1
|
Tian H, Lu J, Liang F, Ding H, Xiao C. Unassuming Lichens: Nature's Hidden Antimicrobial Warriors. Int J Mol Sci 2025; 26:3136. [PMID: 40243922 DOI: 10.3390/ijms26073136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/15/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
In a hidden corner of the Earth, an ongoing war is being waged: a battle between lichens and microorganisms. Lichens, ancient and unique symbiotic organisms, with their unique survival wisdom, are bursting with vitality in extreme environments. Over 80% of secondary metabolites in lichens are not found in other organisms, making lichen-derived compounds a promising resource for the development of new drugs, particularly against drug-resistant microorganisms, due to their distinctive chemical structures and biological activities. This article aims to explore in depth the lichen species exhibiting antimicrobial activity and their antimicrobial metabolites and focus on unique compounds such as divaricatic acid, usnic acid, vulpinic acid, salazinic acid, and rhizocarpic acid, which demonstrate significant antimicrobial effects against various resistant microorganisms, including methicillin-resistant Staphylococcus aureus, drug-resistant Mycobacterium tuberculosis, and Candida albicans and other drug-resistant microorganisms. Meanwhile, this paper discusses the potential applications and challenges associated with the use of lichens in medicine, agriculture, and food industry, aiming to elucidate these mysterious organisms for lichen researchers and enthusiasts while promoting further research and applications in the field of antimicrobials.
Collapse
Affiliation(s)
- Hongqiao Tian
- College of Public Health, Dali University, Dali 671003, China
| | - Junlin Lu
- College of Public Health, Dali University, Dali 671003, China
| | - Fangrong Liang
- College of Public Health, Dali University, Dali 671003, China
| | - Haiyan Ding
- College of Public Health, Dali University, Dali 671003, China
| | - Chaojiang Xiao
- College of Pharmacy, Dali University, Dali 671003, China
| |
Collapse
|
2
|
Tatapudi KK, Bandi S, Kotta R, Kanivebagilu Shankaranarayana V, Ramalingam V, Babu KS. Quantitation of Usnic Acid from Three Usnea Species, Its Commercial Formulations Using High-Performance Thin-Layer Chromatography-Mass Spectrometry (HPTLC-MS) and Their Metabolite Profiling Using UPLC-QTof-MSE. J AOAC Int 2025; 108:180-188. [PMID: 39352784 DOI: 10.1093/jaoacint/qsae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 08/30/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND The genus Usnea (Parmeliaceae; lichenized Ascomycetes) is pale grayish-green fruticose lichens, which grow as leafless mini-shrubs and comprise about 360 species. Most of the Usnea species are edible and are utilized in preparation of traditional foods as well as in medicines to combat a wide range of ailments. OBJECTIVE This study aimed to quantify usnic acid (UA) in three Usnea spp. (Usnea ghattensis [UG], Usnea orientalis [UO], and Usnea undulata [UU]) using HPTLC-MS. Additionally, chemical profiling of acetone extracts using UPLC-QTof-MSE resulted in the identification of 16 compounds based on their MS/MS fragmentation patterns. METHODS Hyphenated techniques, HPTLC-MS, and UPLC-QTof-MSE have been proposed to quantify UA and analyze metabolites in crude extracts qualitatively. This method allowed tentative characterization of metabolites from Usnea spp. RESULTS The quantification study showed excellent linearity for UA at 0.25-1 µg/band with a correlation coefficient r2 > 0.99, and the LOD and LOQ were found to be 51.7 and 156.6 ng/band, respectively. Furthermore, UPLC-QTof-MSE analysis of crude extracts led to identification of lichen secondary metabolites through their exact molecular masses and MS/MS fragmentation studies. CONCLUSION The present study summarizes an HPTLC method for quantification of UA in three different Usnea spp. Additionally, two herbal formulations containing Usnea spp. as an ingredient, the developed method was validated as per the ICH guidelines and further UPLC-QTof-MSE analysis facilitated tentative characterization of 16 different secondary metabolites based on their MS/MS fragmentation patterns. HIGHLIGHTS A rapid HPTLC method for quantification of UA in three different Usnea spp., along with two herbal formulations, and metabolite profiling using UPLC-QTof-MSE.
Collapse
Affiliation(s)
- Kiran Kumar Tatapudi
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500 007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamala Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - Siva Bandi
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500 007, Telangana, India
| | - Ramulu Kotta
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500 007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamala Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | | | - Vaikundamoorthy Ramalingam
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500 007, Telangana, India
| | - Katragadda Suresh Babu
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500 007, Telangana, India
| |
Collapse
|
3
|
Torres-Benítez A, Ortega-Valencia JE, Jara-Pinuer N, Ley-Martínez JS, Velarde SH, Pereira I, Sánchez M, Gómez-Serranillos MP, Sasso FC, Simirgiotis M, Caturano A. Antioxidant and Antidiabetic Potential of the Antarctic Lichen Gondwania regalis Ethanolic Extract: Metabolomic Profile and In Vitro and In Silico Evaluation. Antioxidants (Basel) 2025; 14:298. [PMID: 40227259 PMCID: PMC11939487 DOI: 10.3390/antiox14030298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 04/15/2025] Open
Abstract
Lichens are an important source of diverse and unique secondary metabolites with recognized biological activities through experimental and computational procedures. The objective of this study is to investigate the metabolomic profile of the ethanolic extract of the Antarctic lichen Gondwania regalis and evaluate its antioxidant and antidiabetic activities with in vitro, in silico, and molecular dynamics simulations. Twenty-one compounds were tentatively identified for the first time using UHPLC/ESI/QToF/MS in negative mode. For antioxidant activity, the DPPH assay showed an IC50 value of 2246.149 µg/mL; the total phenolic content was 31.9 mg GAE/g, the ORAC assay was 13.463 µmol Trolox/g, and the FRAP assay revealed 6.802 µmol Trolox/g. Regarding antidiabetic activity, enzyme inhibition yielded IC50 values of 326.4513 µg/mL for pancreatic lipase, 19.49 µg/mL for α-glucosidase, and 585.216 µg/mL for α-amylase. Molecular docking identified sekikaic acid as the most promising compound, with strong binding affinities to catalytic sites, while molecular dynamics confirmed its stability and interactions. Toxicological and pharmacokinetic analyses supported its drug-like potential without significant risks. These findings suggest that the ethanolic extract of Gondwania regalis is a promising source of bioactive compounds for developing natural antioxidant and antidiabetic therapies.
Collapse
Affiliation(s)
- Alfredo Torres-Benítez
- Carrera de Química y Farmacia, Facultad de Ciencias, Universidad San Sebastián, General Lagos 1163, Valdivia 5090000, Chile
| | - José Erick Ortega-Valencia
- Tecnológico Nacional de México, Instituto Tecnológico Superior de Xalapa, Sección 5ª Reserva Territorial S/N Col. Santa Bárbara, Xalapa-Enríquez 91096, Veracruz, Mexico; (J.E.O.-V.); (J.S.L.-M.); (S.H.V.)
| | - Nicolás Jara-Pinuer
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia 5090000, Chile; (N.J.-P.); (M.S.)
| | - Jaqueline Stephanie Ley-Martínez
- Tecnológico Nacional de México, Instituto Tecnológico Superior de Xalapa, Sección 5ª Reserva Territorial S/N Col. Santa Bárbara, Xalapa-Enríquez 91096, Veracruz, Mexico; (J.E.O.-V.); (J.S.L.-M.); (S.H.V.)
| | - Salvador Herrera Velarde
- Tecnológico Nacional de México, Instituto Tecnológico Superior de Xalapa, Sección 5ª Reserva Territorial S/N Col. Santa Bárbara, Xalapa-Enríquez 91096, Veracruz, Mexico; (J.E.O.-V.); (J.S.L.-M.); (S.H.V.)
| | - Iris Pereira
- Instituto de Ciencias Biológicas, Universidad de Talca, Av. Lircay s/n, Talca 3460000, Chile;
| | - Marta Sánchez
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (M.S.); (M.P.G.-S.)
| | - María Pilar Gómez-Serranillos
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (M.S.); (M.P.G.-S.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Mario Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia 5090000, Chile; (N.J.-P.); (M.S.)
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| |
Collapse
|
4
|
Berköz M, Aslan A, Yunusoğlu O, Krośniak M, Francik R. Hepatoprotective potentials of Usnea longissima Ach. and Xanthoparmelia somloensis (Gyelnik) Hale extracts in ethanol-induced liver injury. Drug Chem Toxicol 2025; 48:136-149. [PMID: 39322224 DOI: 10.1080/01480545.2024.2407867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/09/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
In our study, the antioxidant and anti-inflammatory effects of different lichen applications were investigated in rats using an experimental ethanol toxicity model. 48 rats were used in the study and they were divided into 6 groups with 8 rats in each group. These groups were: control, ethanol (2 g/kg), ethanol + Usnea longissima Ach. (200 mg/kg), ethanol + Usnea longissima Ach. (400 mg/kg), ethanol + Xanthoparmelia somloensis (Gyelnik) Hale (100 mg/kg) and ethanol + Xanthoparmelia somloensis (Gyelnik) Hale (200 mg/kg). The experimental work continued for 21 days. Lichen extracts and ethanol were administered by gavage to rats divided into groups. According to the experimental protocol, the experimental animals were sacrificed and their liver tissues were isolated. Biochemical parameters in serum, histological examinations, oxidative stress and inflammation parameters both at biochemical and molecular level in liver tissues were performed. Oxidative stress and inflammatory response were increased in the liver tissue of rats treated with ethanol for 21 days, and liver functions were impaired. It was found that U. longissima and X. somloensis extracts showed good antioxidant activity and conferred protective effects against ethanol-induced oxidative stress and inflammation. This could be attributed to the presence of secondary metabolites in the extract, which act as natural antioxidants and could be responsible for increasing the defence mechanisms against free radical production induced by ethanol administration.
Collapse
Affiliation(s)
- Mehmet Berköz
- Department of Biochemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Turkey
| | - Ali Aslan
- Department of Pharmacology, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Turkey
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| | - Oruç Yunusoğlu
- Department of Medical Pharmacology, Faculty of Medicine, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Mirosław Krośniak
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Cracow, Poland
| | - Renata Francik
- Department of Bioorganic Chemistry, Medical College, Jagiellonian University, Cracow, Poland
| |
Collapse
|
5
|
Liu M, Tian H, Zhu J, Ding H. Antibacterial mechanism of the methanol extract of Thamnolia subuliformis (Ehrh.) W. Culb against Staphylococcus aureus. Lett Appl Microbiol 2024; 77:ovae073. [PMID: 39085052 DOI: 10.1093/lambio/ovae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/26/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024]
Abstract
Thamnolia subuliformis (Ehrh.) W. Culb is a species of lichen with edible and medicinal applications in China. Our previous studies demonstrated that the methanol extract of Thamnolia subuliformis (METS) exhibits broad antibacterial activity and stability against foodborne pathogens. This study aimed to investigate the antibacterial mechanism of METS against Staphylococcus aureus using nontargeted metabolomics, focusing on cell wall and membrane damage. The results revealed that the minimum inhibitory concentration (MIC) was 0.625 mg ml-1 and that METS had good biosafety at this concentration. METS caused significant damage to the cell wall and membrane integrity, based on both morphological observation by electron microscopy and the leakage of alkaline phosphatase, protein, and nucleic acid in the cell cultures. Treatment with METS at the MIC disrupted the lipid metabolism of S. aureus, causing a decrease in the metabolism of various phospholipids and sphingolipids in the cell membrane and an increase in the ratio of saturated fatty acids to unsaturated fatty acids. Moreover, it influenced intracellular amino acid and energy metabolism. These results shed light on the antibacterial mechanism of METS against S. aureus while also serving as a reference for the further development of natural antibacterial compounds derived from Thamnolia subuliformis.
Collapse
Affiliation(s)
- Menglong Liu
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China
- Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China
| | - Hongqiao Tian
- Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China
| | - Jiana Zhu
- Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China
| | - Haiyan Ding
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China
- Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China
| |
Collapse
|
6
|
Torres-Benítez A, Ortega-Valencia JE, Hillmann-Eggers M, Sanchez M, Pereira I, Gómez-Serranillos MP, Simirgiotis MJ. Chemical composition and antioxidant, enzyme inhibition and cytoprotective activity of two Antarctic lichens of the genus Psoroma (Pannariaceae). Nat Prod Res 2024:1-14. [PMID: 38813688 DOI: 10.1080/14786419.2024.2360150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Lichens contain different types of chemical compounds with multiple biological activities that demonstrate their potential pharmacological use. This research aims to report the metabolomic identification of the ethanolic extracts of P. antarcticum and P. hypnorum, their antioxidant, enzyme inhibitory, and their cytoprotection activity. Sixteen metabolites were identified in P. antarcticum and twelve in P. hypnorum; the extracts reported variable antioxidant activity with IC50 >350 µg/mL in DPPH·, values >18 µmol Trolox/g in ORAC and >40 µmol Trolox/g in FRAP and a phenolic compound content >10 mg GAE/g, as well as significant results in cholinesterases, α-glucosidase, pancreatic lipase, α-amylase, and tyrosinase enzyme inhibition activities with IC50 ranging from 18 to 510 µg/mL, and which were complemented by molecular docking experiments. Both extracts showed improved cytoprotection at the concentrations of 0.5 to 1.0 μg/mL. This study contributes to the knowledge of the chemical diversity of Antarctic lichen extracts and their effectiveness in the evaluation of biological activities related to neurodegenerative diseases and metabolic syndrome.
Collapse
Affiliation(s)
- Alfredo Torres-Benítez
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | | | | | - Marta Sanchez
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Iris Pereira
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - María Pilar Gómez-Serranillos
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Mario J Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
7
|
Zhou Z, Li G, Gao L, Zhou Y, Xiao Y, Bi H, Yang H. Lichen pectin-containing polysaccharide from Xanthoria elegans and its ability to effectively protect LX-2 cells from H 2O 2-induced oxidative damage. Int J Biol Macromol 2024; 265:130712. [PMID: 38471602 DOI: 10.1016/j.ijbiomac.2024.130712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/11/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Xanthoria elegans, a drought-tolerant lichen, is the original plant of the traditional Chinese medicine "Shihua" and effectively treats a variety of liver diseases. However, thus far, the hepatoprotective effects of polysaccharides, the most important chemical constituents of X. elegans, have not been determined. The aim of this study was to screen the polysaccharide fraction for hepatoprotective activity by using free radical scavenging assays and a H2O2-induced Lieming Xu-2 cell (LX-2) oxidative damage model and to elucidate the chemical composition of the bioactive polysaccharide fraction. In the present study, three polysaccharide fractions (XEP-50, XEP-70 and XEP-90) were obtained from X. elegans by hot-water extraction, DEAE-cellulose anion exchange chromatography separation and ethanol gradient precipitation. Among the three polysaccharide fractions, XEP-70 exhibited the best antioxidant activity in free radical scavenging capacity and reducing power assays. Structural studies showed that XEP-70 was a pectin-containing heteropolysaccharide fraction that was composed mainly of (1 → 4)-linked and (1 → 4,6)-linked α-D-Glcp, (1 → 4)-linked α-D-GalpA, (1 → 2)-linked, (1 → 6)-linked and (1 → 2,6)-linked α-D-Manp, and (1 → 6)-linked and (1 → 2,6)-linked β-D-Galf. Furthermore, XEP-70 exhibited effectively protect LX-2 cells against H2O2-induced oxidative damage by enhancing cellular antioxidant capacity by activating the Nrf2/Keap1/ARE signaling pathway. Thus, XEP-70 has good potential to protect hepatic stellate cells against oxidative damage.
Collapse
Affiliation(s)
- Zheng Zhou
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang Li
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Gao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yubi Zhou
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuancan Xiao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hongxia Yang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Studzińska-Sroka E, Bulicz M, Henkel M, Rosiak N, Paczkowska-Walendowska M, Szwajgier D, Baranowska-Wójcik E, Korybalska K, Cielecka-Piontek J. Pleiotropic Potential of Evernia prunastri Extracts and Their Main Compounds Evernic Acid and Atranorin: In Vitro and In Silico Studies. Molecules 2023; 29:233. [PMID: 38202817 PMCID: PMC10780513 DOI: 10.3390/molecules29010233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Evernia prunastri is a lichen widely distributed in the Northern Hemisphere. Its biological properties still need to be discovered. Therefore, our paper focuses on studies of E. prunastri extracts, including its main metabolites evernic acid (EA) or atranorin (ATR). Phytochemical profiles using chromatographic analysis were confirmed. The antioxidant activity was evaluated using in vitro chemical tests and in vitro enzymatic cells-free tests, namely superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), and catalase (CAT). The anti-inflammatory potential using cyclooxygenase-2 (COX-2) and hyaluronidase were determined. The neuroprotective potential using acetylcholinesterase, (AChE), butyrylcholinesterase (BChE), and tyrosinase (Tyr) was estimated. The hypoglycemic activity was also confirmed (α-glucosidase). Principal component analysis was performed to determine the relationship between the biological activity of extracts. The inhibitory effect of EA and ATR on COX-2 AChE, BChE, Tyr, and α-glucosidase was evaluated using molecular docking techniques and confirmed for EA and ATR (besides α-glucosidase). The penetration of EA and ATR from extracts through the blood-brain barrier was confirmed using the parallel artificial membrane permeability assay blood-brain barrier test. In conclusion, depending on chemical surroundings and the concentration, the E. prunastri extracts, EA or ATR, showed attractive pleiotropic properties, which should be further investigated.
Collapse
Affiliation(s)
- Elżbieta Studzińska-Sroka
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| | - Magdalena Bulicz
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| | - Marika Henkel
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| | - Natalia Rosiak
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| | - Magdalena Paczkowska-Walendowska
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8 Str., 20-704 Lublin, Poland; (D.S.); (E.B.-W.)
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8 Str., 20-704 Lublin, Poland; (D.S.); (E.B.-W.)
| | - Katarzyna Korybalska
- Department of Patophysiology, Poznan University of Medical Science, Rokietnicka 8 Str., 60-806 Poznań, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| |
Collapse
|
9
|
Kumar TK, Siva B, Kiranmai B, Alli VJ, Jadav SS, Reddy AM, Boustie J, Le Devehat F, Tiwari AK, Suresh Babu K. Salazinic Acid and Norlobaridone from the Lichen Hypotrachyna cirrhata: Antioxidant Activity, α-Glucosidase Inhibitory and Molecular Docking Studies. Molecules 2023; 28:7840. [PMID: 38067568 PMCID: PMC10708527 DOI: 10.3390/molecules28237840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
The present study was intended for the identification of secondary metabolites in acetone extract of the lichen Hypotrachyna cirrhata using UPLC-ESI-QToF-MS/MS and the detection of bioactive compounds. This study led to the identification of 22 metabolites based on their MS/MS spectra, accurate molecular masses, molecular formula from a comparison of the literature database (DNP), and fragmentation patterns. In addition, potent antioxidant and α-glucosidase inhibitory potentials of acetone extract of H. cirrhata motivated us to isolate 10 metabolites, which were characterized as salazinic acid (11), norlobaridone (12), atranorin (13), lecanoric acid (14), lichesterinic acid (15), protolichesterinic acid (16), methyl hematommate (17), iso-rhizonic acid (18), atranol (19), and methylatratate (20) based on their spectral data. All these isolates were assessed for their free radicals scavenging, radical-induced DNA damage, and intestinal α-glucosidase inhibitory activities. The results indicated that norlobaridone (12), lecanoric acid (14), methyl hematommate (17), and atranol (19) showed potent antioxidant activity, while depsidones (salazinic acid (11), norlobaridone (12)) and a monophenolic compound (iso-rhizonic acid, (18)) displayed significant intestinal α-glucosidase inhibitory activities (p < 0.001), which is comparable to standard acarbose. These results were further correlated with molecular docking studies, which indicated that the alkyl chain of norlobaridione (12) is hooked into the finger-like cavity of the allosteric pocket; moreover, it also established Van der Waals interactions with hydrophobic residues of the allosteric pocket. Thus, the potency of norlobaridone to inhibit α-glucosidase enzyme might be associated with its allosteric binding. Also, MM-GBSA (Molecular Mechanics-Generalized Born Surface Area) binding free energies of salazinic acid (11) and norlobaridone (12) were superior to acarbose and may have contributed to their high activity compared to acarbose.
Collapse
Affiliation(s)
- Tatapudi Kiran Kumar
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; (T.K.K.); (B.S.); (B.K.); (V.J.A.); (S.S.J.); (A.K.T.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bandi Siva
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; (T.K.K.); (B.S.); (B.K.); (V.J.A.); (S.S.J.); (A.K.T.)
| | - Basani Kiranmai
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; (T.K.K.); (B.S.); (B.K.); (V.J.A.); (S.S.J.); (A.K.T.)
| | - Vidya Jyothi Alli
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; (T.K.K.); (B.S.); (B.K.); (V.J.A.); (S.S.J.); (A.K.T.)
| | - Surender Singh Jadav
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; (T.K.K.); (B.S.); (B.K.); (V.J.A.); (S.S.J.); (A.K.T.)
| | | | - Joël Boustie
- CNRS (Centre National de la Recherché Scientifique), ISCR (Institut des Sciences Chimiques de Rennes)-UMR6226, University of Rennes, 35000 Rennes, France;
| | - Françoise Le Devehat
- CNRS (Centre National de la Recherché Scientifique), ISCR (Institut des Sciences Chimiques de Rennes)-UMR6226, University of Rennes, 35000 Rennes, France;
| | - Ashok Kumar Tiwari
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; (T.K.K.); (B.S.); (B.K.); (V.J.A.); (S.S.J.); (A.K.T.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Katragadda Suresh Babu
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; (T.K.K.); (B.S.); (B.K.); (V.J.A.); (S.S.J.); (A.K.T.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
10
|
Torres-Benítez A, Ortega-Valencia JE, Jara-Pinuer N, Sanchez M, Vargas-Arana G, Gómez-Serranillos MP, Simirgiotis MJ. Antioxidant and antidiabetic activity and phytoconstituents of lichen extracts with temperate and polar distribution. Front Pharmacol 2023; 14:1251856. [PMID: 38026927 PMCID: PMC10646315 DOI: 10.3389/fphar.2023.1251856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
The objective of this research was to characterize the chemical composition of ethanolic extracts of the lichen species Placopsis contortuplicata, Ochrolechia frigida, and Umbilicaria antarctica, their antioxidant activity, and enzymatic inhibition through in vitro and molecular docking analysis. In total phenol content, FRAP, ORAC, and DPPH assays, the extracts showed significant antioxidant activity, and in in vitro assays for the inhibition of pancreatic lipase, α-glucosidase, and α-amylase enzymes, together with in silico studies for the prediction of pharmacokinetic properties, toxicity risks, and intermolecular interactions of compounds, the extracts evidenced inhibitory potential. A total of 13 compounds were identified by UHPLC-ESI-QTOF-MS in P. contortuplicata, 18 compounds in O. frigida, and 12 compounds in U. antarctica. This study contributes to the knowledge of the pool of bioactive compounds present in lichens of temperate and polar distribution and biological characteristics that increase interest in the discovery of natural products that offer alternatives for treatment studies of diseases related to oxidative stress and metabolic syndrome.
Collapse
Affiliation(s)
- Alfredo Torres-Benítez
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | | | - Nicolás Jara-Pinuer
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Marta Sanchez
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Gabriel Vargas-Arana
- Laboratorio de Química de Productos Naturales, Instituto de Investigaciones de la Amazonía Peruana, Avenue Abelardo Quiñones, Iquitos, Peru
- Facultad de Industrias Alimentarias, Universidad Nacional de la Amazonía Peruana, Iquitos, Peru
| | - María Pilar Gómez-Serranillos
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Mario J. Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
11
|
Lichen-Derived Diffractaic Acid Inhibited Dengue Virus Replication in a Cell-Based System. Molecules 2023; 28:molecules28030974. [PMID: 36770642 PMCID: PMC9918999 DOI: 10.3390/molecules28030974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Dengue is a mosquito-borne flavivirus that causes 21,000 deaths annually. Depsides and depsidones of lichens have previously been reported to be antimicrobials. In this study, our objective was to identify lichen-derived depsides and depsidones as dengue virus inhibitors. The 18 depsides and depsidones of Usnea baileyi, Usnea aciculifera, Parmotrema dilatatum, and Parmotrema tsavoense were tested against dengue virus serotype 2. Two depsides and one depsidone inhibited dengue virus serotype 2 without any apparent cytotoxicity. Diffractaic acid, barbatic acid, and Parmosidone C were three active compounds further characterized for their efficacies (EC50), cytotoxicities (CC50), and selectivity index (SI; CC50/EC50). Their EC50 (SI) values were 2.43 ± 0.19 (20.59), 0.91 ± 0.15 (13.33), and 17.42 ± 3.21 (8.95) μM, respectively. Diffractaic acid showed the highest selectivity index, and similar efficacies were also found in dengue serotypes 1-4, Zika, and chikungunya viruses. Cell-based studies revealed that the target was mainly in the late stage with replication and the formation of infectious particles. This report highlights that a lichen-derived diffractaic acid could become a mosquito-borne antiviral lead as its selectivity indices ranged from 8.07 to 20.59 with a proposed target at viral replication.
Collapse
|
12
|
Ureña-Vacas I, González-Burgos E, Divakar PK, Gómez-Serranillos MP. Lichen Depsides and Tridepsides: Progress in Pharmacological Approaches. J Fungi (Basel) 2023; 9:116. [PMID: 36675938 PMCID: PMC9866793 DOI: 10.3390/jof9010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Depsides and tridepsides are secondary metabolites found in lichens. In the last 10 years, there has been a growing interest in the pharmacological activity of these compounds. This review aims to discuss the research findings related to the biological effects and mechanisms of action of lichen depsides and tridepsides. The most studied compound is atranorin, followed by gyrophoric acid, diffractaic acid, and lecanoric acid. Antioxidant, cytotoxic, and antimicrobial activities are among the most investigated activities, mainly in in vitro studies, with occasional in silico and in vivo studies. Clinical trials have not been conducted using depsides and tridepsides. Therefore, future research should focus on conducting more in vivo work and clinical trials, as well as on evaluating the other activities. Moreover, despite the significant increase in research work on the pharmacology of depsides and tridepsides, there are many of these compounds which have yet to be investigated (e.g., hiascic acid, lassalic acid, ovoic acid, crustinic acid, and hypothamnolic acid).
Collapse
Affiliation(s)
| | - Elena González-Burgos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | | | - María Pilar Gómez-Serranillos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|