1
|
Niu Y, Zhao T, Liu Z, Li D, Wen D, Li B, Huang X. Brassica rapa L. crude polysaccharide meditated synbiotic fermented whey beverage ameliorates hypobaric hypoxia induced intestinal damage. Food Funct 2024; 15:11975-11989. [PMID: 39555987 DOI: 10.1039/d4fo04667f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Hypobaric hypoxia causes oxidative stress and inflammatory responses and disrupts the gut microbiome and metabolome. In this study, we developed a synbiotic fermented whey beverage, combining kefir and Brassica rapa L. crude polysaccharides, to explore its protective effects against high-altitude induced injury in mice. The beverage, formulated with 0.8% (w/v) polysaccharides and kefir inoculation, demonstrated robust fermentation parameters and antioxidative capacity. When applied to a hypobaric hypoxia mouse model, the synbiotic fermented whey significantly reduced oxidation and protected the intestinal barrier by lowering inflammation, protecting the intestinal structure, increasing goblet cell counts, and reducing apoptosis. It also modulated the gut microbiota, enriching beneficial taxa as Intestinimonas and Butyricicoccaceae, while reducing harmful ones like Marvinbryantia and Proteus, and enhancing short-chain fatty acid (SCFA) production. Notably, the beverage increased berberine and nicotinic acid levels, activating the adenosine monophosphate-activated protein kinase (AMPK) signalling pathway and influencing nicotinate and nicotinamide metabolites linked to the suppression of Marvinbryantia, thereby alleviating intestinal inflammation and barrier damage. These effects contributed to the alleviation of hypoxia-induced intestinal damage in mice. This study highlights the potential of synbiotics and whey fermentation in novel nutritional interventions in high altitude environments.
Collapse
Affiliation(s)
- Yuanlin Niu
- School of Public Health, Lanzhou University, Lanzhou, China.
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Xizang, China
| | - Tingting Zhao
- School of Public Health, Lanzhou University, Lanzhou, China.
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Xizang, China
| | - Zhenjiang Liu
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Xizang, China
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Diantong Li
- School of Public Health, Lanzhou University, Lanzhou, China.
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Xizang, China
| | - Dongxu Wen
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Xizang, China
| | - Bin Li
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Xizang, China
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou, China.
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Xizang, China
| |
Collapse
|
2
|
Ma W, Ren H, Meng X, Liu S, Du K, Fang S, Chang Y. A review of the ethnopharmacology, phytochemistry, pharmacology, pharmacokinetics and quality control of Paeonia lactiflora Pall. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118616. [PMID: 39053710 DOI: 10.1016/j.jep.2024.118616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeonia lactiflora Pall. (called Shaoyao in China) is a common herb cultivated all over the world. In some Asian and European countries, such as China, Japan, South Korea and Britain, P. lactiflora has a long history of ethnomedical uses, which is widely used to relieve pain, treat gynecological diseases, anti-infection and so on. It is attributed to the extensive pharmacological activities of total glucosides of P. lactiflora. Up to now, it is still commonly used in clinical medicine. THE AIM OF THE REVIEW The paper aims to make a comprehensive review on the botanical characterization and distribution, ethnopharmacology, phytochemistry, biosynthesis pathway, pharmacology, pharmacokinetics and quality control of P. lactiflora, so as to provide new insights and scientific evidence for the subsequent research. MATERIALS AND METHODS The information of P. lactiflora was obtained from books related to traditional Chinese medicine and electronic databases, including Scifinder, PubMed, Web of Science, CNKI and Google Scholar. RESULTS P. lactiflora is a kind of herb with a long history and it is used for medicine, food and ornamental, and shows high utilization value. There are 200 compounds have been identified from it, including terpenoids, flavonoids, polyphenols, organic acids and others, among those paeoniflorin, a monoterpenoid glycoside, has multiple activities and is currently the focus of pharmacological research. A great deal of pharmacological experiments supported the anti-inflammatory, anti-oxidant, hepatoprotective, neuroprotective, antibacterial, antitumor, dermatosis treating and other effects of P. lactiflora. In addition, evaluating the quality of P. lactiflora is essential to safe use of drug in humans. CONCLUSIONS The chemical components of P. lactiflora are diverse and have a wide range of activities. Modern pharmacological studies have provided reliable evidence for the traditional efficacy, such as suppressing liver yang, regulating menstruation and relieving pain. However, there are still some problems to be solved, such as part of the pharmacological mechanism has not been clarified and the biosynthetic pathway of cage-like monoterpenoids remains poorly defined. In addition, further studies on compounds other than paeoniflorin are clearly warranted. It is hoped that P. lactiflora will serve the clinic better in the future.
Collapse
Affiliation(s)
- Wenjing Ma
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Haishuo Ren
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xue Meng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Suyi Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shiming Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
3
|
Li Y, Yan M, Zhang M, Zhang B, Xu B, Ding X, Wang J, Wang Z. Scutellarin alleviated ulcerative colitis through gut microbiota-mediated cAMP/PKA/NF-κB pathway. Biochem Biophys Res Commun 2024; 735:150837. [PMID: 39423571 DOI: 10.1016/j.bbrc.2024.150837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE Ulcerative colitis (UC) is a chronic, non-specific inflammatory condition of the colon, characterized by recurrent episodes and a notable lack of effective pharmacological treatments. Scutellarin, a natural component, exhibits appreciable pharmacological effects and therapeutic potential for various diseases. However, its effects on UC are not fully understood, and the precise mechanisms remain to be deciphered. This study aimed to assess the therapeutic efficacy of scutellarin and elucidate its underlying mechanisms in treating UC. METHODS This study utilized dextran sulfate sodium (DSS)-induced mice to evaluate the therapeutic potential of scutellarin against UC and to elucidate the mechanisms involving the gut microbiota. An antibiotics cocktail (ABX) and fecal microbiota transplantation (FMT) were also used to determine the mechanistic role of the gut microbiota. An integrative approach combining fecal metabolomics and network pharmacology analysis was used to explore the gut microbiota-directed molecular mechanism. RESULTS The results showed that scutellarin provided various therapeutic benefits in UC management, including alleviating weight loss, slowing disease progression, and reducing inflammatory damage in colon structures. The improved gut microbiota after scutellarin administration contributed to these effects. Fecal metabolome revealed that scutellarin selectively mitigated DSS-induced dysregulation of gut microbiota-derived metabolites, including glycolic acid, γ-aminobutyric acid, glutamate, tryptophan, xanthine, and β-hydroxypyruvate. Network pharmacology analysis, along with in vivo experimental verification, implicated the cAMP/PKA/NF-κB pathway in the action of these metabolites in treating UC, which may be the mechanism responsible for scutellarin's curative effects on UC. CONCLUSION This study demonstrates the potential of scutellarin in alleviating UC by activating the cAMP/PKA/NF-κB pathway through gut microbiota-derived metabolites, highlighting scutellarin as a promising therapeutic agent for UC.
Collapse
Affiliation(s)
- Yang Li
- School of Medical Technology, Jiangsu College of Nursing, Huai'an, 223001, PR China
| | - Mengdan Yan
- School of Medical Technology, Jiangsu College of Nursing, Huai'an, 223001, PR China
| | - Miao Zhang
- School of Medical Technology, Jiangsu College of Nursing, Huai'an, 223001, PR China
| | - Bo Zhang
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221000, PR China
| | - Bingzhong Xu
- School of Medical Technology, Jiangsu College of Nursing, Huai'an, 223001, PR China
| | - Xu Ding
- School of Traditional Chinese Medicine, Jiangsu College of Nursing, Huai'an, 223001, PR China
| | - Jiayu Wang
- Department of Anesthesiology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, 223399, PR China
| | - Zhao Wang
- School of Traditional Chinese Medicine, Jiangsu College of Nursing, Huai'an, 223001, PR China.
| |
Collapse
|
4
|
Yeo H, Lee H, Park SM, Kang HN. Paeoniae radix overcomes resistance to EGFR-TKIs via aurora B pathway suppression in lung adenocarcinoma. Life Sci 2024; 357:123097. [PMID: 39362582 DOI: 10.1016/j.lfs.2024.123097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/04/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Targeted therapies using epidermal growth factor receptor (EGFR) inhibitors have markedly improved survival rates and quality of life for patients with EGFR-mutant lung adenocarcinoma (LUAD). Despite these advancements, resistance to EGFR inhibitors remains a significant challenge, limiting the overall effectiveness of the treatment. This study explored the synergistic effects of combining Paeoniae Radix (PR) with first-generation EGFR-tyrosine kinase inhibitors (TKIs), erlotinib and gefitinib, to overcome this resistance. Transcriptomic analysis of EGFR-mutant LUAD cell lines revealed that PR treatment could potentially reverse the gene signatures associated with resistance to EGFR-TKIs, primarily through the suppression of the Aurora B pathway. Experimental validation demonstrated that combining PR with erlotinib and gefitinib enhanced drug responsiveness by inhibiting Aurora kinase activity and inducing apoptosis in LUAD cells. Additionally, gene expression changes confirmed these combined effects, with the suppression of the Aurora B pathway and upregulation of the apoptotic pathway, which was accompanied by increased expression of multiple pro-apoptotic genes. Our findings contribute to the development of natural product-based therapeutic strategies to mitigate drug resistance in LUAD.
Collapse
Affiliation(s)
- Heerim Yeo
- College of Pharmacy, Chungnam National University, Republic of Korea
| | - Haeseung Lee
- College of Pharmacy, Busan National University, Republic of Korea
| | - Sang-Min Park
- College of Pharmacy, Chungnam National University, Republic of Korea.
| | - Han Na Kang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Republic of Korea.
| |
Collapse
|
5
|
Lu K, Li C, Men J, Xu B, Chen Y, Yan P, Gai Z, Zhang Q, Zhang L. Traditional Chinese medicine to improve immune imbalance of asthma: focus on the adjustment of gut microbiota. Front Microbiol 2024; 15:1409128. [PMID: 39411430 PMCID: PMC11473343 DOI: 10.3389/fmicb.2024.1409128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Asthma, being the prevailing respiratory ailment globally, remains enigmatic in terms of its pathogenesis. In recent times, the advancement of traditional Chinese medicine pertaining to the intestinal microbiota has yielded a plethora of investigations, which have substantiated the potential of traditional Chinese medicine in disease prevention and treatment through modulation of the intestinal microbiota. Both animal models and clinical trials have unequivocally demonstrated the indispensable role of the intestinal microbiota in the pathogenesis of asthma. This article presents a summary of the therapeutic effects of traditional Chinese medicine in the context of regulating gut microbiota and its metabolites, thereby achieving immune regulation and inhibiting airway inflammation associated with asthma. It elucidates the mechanism by which traditional Chinese medicine modulates the gut microbiota to enhance asthma management, offering a scientific foundation for the utilization of traditional Chinese medicine in the treatment of asthma.
Collapse
Affiliation(s)
- Ke Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chen Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingwen Men
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bin Xu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Chen
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peizheng Yan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhibo Gai
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingxiang Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lu Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Zhang Y, Wang Y, Zhang X, Wang P, Shi F, Zhang Z, Wang R, Wu D, She J. Gastrointestinal Self-Adaptive and Nutrient Self-Sufficient Akkermansia muciniphila-Gelatin Porous Microgels for Synergistic Therapy of Ulcerative Colitis. ACS NANO 2024; 18:26807-26827. [PMID: 39301762 DOI: 10.1021/acsnano.4c07658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
To realize effective and long-term synergistic therapy of ulcerative colitis (UC) with probiotics, we developed gastrointestinal self-adaptive and nutrient self-sufficient Akkermansia muciniphila (AKK)-gelatin porous microgels (AKK@GPMGs). In AKK@GPMGs, AKK was covered with sequential layers of proanthocyanidins (PAs), mucin (MUC), and phosphatidylcholine (PC) to obtain AKK@PAs-MUC-PC (AKK@PMP), and then encapsulated within the methacrylate-modified gelatin porous microgels. AKK@GPMGs provide sufficient mucus as a nutrition source for AKK and boost resistance to stomach acid by 30.49-fold, and colonization in the intestines is enhanced by 83.46 times. The microgels can be dissociated by matrix metalloproteinase at the inflammatory sites of the intestine, and release AKK@PMP, which acts as "band-aid" that adheres to the inflamed colon for a long time and offers improved synergistic therapy for UC. Compared to uncoated AKK, AKK@GPMGs increase reactive oxygen species scavenging capacity by 26.47 times, improve the intestinal mucus layer thickness by 5.63 times, increase the goblet cells abundance by 3.93 times, reduce intestinal permeability by 5.60 times and significantly enhance beneficial gut microbiota while repressing harmful microbiota. These results indicate that AKK@GPMGs can restore mucus layer and tight junction integrity, reduce inflammation and oxidative stress, and regulate gut microbiota homeostasis to effectively treat intestinal inflammation.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, P.R. China
| | - Ya Wang
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Xiaojiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, P.R. China
| | - Pengqian Wang
- Department of Chemical Engineering, School of Water and Environment, Chang'an University, Xi'an 710064, P.R. China
| | - Feiyu Shi
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, P.R. China
| | - Zhe Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, P.R. China
| | - Ruochen Wang
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Junjun She
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, P.R. China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| |
Collapse
|
7
|
Rong X, Shen C, Shu Q. Interplay between traditional Chinese medicine polysaccharides and gut microbiota: The elusive "polysaccharides-bond-bacteria-enzyme" equation. Phytother Res 2024; 38:4695-4715. [PMID: 39120443 DOI: 10.1002/ptr.8284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024]
Abstract
Polysaccharides are one of the most important components of traditional Chinese medicine (TCM) and have been extensively studied for their immunomodulatory properties. The functions and effects of TCM polysaccharides are closely related to the gut microbiota, making the study of their interaction a hot topic in the field of TCM metabolism. This review follows two main inquiries: first, how the gut microbiota breaks down TCM polysaccharides to produce bioactive metabolites; and second, how TCM polysaccharides reshape the gut microbiota as a carbon source. Understanding the interaction mechanism involves a challenging equation of the structural association of TCM polysaccharides with the metabolic activities of the microbiota. This review has meticulously searched, partially organized literature spanning the past decade, that delves into the interaction mechanism between TCM polysaccharides and gut microbiota. It also gives an overview of the complex factors of the elusive "polysaccharides-bond-bacteria-enzyme" equation: the complexity of polysaccharide structures, the diversity of glycosidic bond types, the communal nature of metabolizing microbiota, the enzymes involved in functional degradation by microbiota, and the hierarchical roles of polysaccharide utilization locus and gram-positive PULs. Finally, this review aims to facilitate discussion among peers in the field of TCM microbiota and offers prospects for research in related fields, paving the way for pharmacological studies on TCM polysaccharides and gut microbiota therapeutics, and providing a reference point for further clinical research.
Collapse
Affiliation(s)
- XinQian Rong
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - CanTing Shen
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - QingLong Shu
- Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
8
|
Zhao ZH, Dong YH, Jiang XQ, Wang J, Qin WL, Liu ZY, Zhang XQ, Wei YJ. Five commonly used traditional Chinese medicine formulas in the treatment of ulcerative colitis: A network meta-analysis. World J Clin Cases 2024; 12:5067-5082. [DOI: 10.12998/wjcc.v12.i22.5067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/26/2024] [Accepted: 06/03/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Currently, traditional Chinese medicine (TCM) formulas are commonly being used as adjunctive therapy for ulcerative colitis in China. Network meta-analysis, a quantitative and comprehensive analytical method, can systematically compare the effects of different adjunctive treatment options for ulcerative colitis, providing scientific evidence for clinical decision-making.
AIM To evaluate the clinical efficacy and safety of commonly used TCM for the treatment of ulcerative colitis (UC) in clinical practice through a network meta-analysis.
METHODS Clinical randomized controlled trials of these TCM formulas used for the adjuvant treatment of UC were searched from the establishment of the databases to July 1, 2022. Studies that met the inclusion criteria were screened and evaluated for literature quality and risk of bias according to the Cochrane 5.1 standard. The methodological quality of the studies was assessed using ReviewManager (RevMan) 5.4, and a funnel plot was constructed to test for publication bias. ADDIS 1.16 statistical software was used to perform statistical analysis of the treatment measures and derive the network relationship and ranking diagrams of the various intervention measures.
RESULTS A total of 64 randomized controlled trials involving 5456 patients with UC were included in this study. The adjuvant treatment of UC using five TCM formulations was able to improve the clinical outcome of the patients. Adjuvant treatment with Baitouweng decoction (BTWT) showed a significant effect [mean difference = 36.22, 95% confidence interval (CI): 7.63 to 65.76]. For the reduction of tumor necrosis factor in patients with UC, adjunctive therapy with BTWT (mean difference = −9.55, 95%CI: −17.89 to −1.41), Shenlingbaizhu powder [SLBZS; odds ratio (OR) = 0.19, 95%CI: 0.08 to 0.39], and Shaoyao decoction (OR = −23.02, 95%CI: −33.64 to −13.14) was effective. Shaoyao decoction was more effective than BTWT (OR = 0.12, 95%CI: 0.03 to 0.39), SLBZS (OR = 0.19, 95%CI: 0.08 to 0. 39), and Xi Lei powder (OR = 0.34, 95%CI: 0.13 to 0.81) in reducing tumor necrosis factor and the recurrence rate of UC.
CONCLUSION TCM combined with mesalazine is more effective than mesalazine alone in the treatment of UC.
Collapse
Affiliation(s)
- Zhi-Hui Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi-Hang Dong
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xin-Qi Jiang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wan-Li Qin
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhang-Yi Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiao-Qing Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu-Jie Wei
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
9
|
Xu Y, Wang X, Wang Y, Guo L, Zhao X, Dong M, Wen J, Wu Z, Li C, Mu W, Guo Y, Bai Z, Xiao X. New compatible pair of TCM: Paeoniae Radix Alba effectively alleviate Psoraleae Fructus-induced liver injury by suppressing NLRP3 inflammasome activation. Heliyon 2024; 10:e34591. [PMID: 39130485 PMCID: PMC11315180 DOI: 10.1016/j.heliyon.2024.e34591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Objective Drug-induced liver injury (DILI), a type of acute inflammation, has sparked significant concern owing to its unpredictability and severity. Psoraleae Fructus (PF), an edible Chinese herb widely used in traditional Chinese medicine (TCM), causes liver injury. Therefore, the elucidation of the mechanism underlying PF-induced liver injury and the search for more effective means of detoxification using herbal compatibility has become an urgent issue. This study evaluated the hepatoprotective effects of Paeoniae Radix Alba (PRA), a hepatoprotective Chinese medicine, on PF-induced liver injury and explored the underlying mechanisms. Methods A rat model of lipopolysaccharide (LPS)-induced immune stress was established to evaluate the hepatotoxicity of PF and the detoxifying effect of PRA. Subsequently, inflammatory pathways were identified using network pharmacology. Finally, the molecular mechanism by which PRA alleviates PF-induced liver injury was validated using an inflammasome activation model in bone marrow-derived macrophages (BMDMs). Results In vivo, hepatocytes in rats treated with LPS + PF exhibited massive inflammatory infiltration and apoptosis, and the expression of liver injury indicators and inflammatory factors was significantly upregulated, which was reversed by PRA pretreatment. Network pharmacology showed that PRA alleviated PF-induced liver injury and was associated with the NOD-like receptor signaling pathway. Moreover, PF directly induced inflammasome activation in LPS-primed BMDMs which in turn induced caspase-1 activation and the secretion of downstream effector cytokines such as IL-1β. PRA pretreatment inhibited PF-induced activation of the NLRP3 inflammasome by mitigating the accumulation of mitochondrial reactive oxygen species (mtROS). Conclusions The present study demonstrates that PRA alleviated PF induced-liver injury by inhibiting NLRP3 inflammasome activation. The results of this study are expected to inform the prevention and control of PF-induced hepatotoxicity in clinical practice.
Collapse
Affiliation(s)
- Yingjie Xu
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
- School of Pharmacy, Dali University, Dali, 671000, China
| | - Xianling Wang
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Yan Wang
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Longxin Guo
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
- School of Pharmacy, Dali University, Dali, 671000, China
| | - Xiaomei Zhao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Ming Dong
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Jincai Wen
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Zhixin Wu
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Chenyi Li
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
- School of Pharmacy, Dali University, Dali, 671000, China
| | - Wenqing Mu
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Yuming Guo
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Zhaofang Bai
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
- School of Pharmacy, Dali University, Dali, 671000, China
- National Key Laboratory of Kidney Diseases, Beijing, 100039, China
| | - Xiaohe Xiao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
- School of Pharmacy, Dali University, Dali, 671000, China
- National Key Laboratory of Kidney Diseases, Beijing, 100039, China
| |
Collapse
|
10
|
Yan B, Zheng X, Chen X, Hao H, Shen S, Yang J, Wang S, Sun Y, Xian J, Shao Z, Fu T. Silibinin Targeting Heat Shock Protein 90 Represents a Novel Approach to Alleviate Nonalcoholic Fatty Liver Disease by Simultaneously Lowering Hepatic Lipotoxicity and Enhancing Gut Barrier Function. ACS Pharmacol Transl Sci 2024; 7:2110-2124. [PMID: 39022366 PMCID: PMC11249643 DOI: 10.1021/acsptsci.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a clinicopathological condition characterized by intrahepatic ectopic steatosis. Due to the increase in high-calorie diets and sedentary lifestyles, NAFLD has surpassed viral hepatitis and become the most prevalent chronic liver disease globally. Silibinin, a natural compound, has shown promising therapeutic potential for the treatment of liver diseases. Nevertheless, the ameliorative effects of silibinin on NAFLD have not been completely understood, and the underlying mechanism is elusive. Therefore, in this study, we used high-fat diet (HFD)-induced mice and free fatty acid (FFA)-stimulated HepG2 cells to investigate the efficacy of silibinin for the treatment of NAFLD and elucidate the underlying mechanisms. In vivo, silibinin showed significant efficacy in inhibiting adiposity, improving lipid profile levels, ameliorating hepatic histological aberrations, healing the intestinal epithelium, and restoring gut microbiota compositions. Furthermore, in vitro, silibinin effectively inhibited FFA-induced lipid accumulation in HepG2 cells. Mechanistically, we reveal that silibinin possesses the ability to ameliorate hepatic lipotoxicity by suppressing the heat shock protein 90 (Hsp90)/peroxisome proliferator-activated receptor-γ (PPARγ) pathway and alleviating gut dysfunction by inhibiting the Hsp90/NOD-like receptor pyrin domain-containing 3 (NLRP3) pathway. Altogether, our findings provide evidence that silibinin is a promising candidate for alleviating the "multiple-hit" in the progression of NAFLD.
Collapse
Affiliation(s)
- Baofei Yan
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
- Jiangsu
Engineering, Research Center for Evaluation and Transformation of
Classic TCM Prescriptions, Jiangsu Health
Vocational College, Nanjing 211800, China
| | - Xian Zheng
- Department
of Pharmacy, Affiliated Kunshan Hospital
of Jiangsu University, Kunshan 215399, China
| | - Xi Chen
- Institute
of Medical technology, Jiangsu College of
Nursing, Huaian 223003, China
| | - Huihui Hao
- Department
of Pharmacology, Jiangsu College of Nursing, Huaian 223003, China
| | - Shen Shen
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Jingwen Yang
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Siting Wang
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Yuping Sun
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Jiaqi Xian
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Zhitao Shao
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Tingming Fu
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| |
Collapse
|
11
|
Zhou Y, Zhang D, Cheng H, Wu J, Liu J, Feng W, Peng C. Repairing gut barrier by traditional Chinese medicine: roles of gut microbiota. Front Cell Infect Microbiol 2024; 14:1389925. [PMID: 39027133 PMCID: PMC11254640 DOI: 10.3389/fcimb.2024.1389925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Gut barrier is not only part of the digestive organ but also an important immunological organ for the hosts. The disruption of gut barrier can lead to various diseases such as obesity and colitis. In recent years, traditional Chinese medicine (TCM) has gained much attention for its rich clinical experiences enriched in thousands of years. After orally taken, TCM can interplay with gut microbiota. On one hand, TCM can modulate the composition and function of gut microbiota. On the other hand, gut microbiota can transform TCM compounds. The gut microbiota metabolites produced during the actions of these interplays exert noticeable pharmacological effects on the host especially gut barrier. Recently, a large number of studies have investigated the repairing and fortifying effects of TCM on gut barriers from the perspective of gut microbiota and its metabolites. However, no review has summarized the mechanism behand this beneficiary effects of TCM. In this review, we first briefly introduce the unique structure and specific function of gut barrier. Then, we summarize the interactions and relationship amidst gut microbiota, gut microbiota metabolites and TCM. Further, we summarize the regulative effects and mechanisms of TCM on gut barrier including physical barrier, chemical barrier, immunological barrier, and microbial barrier. At last, we discuss the effects of TCM on diseases that are associated gut barrier destruction such as ulcerative colitis and type 2 diabetes. Our review can provide insights into TCM, gut barrier and gut microbiota.
Collapse
Affiliation(s)
- Yaochuan Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlu Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Yang YN, Zhan JG, Cao Y, Wu CM. From ancient wisdom to modern science: Gut microbiota sheds light on property theory of traditional Chinese medicine. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:413-444. [PMID: 38937158 DOI: 10.1016/j.joim.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
The property theory of traditional Chinese medicine (TCM) has been practiced for thousands of years, playing a pivotal role in the clinical application of TCM. While advancements in energy metabolism, chemical composition analysis, machine learning, ion current modeling, and supercritical fluid technology have provided valuable insight into how aspects of TCM property theory may be measured, these studies only capture specific aspects of TCM property theory in isolation, overlooking the holistic perspective inherent in TCM. To systematically investigate the modern interpretation of the TCM property theory from multidimensional perspectives, we consulted the Chinese Pharmacopoeia (2020 edition) to compile a list of Chinese materia medica (CMM). Then, using the Latin names of each CMM and gut microbiota as keywords, we searched the PubMed database for relevant research on gut microbiota and CMM. The regulatory patterns of different herbs on gut microbiota were then summarized from the perspectives of the four natures, the five flavors and the meridian tropism. In terms of the four natures, we found that warm-natured medicines promoted the colonization of specific beneficial bacteria, while cold-natured medicines boosted populations of some beneficial bacteria while suppressing pathogenic bacteria. Analysis of the five flavors revealed that sweet-flavored and bitter-flavored CMMs positively influenced beneficial bacteria while inhibiting harmful bacteria. CMMs with different meridian tropism exhibited complex modulative patterns on gut microbiota, with Jueyin (Liver) and Taiyin (Lung) meridian CMMs generally exerting a stronger effect. The gut microbiota may be a biological indicator for characterizing the TCM property theory, which not only enhances our understanding of classic TCM theory but also contributes to its scientific advancement and application in healthcare. Please cite this article as: Yang YN, Zhan JG, Cao Y, Wu CM. From ancient wisdom to modern science: Gut microbiota sheds light on property theory of traditional Chinese medicine. J Integr Med 2024; 22(4): 413-445.
Collapse
Affiliation(s)
- Ya-Nan Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jia-Guo Zhan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Cao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chong-Ming Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
13
|
Liu Z, Gao J, Ban Y, Wan TT, Song W, Zhao W, Teng Y. Synergistic effect of paeoniflorin combined with luteolin in alleviating Lipopolysaccharides-induced acute lung injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118022. [PMID: 38453101 DOI: 10.1016/j.jep.2024.118022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/14/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute lung injury (ALI) is an acute multifactorial infectious disease caused by trauma, pneumonia, shock and sepsis. Paeoniae Radix Rubra (Paeonia lactiflora Pall. or Paeonia veitchii Lynch, Chishao in Chinese, CS) and Salviae Miltiorrhizae Radix et Rhizoma (Salvia miltiorrhiza Bge., Lamiaceae, Danshen in Chinese, DS) are common traditional Chinese medicines (TCMs). CS-DS herb pair has been widely used to promote blood circulation and eliminate blood stasis in Chinese clinical practice, appearing in a variety of prescriptions. However, it is still unclear for the effect and active ingredients of the herb pair on ALI. AIM OF THE STUDY The study investigated the effect and active ingredients of CS-DS herb pair and demonstrated the synergistic effect and mechanisms of the active ingredients. MATERIALS AND METHODS Lipopolysaccharides (LPS)-stimulated RAW264.7 macrophage cells and BALB/c mice were used to establish an ALI model to investigate the effect of CS-DS herb pair on ALI. Network pharmacology and molecular docking were used to analyze the active ingredients and potential mechanisms of the herb pair. The synergistic effects and mechanisms of active ingredients on ALI were validated by in vitro and in vivo experiments. RESULTS CS-DS herb pair had a synergistic effect on LPS-induced ALI. Based on the network pharmacology, the compounds paeoniflorin and luteolin were screened. Both paeoniflorin and luteolin had good affinity for NF-κB and MAPK by molecular docking. LPS stimulation of RAW264.7 cells resulted in a significant increase in ROS, NO, TNF-α, IL-6 and IL-1β, while the paeoniflorin combined with luteolin significantly reduced their expressions. In the LPS-induced ALI model, the combination also reduced the expression of inflammatory factors and oxidative stress levels. Furthermore, LPS activated the NF-κB and MAPK signaling pathways, whereas the combination decreased the expression of proteins in both pathways. CONCLUSION CS-DS herb pair alleviated LPS-induced ALI with the active ingredients paeoniflorin and luteolin, which suppressed inflammation and oxidative stress via regulation of NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Zhen Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.
| | - Junling Gao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Yuxuan Ban
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Ting Ting Wan
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Wenjuan Song
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Wanshun Zhao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China; National & Local United Engineering Laboratory of TCM Advanced Manufacturing Technology, Tasly Pharmaceutical Group Co. Ltd., Tianjin, China.
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.
| |
Collapse
|
14
|
Zhang H, Wang X, Zhao L, Zhang K, Cui J, Xu G. Biochanin a ameliorates DSS-induced ulcerative colitis by improving colonic barrier function and protects against the development of spontaneous colitis in the Muc2 deficient mice. Chem Biol Interact 2024; 395:111014. [PMID: 38648921 DOI: 10.1016/j.cbi.2024.111014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/25/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
There is an increasing appreciation that colonic barrier function is closely related to the development and progression of colitis. The mucus layer is a crucial component of the colonic barrier, responsible for preventing harmful bacteria from invading the intestinal epithelium and causing inflammation. Furthermore, a defective mucus barrier is also a significant characteristic of ulcerative colitis (UC). Biochanin A (BCA), an isoflavonoid, has garnered increasing interest due to its significant biological activities. However, the impact of BCA on UC has not been reported yet. In this study, we used a dextran sodium sulfate (DSS)-induced ulcerative colitis model and the Muc2 deficient (Muc2-/-) mice spontaneous colitis model to explore the mechanisms of BCA in the treatment of UC. Here, we verified that DSS-induced UC was observably attenuated and spontaneous colitis in Muc2-/- mice was relieved by BCA. Treatment with BCA improved colitis-related symptoms and reduced intestinal permeability by upregulating the levels of goblet cells and tight junction (TJ) proteins. In addition, we confirmed that BCA promotes autophagy through the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/Unc-51-like kinase 1 (ULK1) pathway, thereby alleviating DSS-induced UC. In addition, the administration of BCA was able to reduce apoptosis and promote proliferation by suppressing Cleaved Caspase-3 (Cleaved Cas-3) expression, and increasing PCNA and Ki67 levels. Further research revealed that BCA treatment ameliorated spontaneous colitis and alleviated epithelial damage in Muc2-/- mice by restoring the intestinal barrier and promoting autophagy. Our results demonstrated that BCA alleviated UC by enhancing intestinal barrier function and promoting autophagy. These findings indicate that BCA may be a novel treatment alternative for UC.
Collapse
Affiliation(s)
- Haina Zhang
- Department of Rehabilitation, The Second Hospital of Jilin University, Jilin University, Changchun, 130000, PR China
| | - Xueqi Wang
- Department of Cell Biology and Biophysics, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130000, PR China
| | - Linxian Zhao
- Department of General Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, 130000, PR China
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, 130000, PR China
| | - Jiaming Cui
- Changchun University of Chinese Medicine, Jilin University, Changchun, 130000, PR China
| | - Guangmeng Xu
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, 130000, PR China.
| |
Collapse
|
15
|
Wang T, Liu X, Zhang W, Wang J, Wang T, Yue W, Ming L, Cheng J, Sun J. Traditional Chinese medicine treats ulcerative colitis by regulating gut microbiota, signaling pathway and cytokine: Future novel method option for pharmacotherapy. Heliyon 2024; 10:e27530. [PMID: 38501018 PMCID: PMC10945194 DOI: 10.1016/j.heliyon.2024.e27530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Background Ulcerative colitis (UC) is a chronic non-specific inflammatory disease with intestinal tract as the main site. The pathogenic of UC has not yet been clarified, and multiple mechanisms can lead to the pathogenesis of UC. Traditional Chinese medicine (TCM) offers an opportunity for UC treatment. TCM has become the preferred treatment for UC with characteristics of multiple targets, multiple pathways and high safety. This review attempted to summarize the characteristics of TCM (compound prescriptions, single Chinese herbs, and active ingredients) for UC treatment and discussed their pathogenesis based on analyzing the UC-related gut microbiota, signaling pathway and cytokine. In order to provide more systematic and diverse reference for TCM in the prevention and treatment of UC, and provide theoretical reference for clinical treatment of UC. Materials and methods The information was acquired from different databases, including Web of Science, PubMed, CNKI, Wanfang, and VIP databases. We then focused on the recent research progress in UC treatment by TCM. Finally, the deficiencies and future perspectives are proposed. Results Modern pharmacological studies have shown that the compound prescriptions (strengthening spleen, clearing heat and removing dampness, clearing heat and removing toxin), single Chinese herbs (replenishing Qi, clearing heat, tonifying blood, etc.), and active ingredients (alkaloids, polysaccharides, flavonoids, polyphenols, terpenes, etc.) have an efficiency in UC treatment by regulating gut microbiota, signaling pathway and cytokine. Conclusions TCM can achieve its purpose of UC prevention and treatment by acting in multiple ways, and TCM deserves further research and development in this field.
Collapse
Affiliation(s)
- Tiancheng Wang
- College of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xinyue Liu
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Weijie Zhang
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jing Wang
- Department of Accounting, Hongshan College, Nanjing University of Finance and Economics, Nanjing, 210003, China
| | - Tingting Wang
- Yancheng Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, 224000, China
| | - Wei Yue
- Yancheng Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, 224000, China
| | - Lan Ming
- Yancheng Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, 224000, China
| | - Jun Cheng
- Department of Infectious Diseases, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Juan Sun
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
16
|
Liu Z, Qin X, Nong K, Fang X, Zhang B, Chen W, Wang Z, Wu Y, Shi H, Wang X, Zhang H. Oral administration of LfcinB alleviates DSS-induced colitis by improving the intestinal barrier and microbiota. Food Funct 2024; 15:2038-2051. [PMID: 38293816 DOI: 10.1039/d3fo05236b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Ulcerative colitis (UC) is a kind of inflammatory bowel disease (IBD) that often recurs and is difficult to cure, and no drugs with few side effects are available to treat this disease. LfcinB is a small molecular peptide obtained by the hydrolysis of bovine lactoferrin in the digestive tract of animals. It has strong antibacterial and anti-inflammatory activities. However, direct evidence that LfcinB improves the condition of colitis in mice is rarely reported. In this study, UC was induced in mice by adding 2.5% dextran sulfate (DSS) to drinking water and LfcinB was orally administered. The results showed that oral administration of LfcinB improved colonic tissue damage and inflammatory cell infiltration, increased the expression of tight junction proteins, and down-regulated the phosphorylation of proteins related to the NF-κB/MAPK inflammatory signalling pathway in mice. It also significantly suppressed the relative abundance of potentially pathogenic bacteria (Bacteroides, Barnesiella and Escherichia) in the intestinal flora. In conclusion, oral administration of LfcinB significantly alleviated DSS-induced UC. This may be related to the regulation of inflammatory signalling pathways and gut microbial composition by LfcinB.
Collapse
Affiliation(s)
- Zhineng Liu
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China.
| | - Xinyun Qin
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China.
| | - Keyi Nong
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China.
| | - Xin Fang
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China.
| | - Bin Zhang
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China.
| | - Wanyan Chen
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China.
| | - Zihan Wang
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China.
| | - Yijia Wu
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China.
| | - Huiyu Shi
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China.
| | - Xuemei Wang
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China.
| | - Haiwen Zhang
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China.
| |
Collapse
|
17
|
Zhang F, Zhou K, Yuan W, Sun K. Radix Bupleuri-Radix Paeoniae Alba Inhibits the Development of Hepatocellular Carcinoma through Activation of the PTEN/PD-L1 Axis within the Immune Microenvironment. Nutr Cancer 2023; 76:63-79. [PMID: 37909316 DOI: 10.1080/01635581.2023.2276525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/29/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
OBJECTIVE This study investigated how Radix Bupleuri-Radix Paeoniae Alba (BP) was active against hepatocellular carcinoma (HCC). METHODS Traditional Chinese medicine systems pharmacology (TCMSP) database was employed to determine the active ingredients of BP and potential targets against HCC. Molecular docking analysis verified the binding activity of PTEN with BP ingredients. H22 cells were used to establish an HCC model in male balb/c mice. Immunofluorescence staining, immunohistochemistry, flow cytometry, western blotting, enzyme-linked immunosorbent assay, and real-time quantitative PCR were used to study changes in proliferation, apoptosis, PTEN levels, inflammation, and T-cell differentiation in male balb/c mice. RESULTS The major active ingredients in BP were found to be quercetin, kaempferol, isorhamnetin, stigmasterol, and beta-sitosterol. Molecular docking demonstrated that these five active BP ingredients formed a stable complex with PTEN. BP exhibited an anti-tumor effect in our HCC mouse model. BP was found to increase the CD8+ and IFN-γ+/CD4+ T cell levels while decreasing the PD-1+/CD8+ T and Treg cell levels in HCC mice. BP up-regulated the IL-6, IFN-γ, and TNF-α levels but down-regulated the IL-10 levels in HCC mice. After PTEN knockdown, BP-induced effects were abrogated. CONCLUSION BP influenced the immune microenvironment through activation of the PTEN/PD-L1 axis, protecting against HCC.
Collapse
Affiliation(s)
- Fan Zhang
- Department of TCM, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Kun Zhou
- Department of Hepatology, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Wei Yuan
- Department of Hepatology, The First Affiliated Hospital of Hu'nan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Kewei Sun
- Department of Hepatology, The First Affiliated Hospital of Hu'nan University of Traditional Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
18
|
Yan B, Zheng X, Wang Y, Yang J, Zhu X, Qiu M, Xia K, Wang Y, Li M, Li S, Ma X, Xie J, Li F, Fu T, Li W. Liposome-Based Silibinin for Mitigating Nonalcoholic Fatty Liver Disease: Dual Effects via Parenteral and Intestinal Routes. ACS Pharmacol Transl Sci 2023; 6:1909-1923. [PMID: 38093834 PMCID: PMC10714430 DOI: 10.1021/acsptsci.3c00210] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a clinicopathological entity that is typically characterized by intrahepatic ectopic steatosis. Nowadays, NAFLD has surpassed viral hepatitis and become the most common chronic liver disease worldwide, which poses a great threat to human health. Silibinin (Sil), a well-known natural product, has been widely used in clinical treatment for liver disorders and exhibited therapeutic potential for NAFLD. However, the suitability of Sil for NAFLD treatment still requires further investigation due to its limited absorption and low bioavailability. This study aimed to construct a Sil-loaded liposome (Sil-Lip) to overcome the limitations of Sil, thereby enhancing its beneficial effects on NAFLD and then investigate the underlying mechanisms of action of Sil-Lip. Herein, Sil-Lip was fabricated by a well-established thin-film dispersion method and carefully characterized, followed by evaluating their therapeutic efficacy using high-fat diet-induced NAFLD mice and free fatty acid -stimulated HepG2 cells. Then, liver transcriptome analysis and 16S ribosomal RNA (16S rRNA) sequencing were utilized to elucidate the potential mechanisms of action of Sil-Lip. Our data indicated that Sil-Lip harbored good gastrointestinal tract stability, mucus layer permeation, and excellent oral absorption and bioavailability. In vivo and in vitro NAFLD models demonstrated that Sil-Lip had better effects in alleviating lipid metabolism disorders, insulin resistance, and inflammation than did Sil alone. Further investigations revealed that the beneficial effects of Sil-Lip were mediated by modulating intrahepatic insulin resistance-related and nuclear factor-kappa B (NF-κB) signaling pathways and extrahepatic gut microbiota. Our study confirmed that Sil-Lip can effectively improve the absorption and bioavailability of Sil, resultantly potentiating its ameliorative effects on NAFLD through modulating intrahepatic insulin resistance-related and NF-κB signaling pathways and extrahepatic gut microbiota.
Collapse
Affiliation(s)
- Baofei Yan
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
- School
of Pharmacy, Jiangsu Health Vocational College, Nanjing 211800, China
| | - Xian Zheng
- Department
of Pharmacy, Affiliated Kunshan Hospital
of Jiangsu University, Kunshan 215399, China
| | - Yun Wang
- Department
of Dermatology, Affiliated Huai’an Hospital of Xuzhou Medical
University, The Second People’s Hospital
of Huai’an, Huai’an 223002, China
| | - Jingwen Yang
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Xingyu Zhu
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Mengmeng Qiu
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Kexin Xia
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Yongan Wang
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Mian Li
- Shandong
Medicinal Biotechnology Centre, Shandong
First Medical University, Ji’nan 271016, China
| | - Sipan Li
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Xinai Ma
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Jianjun Xie
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Fengtao Li
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Tingming Fu
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Wei Li
- Zhejiang
Provincial Key Laboratory of Medical Genetics, College of Laboratory
Medicine and Life Sciences, Wenzhou Medical
University, Wenzhou 325035, China
| |
Collapse
|
19
|
Yan BF, Pan LF, Quan YF, Sha Q, Zhang JZ, Zhang YF, Zhou LB, Qian XL, Gu XM, Li FT, Wang T, Liu J, Zheng X. Huangqin decoction alleviates lipid metabolism disorders and insulin resistance in nonalcoholic fatty liver disease by triggering Sirt1/NF-κB pathway. World J Gastroenterol 2023; 29:4744-4762. [PMID: 37664157 PMCID: PMC10473922 DOI: 10.3748/wjg.v29.i31.4744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a clinicopathological entity characterized by intrahepatic ectopic steatosis. As a consequence of increased consumption of high-calorie diet and adoption of a sedentary lifestyle, the incidence of NAFLD has surpassed that of viral hepatitis, making it the most common cause of chronic liver disease globally. Huangqin decoction (HQD), a Chinese medicinal formulation that has been used clinically for thousands of years, has beneficial outcomes in patients with liver diseases, including NAFLD. However, the role and mechanism of action of HQD in lipid metabolism disorders and insulin resistance in NAFLD remain poorly understood. AIM To evaluate the ameliorative effects of HQD in NAFLD, with a focus on lipid metabolism and insulin resistance, and to elucidate the underlying mechanism of action. METHODS High-fat diet-induced NAFLD rats and palmitic acid (PA)-stimulated HepG2 cells were used to investigate the effects of HQD and identify its potential mechanism of action. Phytochemicals in HQD were analyzed by high-performance liquid chromatography (HPLC) to identify the key components. RESULTS Ten primary chemical components of HQD were identified by HPLC analysis. In vivo, HQD effectively prevented rats from gaining body and liver weight, improved the liver index, ameliorated hepatic histological aberrations, decreased transaminase and lipid profile disorders, and reduced the levels of pro-inflammatory factors and insulin resistance. In vitro studies revealed that HQD effectively alleviated PA-induced lipid accumulation, inflammation, and insulin resistance in HepG2 cells. In-depth investigation revealed that HQD triggers Sirt1/NF-κB pathway-modulated lipogenesis and inflammation, contributing to its beneficial actions, which was further corroborated by the addition of the Sirt1 antagonist EX-527 that compromised the favorable effects of HQD. CONCLUSION In summary, our study confirmed that HQD mitigates lipid metabolism disorders and insulin resistance in NAFLD by triggering the Sirt1/NF-κB pathway.
Collapse
Affiliation(s)
- Bao-Fei Yan
- College of Pharmacy, Jiangsu Health Vocational College, Nanjing 211800, Jiangsu Province, China
| | - Lan-Fen Pan
- Department of Pathology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu Province, China
| | - Yi-Fang Quan
- Department of Education and Science, The First People's Hospital of Taicang, Kunshan 215400, Jiangsu Province, China
| | - Qian Sha
- Department of Pharmacy, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
| | - Jing-Zheng Zhang
- College of Pharmacy, Jiangsu Health Vocational College, Nanjing 211800, Jiangsu Province, China
| | - Yi-Feng Zhang
- School of Pharmacy, Nantong University, Nantong 226019, Jiangsu Province, China
| | - Li-Bing Zhou
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu Province, China
| | - Xi-Long Qian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Xiao-Mei Gu
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu Province, China
| | - Feng-Tao Li
- College of Pharmacy, Jiangsu Health Vocational College, Nanjing 211800, Jiangsu Province, China
| | - Ting Wang
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu Province, China
| | - Jia Liu
- College of Pharmacy, Jiangsu Health Vocational College, Nanjing 211800, Jiangsu Province, China
| | - Xian Zheng
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu Province, China
| |
Collapse
|
20
|
Miao Y, Fan X, Wei L, Wang B, Diao F, Fu J, Zhuang P, Zhang Y. Lizhong decoction ameliorates pulmonary infection secondary to severe traumatic brain injury in rats by regulating the intestinal physical barrier and immune response. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116346. [PMID: 36898448 DOI: 10.1016/j.jep.2023.116346] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The pathogenesis of pulmonary infection secondary to severe traumatic brain injury (sTBI) is closely related to damage to the intestinal barrier. Lizhong decoction (LZD) is a prominent traditional Chinese medicine (TCM) that is widely used in clinical treatment to regulate gastrointestinal movement and enhance resistance. Nevertheless, the role and mechanism of LZD in lung infection secondary to sTBI have yet to be elucidated. AIM OF THE STUDY Here, we evaluate the therapeutic effect of LZD on pulmonary infection secondary to sTBI in rats and discuss potential regulatory mechanisms. MATERIALS AND METHODS The chemical constituents of LZD were analyzed by ultra-high performance liquid chromatography-Q Exactive-tandem mass spectrometry(UPLC-QE-MS/MS). The efficacy of LZD on rats with lung infection secondary to sTBI was examined by changes in brain morphology, coma time, brain water content, mNSS score, colony counts, 16S rRNA/RNaseP/MRP30 kDa(16S/RPP30), myeloperoxidase (MPO) content and pathology of lung tissue. The concentration of fluorescein isothiocyanate(FITC)-dextran in serum and the contents of secretory immunoglobulin A (SIgA) in colon tissue were detected by enzyme-linked immunosorbent assay (ELISA). Subsequently, Alcian Blue Periodic acid Schiff (AB-PAS) was used to detect colonic goblet cells. Immunofluorescence (IF) was used to detect the expression of tight junction proteins. The proportions of CD3+ cell, CD4+CD8+ T cells, CD45+ cell and CD103+ cells in the colon were analyzed by flow cytometry (FC). In addition, colon transcriptomics were analyzed by Illumina mRNA-Seq sequencing. Real-time quantitative polymerase chain reaction (qRT‒PCR) was used to verify the genes associated with LZD alleviation of intestinal barrier function. RESULTS Twenty-nine chemical constituents of LZD were revealed with UPLC-QE-MS/MS analysis. Administration of LZD significantly reduced colony counts, 16S/RPP30 and MPO content in lung infection secondary to sTBI rats. In addition, LZD also reduced the serum FITC-glucan content and the SIgA content of the colon. Additionally, LZD significantly increased the number of colonic goblet cells and the expression of tight junction proteins. Furthermore, LZD significantly decreased the proportion of CD3+ cell, CD4+CD8+ T cells,CD45+ and CD103+ cells in colon tissue. Transcriptomic analysis identified 22 upregulated genes and 56 downregulated genes in sTBI compared to the sham group. The levels of seven genes were recovered after LZD treatment. qRT‒PCR successfully validated two genes (Jchain and IL-6) at the mRNA level. CONCLUSION LZD can improves sTBI secondary lung infection by regulating the intestinal physical barrier and immune response. Thees results suggested that LZD may be a prospective treatment for pulmonary infection secondary to sTBI.
Collapse
Affiliation(s)
- Yulu Miao
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuejin Fan
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Luge Wei
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Wang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fengyin Diao
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiafeng Fu
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Pengwei Zhuang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yanjun Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Department of Integrated Rehabilitation, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
21
|
Li J, Zhou Z, Liu D, Dong H, Zhou J, Wu J. Therapeutic effects of Zhuling Jianpi capsule on experimental ulcerative colitis and characterization of its chemical constituents and metabolomics using UHPLC-Q-TOF-MS. Heliyon 2023; 9:e16553. [PMID: 37274655 PMCID: PMC10238897 DOI: 10.1016/j.heliyon.2023.e16553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023] Open
Abstract
Zhuling Jianpi Capsule (Zhuling) is a traditional Chinese medicinal formula used to treat symptoms such as abdominal pain, bloating and diarrhea associated with inflammatory bowel disease (IBD). However, the protective effects of Zhuling on experimental ulcerative colitis (UC) and the effective substance responsible for its efficacy have rarely been reported. In this study, we evaluated the therapeutic effects of orally administrated Zhuling on DSS-induced UC in mice. The chemical constituents and metabolomics of Zhuling were qualitatively analyzed by ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS). The results showed that Zhuling treatment markedly alleviated DSS-induced clinical symptoms, restrained the secretion of pro-inflammatory cytokines, and improved intestinal epithelial barrier function. Furthermore, a total of 167 compounds have been identified or characterized, and 120 prototype components were detected in the urine, plasma, bile and feces of mice. Among them, altogether 26 representative prototypes were associated with 139 metabolites via the corresponding biotransformation pathways, and both of them mainly contained flavonoids, alkaloids, organic acids, monoterpenes, phenylpropanoids, triterpenoids, sesquiterpenoids and anthraquinones. Finally, 12 potent compounds mainly containing flavonoids, terpenoids and phenylpropanoids were screened out as potential quality control index components and might be the main substances that exert a pharmacological effect. Our data indicated that Zhuling administration prominently alleviates DSS-induced colitis in mice. Additionally, the chemical and metabolic profiling provided helpful information on the potential pharmacodynamic substances of Zhuling, which can be further investigated in the future.
Collapse
Affiliation(s)
- Jian Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
- Jinling Pharmaceutical Co., Ltd., Nanjing, China
| | - Ziqi Zhou
- Department of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Dan Liu
- Department of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Haijuan Dong
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing, China
| | - Jianping Zhou
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Jie Wu
- Department of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
22
|
Shu LZ, Ding YD, Xue QM, Cai W, Deng H. Direct and indirect effects of pathogenic bacteria on the integrity of intestinal barrier. Therap Adv Gastroenterol 2023; 16:17562848231176427. [PMID: 37274298 PMCID: PMC10233627 DOI: 10.1177/17562848231176427] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/01/2023] [Indexed: 06/06/2023] Open
Abstract
Bacterial translocation is a pathological process involving migration of pathogenic bacteria across the intestinal barrier to enter the systemic circulation and gain access to distant organs. This phenomenon has been linked to a diverse range of diseases including inflammatory bowel disease, pancreatitis, and cancer. The intestinal barrier is an innate structure that maintains intestinal homeostasis. Pathogenic infections and dysbiosis can disrupt the integrity of the intestinal barrier, increasing its permeability, and thereby facilitating pathogen translocation. As translocation represents an essential step in pathogenesis, a clear understanding of how barrier integrity is disrupted and how this disruption facilitates bacterial translocation could identify new routes to effective prophylaxis and therapy. In this comprehensive review, we provide an in-depth analysis of bacterial translocation and intestinal barrier function. We discuss currently understood mechanisms of bacterial-enterocyte interactions, with a focus on tight junctions and endocytosis. We also discuss the emerging concept of bidirectional communication between the intestinal microbiota and other body systems. The intestinal tract has established 'axes' with various organs. Among our regulatory systems, the nervous, immune, and endocrine systems have been shown to play pivotal roles in barrier regulation. A mechanistic understanding of intestinal barrier regulation is crucial for the development of personalized management strategies for patients with bacterial translocation-related disorders. Advancing our knowledge of barrier regulation will pave the way for future research in this field and novel clinical intervention strategies.
Collapse
Affiliation(s)
- Lin-Zhen Shu
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
| | - Yi-Dan Ding
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
| | - Qing-Ming Xue
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
| | - Wei Cai
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
- Department of Pathology, the Fourth Affiliated
Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated
Hospital of Nanchang University, No. 133 South Guangchang Road, Nanchang
330003, Jiangxi Province, China
- Tumor Immunology Institute, Nanchang
University, Nanchang, China
| |
Collapse
|
23
|
Zhao J, Wu R, Wei P, Ma Z, Pei H, Hu J, Wen F, Wan L. Ethanol extract of Piper wallichii ameliorates DSS-induced ulcerative colitis in mice: Involvement of TLR4/NF-κB/COX-2 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116293. [PMID: 36806346 DOI: 10.1016/j.jep.2023.116293] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/29/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Piper wallichii (family: Piperaceae), a folk herbal medicine with anti-inflammatory and anti-thrombotic properties, has been traditionally used to treat rheumatic arthralgia, lumbocrural pain, gastrointestinal flatulence, and other intestinal diseases in China, Thailand, and India. However, there is no scientific report on the efficacy and potential mechanisms of Piper wallichii for ulcerative colitis (UC). AIM OF THE STUDY The study aims to investigate the therapeutic effect and possible molecular mechanisms of the ethanol extract of Piper wallichii (EEPW) on DSS-induced UC in BALB/c mice. MATERIALS AND METHODS The main components in EEPW were characterized by UPLC-QE-Orbitrap-MS. Subsequently, the anti-inflammatory effect of EEPW in vitro was preliminarily evaluated in RAW264.7 cells stimulated with LPS. UC model mice were triggered by free access to 4% DSS aqueous solution for 12 consecutive days, and simultaneously, EEPW (25, 50, and 100 mg/kg) and tofacitinib (positive control, 30 mg/kg) were orally administrated, respectively. The therapeutic efficacy of EEPW on UC was assessed by body weight, DAI, colon length, and pathological morphology. Besides, we investigated the effects of EEPW on intestinal barrier function, inflammatory factors, and immune systems of UC mice through immunohistochemistry (IHC), flow cytometry, and other techniques. Moreover, the expression of related proteins in the TLR4/NF-κB/COX-2 pathway was analyzed by Western blot. RESULTS A total of 14 components were identified in the positive and negative modes, including isofutoquinol A (11), hancinone C (12), and futoquinol (14) which characterized by references. In the RAW264.7 cells experiments, the extract significantly suppressed the levels of TNF-α and IL-6. More importantly, EEPW distinctly improved the symptoms of DSS-induced UC mice as reflected by a significant recovery from body weight, colon length, pathological injuries of the colon, and so on. Further research found that EEPW remarkably restored the levels of occludin, promoted proliferation, and inhibited apoptosis in colon to maintain the integrity of intestinal barrier. In addition, the down-regulation of TNF-α and IL-1β in colon, Th1 and Th17 cells in spleen, as well as the up-regulation of IL-10 in colon and Th2 cells in spleen were distinctly observed in EEPW-treated groups. Furthermore, the protein expression of TLR4, p-IκB-α, p-p65, and COX-2 were significantly inhibited by EEPW. CONCLUSIONS This study confirmed for the first time that EEPW effectively ameliorated DSS-induced UC in mice, which might be related to improving intestinal barrier function, maintaining the levels of inflammatory factors, and regulating the immune system. In addition, we found that the anti-inflammatory effect of EEPW on UC mice was involved in the TLR4/NF-κB/COX-2 signaling pathway. In conclusion, Piper wallichii can be used as a candidate for the treatment of UC.
Collapse
Affiliation(s)
- Jiajia Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Panhong Wei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ziyan Ma
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Heying Pei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jingwen Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Feiyan Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Li Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
24
|
Nan Q, Ye Y, Tao Y, Jiang X, Miao Y, Jia J, Miao J. Alterations in metabolome and microbiome signatures provide clues to the role of antimicrobial peptide KT2 in ulcerative colitis. Front Microbiol 2023; 14:1027658. [PMID: 36846795 PMCID: PMC9947474 DOI: 10.3389/fmicb.2023.1027658] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/10/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Ulcerative colitis (UC) is an inflammatory disease of the intestinal tract with unknown etiology. Both genetic and environmental factors are involved in the occurrence and development of UC. Understanding changes in the microbiome and metabolome of the intestinal tract is crucial for the clinical management and treatment of UC. Methods Here, we performed metabolomic and metagenomic profiling of fecal samples from healthy control mice (HC group), DSS (Dextran Sulfate Sodium Salt) -induced UC mice (DSS group), and KT2-treated UC mice (KT2 group). Results and Discussion In total, 51 metabolites were identified after UC induction, enriched in phenylalanine metabolism, while 27 metabolites were identified after KT2 treatment, enriched in histidine metabolism and bile acid biosynthesis. Fecal microbiome analysis revealed significant differences in nine bacterial species associated with the course of UC, including Bacteroides, Odoribacter, and Burkholderiales, which were correlated with aggravated UC, and Anaerotruncus, Lachnospiraceae, which were correlated with alleviated UC. We also identified a disease-associated network connecting the above bacterial species with UC-associated metabolites, including palmitoyl sphingomyelin, deoxycholic acid, biliverdin, and palmitoleic acid. In conclusion, our results indicated that Anaerotruncus, Lachnospiraceae, and Mucispirillum were protective species against DSS-induced UC in mice. The fecal microbiomes and metabolomes differed significantly among the UC mice and KT2-treated and healthy-control mice, providing potential evidence for the discovery of biomarkers of UC.
Collapse
Affiliation(s)
- Qiong Nan
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan Ye
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan Tao
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xinyi Jiang
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yinglei Miao
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yinglei Miao,
| | - Jie Jia
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China,Jie Jia,
| | - Jiarong Miao
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,*Correspondence: Jiarong Miao,
| |
Collapse
|
25
|
Gao L, Xia X, Shuai Y, Zhang H, Jin W, Zhang X, Zhang Y. Gut microbiota, a hidden protagonist of traditional Chinese medicine for acute ischemic stroke. Front Pharmacol 2023; 14:1164150. [PMID: 37124192 PMCID: PMC10133705 DOI: 10.3389/fphar.2023.1164150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Acute ischemic stroke (AIS) is one of the leading diseases causing death and disability worldwide, and treatment options remain very limited. Traditional Chinese Medicine (TCM) has been used for thousands of years to treat ischemic stroke and has been proven to have significant efficacy, but its mechanism of action is still unclear. As research related to the brain-gut-microbe axis progresses, there is increasing evidence that the gut microbiota plays an important role during AIS. The interaction between TCM and the gut microbiota has been suggested as a possible key link to the therapeutic effects of TCM. We have compiled and reviewed recent studies on the relationship between AIS, TCM, and gut microbiota, with the expectation of providing more ideas to elucidate the mechanism of action of TCM in the treatment of AIS.
Collapse
Affiliation(s)
- Lin Gao
- Emergency Department, Chengdu University of Traditional Chinese Medicine Affiliated Hospital, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiuwen Xia
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yinqi Shuai
- Emergency Department, Chengdu University of Traditional Chinese Medicine Affiliated Hospital, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hong Zhang
- Emergency Department, Chengdu University of Traditional Chinese Medicine Affiliated Hospital, Chengdu, Sichuan, China
| | - Wei Jin
- Emergency Department, Chengdu University of Traditional Chinese Medicine Affiliated Hospital, Chengdu, Sichuan, China
| | - Xiaoyun Zhang
- Emergency Department, Chengdu University of Traditional Chinese Medicine Affiliated Hospital, Chengdu, Sichuan, China
- *Correspondence: Yi Zhang, ; Xiaoyun Zhang,
| | - Yi Zhang
- Geriatric Department, Chengdu University of Traditional Chinese Medicine Affiliated Hospital, Chengdu, Sichuan, China
- *Correspondence: Yi Zhang, ; Xiaoyun Zhang,
| |
Collapse
|
26
|
Hui D, Liu L, Azami NLB, Song J, Huang Y, Xu W, Wu C, Xie D, Jiang Y, Bian Y, Sun M. The spleen-strengthening and liver-draining herbal formula treatment of non-alcoholic fatty liver disease by regulation of intestinal flora in clinical trial. Front Endocrinol (Lausanne) 2022; 13:1107071. [PMID: 36743913 PMCID: PMC9892935 DOI: 10.3389/fendo.2022.1107071] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE As a metabolic disease, one important feature of non-alcoholic fatty liver disease (NAFLD) is the disturbance of the intestinal flora. Spleen-strengthening and liver-draining formula (SLF) is a formula formed according to the theory of "One Qi Circulation" (Qing Dynasty, 1749) of Traditional Chinese Medicine (TCM), which has shown significant therapeutic effect in patients with NAFLD in a preliminary clinical observation. In this study, we aim to explore the mechanism of SLF against NAFLD, especially its effect on glucolipid metabolism, from the perspective of intestinal flora. METHODS A prospective, randomized, controlled clinical study was designed to observe the efficacy and safety of SLF in the treatment of NAFLD. The study participants were randomly and evenly divided into control group and treatment group (SLF group). The control group made lifestyle adjustments, while the SLF group was treated with SLF on top of the control group. Both groups were participated in the study for 12 consecutive weeks. Furthermore, the feces of the two groups were collected before and after treatment. The intestinal flora of each group and healthy control (HC) were detected utilizing 16S rRNA gene sequencing. RESULTS Compared with the control group, the SLF group showed significant improvements in liver function, controlled attenuation parameter (CAP), and liver stiffness measurement (LSM), meanwhile, patients had significantly lower lipid and homeostasis model assessment of insulin resistance (HOMA-IR) with better security. Intestinal flora 16S rRNA gene sequencing results indicated reduced flora diversity and altered species abundance in patients with NAFLD. At the phylum level, Desulfobacterota levels were reduced. Although Firmicutes and Bacteroidetes did not differ significantly between HC and NAFLD, when grouped by alanine transaminase (ALT) and aspartate transaminase (AST) levels in NAFLD, Firmicutes levels were significantly higher in patients with ALT or AST abnormalities, while Bacteroidetes was significantly lower. Clinical correlation analysis showed that Firmicutes positively correlated with gender, age, ALT, AST, LSM, and Fibroscan-AST (FAST) score, while the opposite was true for Bacteroidetes. At the genus level, the levels of Alistipes, Bilophila, Butyricimonas, Coprococcus, Lachnospiraceae_NK4A136 group Phascolarctobacterium, Ruminococcus, UCG-002, and UCG-003 were reduced, whereas abundance of Tyzzerella increased. There was no statistically significant difference in Firmicutes and Bacteroidota levels in the SLF group before and after treatment, but both bacteria tended to retrace. At the genus level, Coprococcus (Lachnospiraceae family), Lachnospiraceae_NK4A136 group (Lachnospiraceae family), and Ruminococcus (Ruminococcaceae family) were significantly higher in the SLF group after treatment, and there was also a tendency for Bilophila (Desulfovibrionaceae family) to be back-regulated toward HC. CONCLUSIONS SLF can improve liver function and glucolipid metabolism in patients with NAFLD and lower down liver fat content to some extent. SLF could be carried out by regulating the disturbance of intestinal flora, especially Coprococcus, Lachnospiraceae_NK4A136 group, and Ruminococcus genus.
Collapse
Affiliation(s)
- Dengcheng Hui
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Liu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nisma Lena Bahaji Azami
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingru Song
- Department of Gastroenterology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yanping Huang
- Department of Good Clinical Practice Office, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wan Xu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Wu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dong Xie
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yulang Jiang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqin Bian
- Arthritis Institute of Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingyu Sun
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Mingyu Sun,
| |
Collapse
|