1
|
Cuan X, Yang X, Wang J, Sheng J, Wang X, Huang Y. Discovery of flavonoid-containing compound Lupalbigenin as anti-NSCLC cancer agents via suppression of EGFR and ERK1/2 pathway. Bioorg Chem 2024; 153:107808. [PMID: 39288634 DOI: 10.1016/j.bioorg.2024.107808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
Epidermal growth factor receptor exon 20 insertions (EGFR Ex20ins) driver mutations in non-small cell lung cancer (NSCLC) is insensitive to EGFR tyrosine kinase inhibitors (TKIs). Therefore, it is necessary to develop more novel strategy to address the limitations of existing therapies targeting EGFR-mutated NSCLC. Lupalbigenin (LB), a flavonoid compound extracted from Derris scandens, has shown preclinical activity in lung cancer. However, the activity of LB in Ex20ins-driven tumors has not yet been elucidated. In this study, a series of stable BaF/3 cell-line that contains a high proportion (>90 %) of EGFR-eGFP Ex20ins were generated using an IL3-deprivation method. Ba/F3 cell models harboring dissimilar Ex20ins were used to characterize the antineoplastic mechanism of LB. Molecular docking confirmed that the LB could effectively bind to key target EGFR. The in vitro anticancer activity of LB was investigated in engineered Ba/F3 cells bearing diverse uncommon EGFR mutations. LB was shown to be more potent in inhibiting the viability of various uncommon EGFR-mutated cell lines. Mechanistic studies disclosed that LB repressed EGFR phosphorylation and downstream survival pathways in Ba/F3 cells expressing EGFR Ex20ins, resulting in caspase activation by activating the intrinsic apoptotic pathway. Further analyses showed that LB significantly induced G0/G1 cell cycle arrest and apoptosis in cells. LB also reduced the protein expression levels of CDK4, CDK6, CDK8, cyclin D1, cyclin A2, and Bcl2 and promoted the expression of cytochrome C, p27, and p53. In summary, we explored the possible potential targets of LB through network pharmacology and verified the target using in vitro experiments. Furthermore, our results demonstrated that LB showed potential anti-Ex20ins cancer activity through suppression of the EGFR and ERK1/2 signaling pathway in Ba/F3 cells bearing two to three amino acid insertion mutations. These findings suggested that LB might be valuable for further investigation as a potential candidate in the treatment of associated diseases.
Collapse
Affiliation(s)
- Xiangdan Cuan
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; Sanmenxia Polytechnic, Sanmenxia, China
| | - Xingying Yang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jinxian Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China.
| | - Xuanjun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.
| | - Yanping Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; College of Science, Yunnan Agricultural University, Kunming, China.
| |
Collapse
|
2
|
Liao L, Wang N, Mei L, Long B, Luo T, Wang MQ, Lu L, Dong HB. Total synthesis and antibacterial evaluation of lupalbigenin and isolupalbigenin. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024:1-12. [PMID: 39570290 DOI: 10.1080/10286020.2024.2428794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024]
Abstract
Lupalbigenin (1) is an antibacterial isoflavone isolated from Maclura cochinchinensis (Lour.) Corner (Moraceae). In this study, we achieved the first gram-scale synthesis of lupalbigenin (1) from commercially available genistein (2), with a yield of 47.7%. The key step was a Claisen rearrangement that simultaneously installed two prenyl groups at the C-6 and C-11 positions of lupalbigenin (1). Antimicrobial activity assays revealed that lupalbigenin (1) exhibited rapid bactericidal activity, inhibited α-hemolysin and biofilm formation, and disrupted bacterial cell membranes. These findings suggest that lupalbigenin (1) is a promising candidate for the development of novel antibiotics to combat bacterial infections.
Collapse
Affiliation(s)
- Li Liao
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Na Wang
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Ling Mei
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Bin Long
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Tong Luo
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Meng-Qi Wang
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Lan Lu
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Hong-Bo Dong
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, China
| |
Collapse
|
3
|
Chen X, Ma R, Wu W, Gao R, Shu Y, Dong M, Guo M, Tang D, Li D, Ji S. Wighteone, a prenylated flavonoid from licorice, inhibits growth of SW480 colorectal cancer cells by allosteric inhibition of Akt. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118195. [PMID: 38641080 DOI: 10.1016/j.jep.2024.118195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/31/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice is a frequently used herbal medicine worldwide, and is used to treat cough, hepatitis, cancer and influenza in clinical practice of traditional Chinese medicine. Modern pharmacological studies indicate that prenylated flavonoids play an important role in the anti-tumor activity of licorice, especially the tumors in stomach, lung, colon and liver. Wighteone is one of the main prenylated flavonoids in licorice, and its possible effect and target against colorectal cancer have not been investigated. AIM OF THE STUDY This study aimed to investigate the anti-colorectal cancer effect and underlying mechanism of wighteone. MATERIALS AND METHODS SW480 human colorectal cancer cells were used to evaluate the in vitro anti-colorectal cancer activity and Akt regulation effect of wighteone by flow cytometry, phosphoproteomic and Western blot analysis. Surface plasmon resonance (SPR) assay, molecular docking and dynamics simulation, and kinase activity assay were used to investigate the direct interaction between wighteone and Akt. A nude mouse xenograft model with SW480 cells was used to verify the in vivo anti-colorectal cancer activity of wighteone. RESULTS Wighteone inhibited phosphorylation of Akt and its downstream kinases in SW480 cells, which led to a reduction in cell viability. Wighteone had direct interaction with both PH and kinase domains of Akt, which locked Akt in a "closed" conformation with allosteric inhibition, and Gln79, Tyr272, Arg273 and Lys297 played the most critical role due to their hydrogen bond and hydrophobic interactions with wighteone. Based on Akt overexpression or activation in SW480 cells, further mechanistic studies suggested that wighteone-induced Akt inhibition led to cycle arrest, apoptosis and autophagic death of SW480 cells. Moreover, wighteone exerted in vivo anti-colorectal cancer effect and Akt inhibition activity in the nude mouse xenograft model. CONCLUSION Wighteone could inhibit growth of SW480 cells through allosteric inhibition of Akt, which led to cell cycle arrest, apoptosis and autophagic death. The results contributed to understanding of the anti-tumor mechanism of licorice, and also provided a rationale to design novel Akt allosteric inhibitors for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Xiaofei Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Ruili Ma
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Weiguo Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Ran Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Yikang Shu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Mingxin Dong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510640, China.
| | - Mengzhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Danhua Li
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Shuai Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
4
|
Li Y, Brown SE, Li Y, Cheng Q, Wu H, Wei S, Li X, Lin C, Liu Z, Mao Z. Profiles of phenolics and their synthetic pathways in Asparagus officinalis L. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 8:100187. [PMID: 38186632 PMCID: PMC10767369 DOI: 10.1016/j.fochms.2023.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024]
Abstract
The synthetic pathways of some phenolics compounds in asparagus have been reported, however, the diversified phenolics compounds including their modification and transcription regulation remains unknown. Thus, multi-omics strategies were applied to detect the phenolics profiles, contents, and screen the key genes for phenolics biosynthesis and regulation in asparagus. A total of 437 compounds, among which 204 phenolics including 105 flavonoids and 82 phenolic acids were detected with fluctuated concentrations in roots (Rs), spears (Ss) and flowering twigs (Fs) of the both green and purple cultivars. Based on the detected phenolics profiles and contents correlated to the gene expressions of screened synthetic enzymes and regulatory TFs, a full phenolics synthetic pathway of asparagus was proposed for the first time, essential for future breeding of asparagus and scaled healthy phenolics production using synthetic biological strategies.
Collapse
Affiliation(s)
- Yuping Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - Sylvia E. Brown
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - Yunbin Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - Qin Cheng
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - He Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - Shugu Wei
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610023, China
| | - Xingyu Li
- Institute of Improvement and Utilization of Characteristic Resource Plants, YNAU, Kunming, China
- The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, China
| | - Chun Lin
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
- Institute of Improvement and Utilization of Characteristic Resource Plants, YNAU, Kunming, China
| | - Zhengjie Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
- Institute of Improvement and Utilization of Characteristic Resource Plants, YNAU, Kunming, China
| | - Zichao Mao
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
- Institute of Improvement and Utilization of Characteristic Resource Plants, YNAU, Kunming, China
- The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, China
| |
Collapse
|
5
|
Yang X, Liu Z, Xu X, He M, Xiong H, Liu L. Casticin induces apoptosis and cytoprotective autophagy while inhibiting stemness involving Akt/mTOR and JAK2/STAT3 pathways in glioblastoma. Phytother Res 2024; 38:305-320. [PMID: 37869765 DOI: 10.1002/ptr.8048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/10/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023]
Abstract
Glioblastoma (GBM) is the most common malignant glioma. However, the current systemic drugs cannot completely cure GBM. Casticin is a methoxylated flavonol compound isolated from a traditional Chinese medicine Vitex rotundifolia L.f. and exhibits a strong antitumor activity in multiple human malignancies. This study was aimed to explore the effects and underlying mechanisms of casticin in GBM. The MTT assay and colony formation was used to evaluate the casticin-induced cell viability in GBM cells. Apoptosis was assessed by ANNEXIV/PI staining assay. Autophagy was analyzed by transmission electron microscopy and immunofluorescence assays. GBM stem cell (GSC) was analyzed by tumor-sphere formation assay and ALDEFLUOR assay. The anti-GBM effect of casticin was also determined by the U87MG xenograft model. Casticin inhibited tumor cell growth in vitro and in vivo, as well as significantly induced apoptosis and autophagy. Autophagy inhibition augmented casticin-induced apoptosis. Casticin also reduced the GSC population by suppressing Oct4, Nanog, and Sox2. Mechanistically, casticin inhibited Akt/mTOR and JAK2/STAT3 signal pathways. The antitumor effect of casticin in GBM was demonstrated by inducing apoptosis, autophagy, and reducing population of GSCs; thus, it may be a potential GBM therapeutic agent for future clinical usage.
Collapse
Affiliation(s)
- Xun Yang
- Department of Traumatic Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital, Shenzhen University; School of Biomedical Engineering, Shenzhen University Medical School), Shenzhen, China
- Department of Spine Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zeyuan Liu
- Department of Orthopedics, Shanxi Bethune Hospital, Taiyuan City, China
| | - Xu Xu
- Department of Traumatic Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital, Shenzhen University; School of Biomedical Engineering, Shenzhen University Medical School), Shenzhen, China
| | - Meng He
- Department of Traumatic Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital, Shenzhen University; School of Biomedical Engineering, Shenzhen University Medical School), Shenzhen, China
| | - Hongtao Xiong
- Department of Hand & Microvascular Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Lijun Liu
- Department of Traumatic Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital, Shenzhen University; School of Biomedical Engineering, Shenzhen University Medical School), Shenzhen, China
| |
Collapse
|
6
|
Lu D, Yang Y, Du Y, Zhang L, Yang Y, Tibenda JJ, Nan Y, Yuan L. The Potential of Glycyrrhiza from "Medicine Food Homology" in the Fight against Digestive System Tumors. Molecules 2023; 28:7719. [PMID: 38067451 PMCID: PMC10708138 DOI: 10.3390/molecules28237719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Glycyrrhiza has a long history of applications and a wide range of pharmacological effects. It is known as the "king of all herbs". Glycyrrhiza is effective in clearing heat, detoxifying, relieving cough, and tonifying qi and has good bioactivity in multiple inflammatory, immune, and tumor diseases. This review aims to summarize the origin, distribution, and anti-digestive system tumor mechanism of glycyrrhiza and its homologous applications in medicine and food. The active compounds include triterpenoids, flavonoids, and coumarins, which are widely used in clinical treatments, disease prevention, and daily foods because of their "enhancement of efficacy" and "reduction of toxicity" against digestive system tumors. This paper reviews the use of glycyrrhiza in digestive system tumors and provides an outlook on future research and clinical applications.
Collapse
Affiliation(s)
- Doudou Lu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China;
| | - Yating Yang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, China;
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (Y.D.); (J.J.T.)
| | - Lei Zhang
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China;
| | - Yi Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China;
| | - Joanna Japhet Tibenda
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (Y.D.); (J.J.T.)
| | - Yi Nan
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China;
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (Y.D.); (J.J.T.)
| |
Collapse
|
7
|
Rathod S, Shinde K, Porlekar J, Choudhari P, Dhavale R, Mahuli D, Tamboli Y, Bhatia M, Haval KP, Al-Sehemi AG, Pannipara M. Computational Exploration of Anti-cancer Potential of Flavonoids against Cyclin-Dependent Kinase 8: An In Silico Molecular Docking and Dynamic Approach. ACS OMEGA 2023; 8:391-409. [PMID: 36643495 PMCID: PMC9835631 DOI: 10.1021/acsomega.2c04837] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Over the centuries, cancer has been considered one of the significant health threats. It holds the position in the list of deadliest diseases over the globe. In women, breast cancer is the most common among many cancers and is the second most common cancer all over the world, while lung cancer is the first. Cyclin-dependent kinase 8 (CDK8) has been identified as a critical oncogenic driver that is found in breast cancer and associated with tumor progression. Flavonoids were virtually screened against CDK8 using molecular docking, drug-likeness, ADMET prediction, and a molecular dynamics (MD) simulation approach to determine the potential flavonoid structure against CDK8. The results indicated that ZINC000005854718 showed the highest negative binding affinity of -10.7 kcal/mol with the targeted protein and passed all the drug-likeness parameters. Performed molecular dynamics simulation showed that docked complex systems have good conformational stability over 100 ns in different temperatures (298, 300, 305, 310, and 320 K). The comparison between calculated binding free energy via MM/PB(GB)SA methods and binding affinity calculated via molecular docking suggested tight binding of ZINC000005854718 with targeted protein. The results concluded that ZINC000005854718 has drug-like properties with tight and stable binding with the targeted protein.
Collapse
Affiliation(s)
- Sanket Rathod
- Department
of Pharmaceutical Chemistry, Bharati Vidyapeeth
College of Pharmacy, Kolhapur 416 013, Maharashtra, India
| | - Ketaki Shinde
- Department
of Quality Assurance Techniques, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune 411 038, Maharashtra, India
| | - Jaykedar Porlekar
- Department
of Pharmaceutics, Bharati Vidyapeeth College
of Pharmacy, Kolhapur 416 013, Maharashtra, India
| | - Prafulla Choudhari
- Department
of Pharmaceutical Chemistry, Bharati Vidyapeeth
College of Pharmacy, Kolhapur 416 013, Maharashtra, India
| | - Rakesh Dhavale
- Department
of Pharmaceutics, Bharati Vidyapeeth College
of Pharmacy, Kolhapur 416 013, Maharashtra, India
| | - Deepak Mahuli
- Department
of Pharmacology, Bharati Vidyapeeth College
of Pharmacy, Kolhapur 416 013, Maharashtra, India
| | - Yasinalli Tamboli
- Wockhardt
Research Centre, D-4, MIDC, Chikalthana, Aurangabad 431 006, Maharashtra, India
| | - Manish Bhatia
- Department
of Pharmaceutical Chemistry, Bharati Vidyapeeth
College of Pharmacy, Kolhapur 416 013, Maharashtra, India
| | - Kishan P. Haval
- Department
of Chemistry, Dr. Babasaheb Ambedkar Marathwada
University Sub Campus, Osmanabad 413501, Maharashtra, India
| | | | | |
Collapse
|