBPD improved the survival rate of infected mice, reduced lung index (p < 0.05), protected lung tissue from pathological damage, and regulated cytokine overexpression (p < 0.05). 29 components of SBPD were identified in SBPD treated mouse serum including some phytochemicals targeting influenza proteins. HI and NAI assays suggested the potential antiviral mechanism of SBPD through inhibition of HA and NA. CONCLUSION This study is the first to demonstrate the anti-influenza and the anti-inflammatory effects of SBPD in vitro and in vivo. Its major anti-influenza phytochemicals were explored and its inhibitory effects on HA and NA protein were proved. It provides more options for anti-influenza drug discovery.
Collapse
Affiliation(s)
- Tongmei Shi
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jieling Lin
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shiyun Liang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yu Song
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences(China National Analytical Center, Guangzhou), Guangzhou, 510070, China
| | - Xin Zhao
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences(China National Analytical Center, Guangzhou), Guangzhou, 510070, China
| | - Mengjie Xiao
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences(China National Analytical Center, Guangzhou), Guangzhou, 510070, China
| | - Huihui Ti
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Jia H, Hu L, Zhang J, Huang X, Jiang Y, Dong G, Liu C, Liu X, Kim M, Zhan P. Recent advances of phenotypic screening strategies in the application of anti-influenza virus drug discovery. RSC Med Chem 2024; 15:70-80. [PMID: 38283223 PMCID: PMC10809416 DOI: 10.1039/d3md00513e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/07/2023] [Indexed: 01/30/2024] Open
Abstract
Seasonal and pandemic influenza virus infections not only pose a serious threat to human health but also cause tremendous economic losses and social burdens. However, due to the inherent high variability of influenza virus RNA genomes, the existing anti-influenza virus drugs have been frequently faced with the clinical issue of emerging drug-resistant mutants. Therefore, there is an urgent need to develop efficient and broad-spectrum antiviral agents against wild-type and drug-resistant mutant strains. Phenotypic screening has been widely employed as a reliable strategy to evaluate antiviral efficacy of novel agents independent of their modes of action, either directly targeting viral proteins or regulating cellular factors involved in the virus life cycle. Here, from the point of view of medicinal chemistry, we review the research progress of phenotypic screening strategies by focusing direct acting antivirals against influenza virus. It could provide scientific insights into discovery of a distinctive class of therapeutic candidates that ensure high efficiency but low cytotoxicity, and address issues from circulation of drug-resistant influenza viruses in the future.
Collapse
Affiliation(s)
- Huinan Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong P.R. China
| | - Lide Hu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong P.R. China
| | - Jiwei Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong P.R. China
| | - Xing Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong P.R. China
| | - Yuanmin Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong P.R. China
| | - Guanyu Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong P.R. China
| | - Chuanfeng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong P.R. China
- Suzhou Research Institute of Shandong University Room 607, Building B of NUSP, No. 388 Ruoshui Road, SIP Suzhou Jiangsu 215123 P.R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong P.R. China
| | - Meehyein Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT) Daejeon 34114 Korea
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong P.R. China
| |
Collapse
|
4
|
Zhao JH, Wang YW, Yang J, Tong ZJ, Wu JZ, Wang YB, Wang QX, Li QQ, Yu YC, Leng XJ, Chang L, Xue X, Sun SL, Li HM, Ding N, Duan JA, Li NG, Shi ZH. Natural products as potential lead compounds to develop new antiviral drugs over the past decade. Eur J Med Chem 2023; 260:115726. [PMID: 37597436 DOI: 10.1016/j.ejmech.2023.115726] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/22/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
Virus infection has been one of the main causes of human death since the ancient times. Even though more and more antiviral drugs have been approved in clinic, long-term use can easily lead to the emergence of drug resistance and side effects. Fortunately, there are many kinds of metabolites which were produced by plants, marine organisms and microorganisms in nature with rich structural skeletons, and they are natural treasure house for people to find antiviral active substances. Aiming at many types of viruses that had caused serious harm to human health in recent years, this review summarizes the natural products with antiviral activity that had been reported for the first time in the past ten years, we also sort out the source, chemical structure and safety indicators in order to provide potential lead compounds for the research and development of new antiviral drugs.
Collapse
Affiliation(s)
- Jing-Han Zhao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yue-Wei Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jin Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Zhen-Jiang Tong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jia-Zhen Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yi-Bo Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Qing-Xin Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Qing-Qing Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Liang Chang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - He-Min Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Jin-Ao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
5
|
Wang F, Kong BLH, Tang YS, Lee HK, Shaw PC. Bioassay guided isolation of caffeoylquinic acids from the leaves of Ilex pubescens Hook. et Arn. and investigation of their anti-influenza mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116322. [PMID: 36868436 DOI: 10.1016/j.jep.2023.116322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ilex pubescens Hook. et Arn. (Maodongqing, MDQ) is a common herbal tea ingredient in Southern China for heat clearance and anti-inflammation. Our preliminary screening showed that 50% ethanol extract of its leaves has anti-influenza virus activity. In this report, we proceed to identify the active components and clarify the related anti-influenza mechanisms. AIM We aim to isolate and identify the anti-influenza virus phytochemicals from the extract of the MDQ leaves, and study their anti-influenza virus mechanism. MATERIAL AND METHODS Plaque reduction assay was used to test the anti-influenza virus activity of fractions and compounds. Neuraminidase inhibitory assay was used to confirm the target protein. Molecular docking and reverse genetics were used to confirm the acting site of caffeoylquinic acids (CQAs) on viral neuraminidase. RESULTS Eight CQAs, 3,5-di-O-caffeoylquinic acid methyl ester (Me 3,5-DCQA), 3,4-di-O-caffeoylquinic acid methyl ester (Me 3,4-DCQA), 3,4,5-tri-O-caffeoylquinic acid methyl ester (Me 3,4,5-TCQA), 3,4,5-tri-O-caffeoylquinic acid (3,4,5-TCQA), 4,5-di-O-caffeoylquinic acid (4,5-DCQA), 3,5-di-O-caffeoylquinic acid (3,5-DCQA), 3,4-di-O-caffeoylquinic acid (3,4-DCQA), and 3,5-di-O-caffeoyl-epi-quinic acid (3,5-epi-DCQA) were identified from the MDQ leaves, in which Me 3,5-DCQA, 3,4,5-TCQA and 3,5-epi-DCQA were isolated for the first time. All these eight compounds were found to inhibit neuraminidase (NA) of influenza A virus. The results of molecular docking and reverse genetics indicated that 3,4,5-TCQA interacted with Tyr100, Gln412 and Arg419 of influenza NA, and a novel NA binding groove was found. CONCLUSION Eight CQAs isolated from the leaves of MDQ were found to inhibit influenza A virus. 3,4,5-TCQA was found to interact with Tyr100, Gln412 and Arg419 of influenza NA. This study provided scientific evidence on the use of MDQ for treating influenza virus infection, and laid the foundation for the development of CQA derivatives as potential antiviral agents.
Collapse
Affiliation(s)
- Fan Wang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Bobby Lim-Ho Kong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yun-Sang Tang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hung-Kay Lee
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Pang-Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK) and Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Pang S, Guo ZG, Wang L, Guo QF, Cao F. Anti-IAV indole-diterpenoids from the marine-derived fungus Penicillium citrinum. Nat Prod Res 2023; 37:586-591. [PMID: 35608160 DOI: 10.1080/14786419.2022.2078820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A new indole-diterpenoid, penijanthine E (1), and a known analogue (2), were obtained from the PDB culture of the marine-derived fungus Penicillium citrinum ZSS-9. The absolute configuration of 1 was elucidated by calculated TDDFT ECD and DP4plus calculations. The absolute configuration of 2 was confirmed by single-crystal X-ray diffraction analysis and TDDFT ECD calculations. Compounds 1 and 2 showed antiviral activity against influenza A virus (IAV) of A/WSN/33(H1N1) and A/PR/8/34(H1N1) strains with IC50 values ranging from 12.6 to 46.8 μM.
Collapse
Affiliation(s)
- Sen Pang
- Huanghe Science & Technology College, Zhengzhou, P.R. China
| | - Zhi-Gang Guo
- Huanghe Science & Technology College, Zhengzhou, P.R. China
| | - Li Wang
- Huanghe Science & Technology College, Zhengzhou, P.R. China
| | - Qing-Feng Guo
- Huanghe Science & Technology College, Zhengzhou, P.R. China
| | - Fei Cao
- Huanghe Science & Technology College, Zhengzhou, P.R. China.,College of Pharmaceutical Sciences, Hebei University, Baoding, P.R. China
| |
Collapse
|
7
|
Xiao M, Cao F, Huang T, Tang YS, Zhao X, Shaw PC. Urolithin M5 from the Leaves of Canarium album (Lour.) DC. Inhibits Influenza Virus by Targeting Neuraminidase. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175724. [PMID: 36080488 PMCID: PMC9457573 DOI: 10.3390/molecules27175724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022]
Abstract
Ganlanye (GLY), the leaf of Canarium album (Lour.) DC., is a traditional Chinese medicinal herb for warm disease treatment. We found that its aqueous extract could inhibit the influenza A virus. To find and characterize anti-influenza virus phytochemicals from GLY, we performed (1) bioassay-guided isolation, (2) a cell and animal assay, and (3) a mechanism study. Bioassay-guided isolation was used to identify the effective components. Influenza virus-infected MDCK cell and BALB/c mouse models were employed to evaluate the anti-influenza virus activities. A MUNANA assay was performed to find the NA inhibitory effect. As a result, urolithin M5 was obtained from the crude extract of GLY. It inhibited influenza virus activities in vitro and in vivo by suppressing the viral NA activity. In the MDCK cell model, urolithin M5 could inhibit an oseltamivir-resistant strain. In a PR8-infected mouse model, 200 mg/kg/d urolithin M5 protected 50% of mice from death and improved lung edema conditions. GLY was recorded as a major traditional herb for warm disease treatment. Our study identified GLY as a potent anti-influenza herb and showed urolithin M5 as the active component. We first report the in vivo activity of urolithin M5 and support the anti-influenza application of GLY.
Collapse
Affiliation(s)
- Mengjie Xiao
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Fei Cao
- College of Pharmaceutical Sciences, Hebei University, Baoding 077000, China
| | - Tao Huang
- China National Analytical Center, Guangzhou Institute of Analysis, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Yun-Sang Tang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Xin Zhao
- China National Analytical Center, Guangzhou Institute of Analysis, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Pang-Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
- Correspondence:
| |
Collapse
|
8
|
Zhang YH, Li L, Li YQ, Luo JH, Li W, Li LF, Zheng CJ, Cao F. Oxalierpenes A and B, Unusual Indole-Diterpenoid Derivatives with Antiviral Activity from a Marine-Derived Strain of the Fungus Penicillium oxalicum. JOURNAL OF NATURAL PRODUCTS 2022; 85:1880-1885. [PMID: 35729787 DOI: 10.1021/acs.jnatprod.2c00322] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Oxalierpenes A and B (1 and 2), two unusual indole-diterpenoid derivatives, were obtained from the marine-derived fungus Penicillium oxalicum. The absolute configurations of 1 and 2 were elucidated by calculated TDDFT ECD and DP4plus methods. Oxalierpene A (1) represents the first indole-diterpenoid derivative with a five-membered ring of 4-hydroxy-5,5-dimethyldihydrofuran-3-one as a side chain. Oxalierpene B (2) has a unique 6/5/6/5/5/6/6/5/5 ring system. Compounds 1 and 2 showed antiviral activity against the H1N1 virus and respiratory syncytial virus (RSV), with IC50 values ranging from 2.8 to 9.4 μM.
Collapse
Affiliation(s)
- Ya-Hui Zhang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Hebei University, Baoding 071002, People's Republic of China
| | - Lei Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Hebei University, Baoding 071002, People's Republic of China
| | - Ya-Qi Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Hebei University, Baoding 071002, People's Republic of China
| | - Jia-Hua Luo
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Hebei University, Baoding 071002, People's Republic of China
| | - Wan Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Hebei University, Baoding 071002, People's Republic of China
| | - Long-Fei Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Hebei University, Baoding 071002, People's Republic of China
| | - Cai-Juan Zheng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, People's Republic of China
| | - Fei Cao
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Hebei University, Baoding 071002, People's Republic of China
| |
Collapse
|