1
|
Dong Z, Jin W, Wang J, Yin H, Ma Y, Hu X, Wang J, Liu C, Wang W. A drug-drug co-amorphous system for highly improved solubility of breviscapine: an experimental and computational study. Sci Rep 2024; 14:31183. [PMID: 39732994 DOI: 10.1038/s41598-024-82524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
Drug-drug co-amorphous systems are a promising approach to improve the aqueous solubility of poorly water-soluble drugs. This study explores the combination of breviscapine (BRE) and matrine (MAT) form an amorphous salt, aiming to synergistically enhance the solubility and dissolution of BRE. In silico analysis of electrostatic potential and local ionization energy were conducted on BRE-MAT complex to predict the intermolecular interactions, and solvent-free energies were calculated using thermodynamic integration and density functional theory. The co-amorphous mixture, prepared by solvent evaporation, was characterized using various analytical techniques, including polarized microscopy, differential scanning calorimetry, and powder X-ray diffraction, confirming its amorphous nature. Fourier transform infrared spectroscopy and molecular dynamic simulations revealed strong hydrogen bonding, with a proton transfer from the carboxyl group of BRE to the tertiary amine nitrogen of MAT. The resulting co-amorphous salt demonstrated substantial solubility improvement (> 8000-fold in water) and enhanced in vitro dissolution of BRE. The study also confirmed that the co-amorphous salt maintained physical stability at 40 °C and 75% relative humidity over 6 months. These findings provide a viable strategy for developing drug-drug co-amorphous formulations to enhance solubility and stability, with significant potential for pharmaceutical applications.
Collapse
Affiliation(s)
- Zhi Dong
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Wenbin Jin
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
- Yunnan Key Laboratory of Southern Medicinal Utilization, Kunming, 650500, China
| | - Jiao Wang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Huiyun Yin
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Yan Ma
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Xixi Hu
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Jiali Wang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Chen Liu
- General Hospital of Ningxia Medical University, Yinchuan, 750004, China.
| | - Wenping Wang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China.
- Yunnan Key Laboratory of Southern Medicinal Utilization, Kunming, 650500, China.
| |
Collapse
|
2
|
Gao BB, Wang L, Li LZ, Fei ZQ, Wang YY, Zou XM, Huang MC, Lei SS, Li B. Beneficial effects of oxymatrine from Sophora flavescens on alleviating Ulcerative colitis by improving inflammation and ferroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118385. [PMID: 38797379 DOI: 10.1016/j.jep.2024.118385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sophora flavescens is often used in traditional Chinese medicine for skin issues, diarrhea, and vaginal itching (Plant names have been checked with http://www.the/plant/list.org on Feb 22nd, 2024). Oxymatrine (OY), a major bioactive compound from Sophora flavescens, is commonly used in China to treat ulcerative colitis, but its mechanisms are still unclear. AIM OF THE STUDY Recent studies have found that the crosstalk between ferroptosis and inflammation is an important mechanism in the pathogenesis of UC. The aim of this study was to investigate the potential underlying mechanisms of OY treatment on DSS-induced ulcerative colitis, specifically focusing on the processes of ferroptosis and inflammation. MATERIALS AND METHODS Bioinformatics methods were used to identify key targets of OY for ferroptosis and inflammation in ulcerative colitis, based on GEO data and FerrDb database. Then, 4% DSS solution was used to induce UC model. OY's impact on morphological changes was assessed using colon views, Hematoxylin and eosin (HE) staining, and transmission electron microscopy (TEM). Ferroptosis phenotype index and inflammations factors were detected by ELISA or chem-bio detection kits. The screen out hub related genes about ferroptosis and inflammation were verified by RT-PCR, immunohistochemistry (IHC), and western blotting (WB) respectively. RESULTS Bioinformatics results show that there are 16 key target genes involved in ferroptosis and inflammation interaction of OY treatment for UC, such as IL6, NOS2, IDO1, SOCS1, and DUOX. The results of animal experiments show that OY could depress inflammatory factors (IL-1β, IL-6, TNF-α, HMGB1, and NLRP3) and reduce iron deposition (Fe2+, GSH). Additionally, OY suppressed the hub genes or proteins expression involved in ferroptosis and inflammation, including IL-1β, IL-6, NOS2, HIF1A, IDO1, TIMP1, and DUOX2. CONCLUSION This present study combines bioinformatics, molecular biology, and animal experimental research evidently demonstrated that OY attenuates UC by improving ferroptosis and inflammation, mainly target to the expression of IL-1β, IL-6, NOS2, HIF1A, IDO1, TIMP1, and DUOX2.
Collapse
Affiliation(s)
- Bing Bing Gao
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310007, PR China
| | - Li Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250118, PR China
| | - Lin Zi Li
- Jingmen Central Hospital, Jingmen, Hubei, 48000, PR China
| | - Zhang Qing Fei
- University of California, Los Angeles, 90095, Los Angeles, USA
| | - Yu Yan Wang
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Xiao Ming Zou
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310003, PR China
| | - Min Cong Huang
- Hangzhou Medical College, Hangzhou, Zhejiang, 310053, PR China.
| | - Shan Shan Lei
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, PR China.
| | - Bo Li
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China.
| |
Collapse
|
3
|
Sun Z, Guo X, Li C, Ling J, Chang A, Zhao H, Zhuo X. Exploring the therapeutic mechanisms of resveratrol for treating arecoline-induced malignant transformation in oral epithelial cells: insights into hub targets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8290-8305. [PMID: 38934557 DOI: 10.1002/jsfa.13664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Betel nut chewing is a significant risk factor for oral cancer due to arecoline, its primary active component. Resveratrol, a non-flavonoid polyphenol, possesses anti-cancer properties. It has been shown to inhibit arecoline-induced oral malignant cells in preliminary experiments but the underlying mechanism remains unclear. This research therefore aimed to explore the potential therapeutic targets of resveratrol in treating arecoline-induced oral cancer. METHODS Data mining identified common targets and hub targets of resveratrol in arecoline-induced oral cancer. Gene set variation analysis (GSVA) was used to score and validate the expression and clinical significance of these hub targets in head and neck cancer (HNC) tissues. Molecular docking analysis was conducted on the hub targets. The effect of resveratrol intervention on hub targets was verified by experiments. RESULTS Sixty-one common targets and 15 hub targets were identified. Hub targets were highly expressed in HNC and were associated with unfavorable prognoses. They played a role in HNC metastasis, epithelial-mesenchymal transition, and invasion. Their expression also affected immune cell infiltration and correlated negatively with sensitivity to chemotherapeutic agents such as bleomycin and docetaxel. Experiments demonstrated that resveratrol down-regulated the expression of the hub targets, inhibited their proliferation and invasion, and induced apoptosis. CONCLUSION Resveratrol inhibits the arecoline-induced malignant phenotype of oral epithelial cells by regulating the expression of some target genes, suggesting that resveratrol may be used not only as an adjuvant treatment for oral cancer, but also as an adjuvant for oral cancer prevention due to its low toxicity and high efficacy. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhen Sun
- Department of otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaopeng Guo
- Department of otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Changya Li
- Department of otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Junjun Ling
- Department of otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Aoshuang Chang
- Department of otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Houyu Zhao
- Department of otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xianlu Zhuo
- Department of otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
4
|
Alade AA, Ahmed SA, Mujwar S, Kikiowo B, Akinnusi PA, Olubode SO, Olufemi OM, Ohilebo AA. Identification of levomenthol derivatives as potential dipeptidyl peptidase-4 inhibitors: a comparative study with gliptins. J Biomol Struct Dyn 2024; 42:4029-4047. [PMID: 37261796 DOI: 10.1080/07391102.2023.2217927] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/20/2023] [Indexed: 06/02/2023]
Abstract
Dipeptidyl peptidase-4 (DPP4) inhibitors are a potent therapeutic treatment for type 2 diabetes mellitus (T2DM). There is a family of compounds used as DPP4 inhibitors (DPP4Is) called gliptins. They bind tightly to DPP4 to form an inactive protein-ligand complex. However, there remains a need to identify novel DPP4Is that are more efficacious and safer due to the increasing prevalence of T2DM and the undesirable side effects of gliptins. To identify potential DPP4Is, we screened over 1800 novel compounds in a comparative study with gliptins. We performed dual-factor molecular docking to assess the binding affinity of the compounds to DPP4 and found four compounds with a higher binding affinity to DPP4 than currently used gliptins. The newly identified compounds interacted with the dyad glutamate (GLU205 and GLU206) and tyrosine (TYR662 and TYR666) residues in DPP4's active site. We performed molecular dynamics simulations to determine the stability of the protein-ligand complexes formed by the compounds and DPP4. Furthermore, we examined the toxicity and pharmacological profile of the compounds. The compounds are drug-like, easy to synthesize, and relatively less toxic than gliptins. Collectively, our results suggest that the novel compounds are potential DPP4Is and should be considered for further studies to develop novel antidiabetics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Adebowale A Alade
- Department of Biochemistry, Adekunle Ajasin University, Ondo, Nigeria
| | - Samad A Ahmed
- Department of Biochemistry, Adekunle Ajasin University, Ondo, Nigeria
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Punjab, Rajpura, India
| | | | | | - Samuel O Olubode
- Department of Biochemistry, Adekunle Ajasin University, Ondo, Nigeria
| | | | - Abass A Ohilebo
- Department of Biochemistry, Faculty of Life Sciences, Ambrose Ali University Ekpoma, Edo, Nigeria
| |
Collapse
|
5
|
Deng X, Chen D, Xie A, Li S, Chen A, Zhou Q, Yu R. Quercetin alleviates hyperoxia-induced bronchopulmonary dysplasia by inhibiting ferroptosis through the MAPK/PTGS2 pathway: Insights from network pharmacology, molecular docking, and experimental evaluations. Chem Biol Drug Des 2024; 103:e14520. [PMID: 38570710 DOI: 10.1111/cbdd.14520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Quercetin, a bioactive natural compound renowned for its potent anti-inflammatory, antioxidant, and antiviral properties, has exhibited therapeutic potential in various diseases. Given that bronchopulmonary dysplasia (BPD) development is closely linked to inflammation and oxidative stress, and quercetin, a robust antioxidant known to activate NRF2 and influence the ferroptosis pathway, offers promise for a wide range of age groups. Nonetheless, the specific role of quercetin in BPD remains largely unexplored. This study aims to uncover the target role of quercetin in BPD through a combination of network pharmacology, molecular docking, computer analyses, and experimental evaluations.
Collapse
Affiliation(s)
- Xianhui Deng
- Department of Neonatology, Affiliated Women's Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Dan Chen
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Anni Xie
- Department of Neonatology, Affiliated Women's Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Shengpeng Li
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ailing Chen
- Research Institute for Reproductive Health and Genetic Diseases, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
| | - Qin Zhou
- Department of Neonatology, Affiliated Women's Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Department of Pediatric, Wuxi Yihe Gynaecology and Obstetrics Hospital, Wuxi, China
| | - Renqiang Yu
- Department of Neonatology, Affiliated Women's Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Research Institute for Reproductive Health and Genetic Diseases, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Weng Z, Zeng F, Wang M, Guo S, Tang Z, Itagaki K, Lin Y, Shen X, Cao Y, Duan JA, Wang F. Antimicrobial activities of lavandulylated flavonoids in Sophora flavences against methicillin-resistant Staphylococcus aureus via membrane disruption. J Adv Res 2024; 57:197-212. [PMID: 37137428 PMCID: PMC10918359 DOI: 10.1016/j.jare.2023.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023] Open
Abstract
INTRODUCTION The continuous emergence and rapid spread of multidrug-resistant bacteria have accelerated the demand for the discovery of alternative antibiotics. Natural plants contain a variety of antibacterial components, which is an important source for the discovery of antimicrobial agents. OBJECTIVE To explore the antimicrobial activities and related mechanisms of two lavandulylated flavonoids, sophoraflavanone G and kurarinone in Sophora flavescens against methicillin-resistant Staphylococcus aureus. METHODS The effects of sophoraflavanone G and kurarinone on methicillin-resistant Staphylococcus aureus were comprehensively investigated by a combination of proteomics and metabolomics studies. Bacterial morphology was observed by scanning electron microscopy. Membrane fluidity, membrane potential, and membrane integrity were determined using the fluorescent probes Laurdan, DiSC3(5), and propidium iodide, respectively. Adenosine triphosphate and reactive oxygen species levels were determined using the adenosine triphosphate kit and reactive oxygen species kit, respectively. The affinity activity of sophoraflavanone G to the cell membrane was determined by isothermal titration calorimetry assays. RESULTS Sophoraflavanone G and kurarinone showed significant antibacterial activity and anti-multidrug resistance properties. Mechanistic studies mainly showed that they could target the bacterial membrane and cause the destruction of the membrane integrity and biosynthesis. They could inhibit cell wall synthesis, induce hydrolysis and prevent bacteria from synthesizing biofilms. In addition, they can interfere with the energy metabolism of methicillin-resistant Staphylococcus aureus and disrupt the normal physiological activities of the bacteria. In vivo studies have shown that they can significantly improve wound infection and promote wound healing. CONCLUSION Kurarinone and sophoraflavanone G showed promising antimicrobial properties against methicillin-resistant Staphylococcus aureus, suggesting that they may be potential candidates for the development of new antibiotic agents against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Zebin Weng
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fei Zeng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Minxin Wang
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sheng Guo
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhijuan Tang
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Kiyoshi Itagaki
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Yajuan Lin
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinchun Shen
- College of Food Science and Engineering, and Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yaqi Cao
- National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin-Ao Duan
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Fang Wang
- College of Food Science and Engineering, and Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Jiao H, Fan Y, Gong A, Li T, Fu X, Yan Z. Xiaoyaosan ameliorates CUMS-induced depressive-like and anorexia behaviors in mice via necroptosis related cellular senescence in hypothalamus. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116938. [PMID: 37495029 DOI: 10.1016/j.jep.2023.116938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Depression and anorexia often co-occur and share symptoms such as low mood, lack of energy, and weight loss. Xiaoyaosan is a classic formula comprising of a combination of eight herbs, possessing definitive therapeutic effects, minimal side effects, and economical benefits. It has been extensively employed in clinical treatment of ailments and symptoms such as depression, anxiety, and appetite problems. Nonetheless, its exact pharmacological mechanism with necroptosis remains incompletely explicit. AIM OF THE STUDY The aim of this study is to explore the potential mechanisms of anti-depressive and appetite-regulating effects of the active ingredients in Xiaoyaosan, and to investigate whether there is a correlation with necroptosis. MATERIALS AND METHODS The network pharmacology method was conducted to identify active ingredients, which were used to predict the possible targets of Xiaoyaosan and explore the potential targets in treating depression and anorexia by overlapping with differentially expressed genes (DEGs) screened from GEO datasets (GSE125441, GSE198597, and GSE69151). Afterwards, the protein-protein interaction (PPI) network, enrichment analyses, hub gene identification, co-expression study and molecular docking were used to study the potential mechanism of Xiaoyaosan. Then, a mice model of depression was established by chronic unpredictable mild stress (CUMS) and the incidence of necroptosis in the hypothalamus of CUMS mice was investigated, while verifying the key therapeutic target of Xiaoyaosan. RESULTS Through network pharmacology research, it had been discovered that the 145 active ingredients of the 8 herbs in the Xiaoyaosan could regulate 198 disease targets. Through PPI network analysis and functional enrichment analysis, it had been found that the pharmacological mechanism of Xiaoyaosan mainly involved biological processes such as oxidative stress, kinase activity, and DNA metabolism. It is related to various pathways such as cellular senescence, immune inflammation, and the cell cycle, and 9 hub targets had been identified. Further analysis of the 9 hub targets and the key PPI network clusters clarified the key mechanisms by which Xiaoyaosan exerts anti-depressant and appetite regulating effects, possibly related to necroptosis-mediated cellular senescence. Molecular docking of the key indicators of cellular senescence screened by bioinformatics, SIRT1, ABL1, and MYC, revealed that the key component regulating SIRT1 is 2-[3,4-dihydroxyphenyl]-5,7-dihydroxy-6-[3-methylbut-2-enyl]chromone in licorice root, Glabridin in licorice root regulates ABL1, and β-sitosterol found in Chinese angelica, debark peony root, and fresh ginger regulates MYC. Finally, through in vivo experiments, the expression of necroptosis in the hypothalamus of CUMS mice was verified. The regulatory effects of Xiaoyaosan on key substances RIPK1, RIPK3, MLKL, and p-MLKL were determined, while regulating effects on SIRT1, ABL1, and MYC were also observed. CONCLUSION The present study have revealed the common mechanism of Xiaoyaosan in treating depression and anorexia, indicating that the active ingredients of Xiaoyaosan may alleviate the symptoms of depression and anorexia by intervening in the pathways related to necroptosis and cellular senescence. The hub genes and common pathways identified by the study also provide new insights into the therapeutic targets of depression and anorexia, as well as the exploration of pharmacological mechanism of Xiaoyaosan.
Collapse
Affiliation(s)
- Haiyan Jiao
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Yingli Fan
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Aimin Gong
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Tian Li
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Xing Fu
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Zhiyi Yan
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China; Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100078, China.
| |
Collapse
|
8
|
Liu Y, Hao M, Fang X, Qian Y, Wang Y, Yan S. Network Pharmacology Combined with Molecular Docking Approach to Investigate the Mechanism of ChuShiWeiLing Decoction against Perianal Eczema. Curr Pharm Des 2024; 30:1442-1458. [PMID: 38629356 DOI: 10.2174/0113816128298780240329075340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/12/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND ChuShiWeiLing Decoction (CSWLD) is a famous classical Chinese prescription for the treatment of eczema with desirable effect in clinical practice. It has gradually exerted good curative effects on perianal eczema (PE) in recent years, but its specific mechanism is not elucidated yet. OBJECTIVE This research explores the underlying pharmacological mechanism of CSWLD in addressing PE through network pharmacology combined with molecular docking strategy. METHODS The key chemical compounds and potential target genes of CSWLD were screened by bioinformatics. The major targets of CSWLD were discovered using network modules. Functional annotation of Gene Ontology (GO) was undertaken, as well as pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG). Molecular docking of core protein-ligand interactions was modeled using AutoDock software. Pymol software was used to perform a molecular dynamics simulation for the ideal core protein-ligand that was discovered by molecular docking. RESULTS A total of 2,853 active compounds and 922 targets of CSWLD were collected. The target with a higher degree was identified through the PPI network, namely TNF, IL6, ALB, STAT3, EGFR, TLR4, CXCL8 and PTPRC. GO and KEGG analyses suggested that CSWLD treatment of PE mainly involves cellular activation, activation of leukocytes, and adhesion among leukocytes. The molecular docking results showed that wogonin, hederagenin and quercetin of CSWLD could bind to IL-6 and TNF, respectively. CONCLUSION Our results indicated that the bioactives, potential targets, and molecular mechanism of CSWLD against PE.
Collapse
Affiliation(s)
- Ying Liu
- Department of Anorectal Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, Jiangsu, China
| | - Min Hao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, Zhejiang, China
| | - Xinyue Fang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, Zhejiang, China
| | - Yifei Qian
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yahui Wang
- Department of Anorectal Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, Jiangsu, China
| | - Shuai Yan
- Department of Anorectal Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, Jiangsu, China
| |
Collapse
|
9
|
Ma X, Kuai L, Song J, Luo Y, Ru Y, Wang M, Gao C, Jiang W, Liu Y, Bai Y, Li B. Therapeutic effects and mechanisms of Ku-Gan formula on atopic dermatitis: A pilot clinical study and modular pharmacology analysis with animal validation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116194. [PMID: 36716903 DOI: 10.1016/j.jep.2023.116194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atopic dermatitis (AD) is a persistent, recurrent inflammatory skin disorder with a rapid upward trend worldwide. The first-line treatment for AD consists of topical medicines such as topical corticosteroids (TCSs). However, long-term use of conventional topical medicine results in side effects and recurrence, presenting therapeutic challenges for the management of AD. Ku-Gan formula (KG) has been extensively used to treat skin diseases since the Song dynasty. In particular, topical administration of the KG alleviates the cutaneous symptoms of AD and reduces recurrence rates with a good safety profile; however, the mechanisms of the KG's action remain unknown. AIM OF THE STUDY The current study aimed to evaluate the efficacy and safety of KG in AD patients and to investigate the molecular mechanisms that underlie the efficacy of KG in the treatment of AD. MATERIALS AND METHODS A single-arm prospective pilot study with historical controls was conducted. This study evaluated 11 patients with mild to moderate AD, who underwent topical KG treatment. The primary outcome was the change in local eczema area and severity index (EASI) scores. The secondary outcomes included the recurrence rate and safety. The recurrence rate were compared to those of a matched historical control group. Secondly, modular pharmacology analysis was used to elucidate the therapeutic mechanism of KG in AD treatment by identifying the hub genes and kernel pathways. Moreover, we evaluated treatment effects and verified modular pharmacology-based findings using the calcipotriol (MC903)-induced mouse model and bioinformatics analysis. RESULTS Our clinical pilot study demonstrated that the KG wet wrapping could effectively ameliorate skin lesions in AD patients with a significant drop from 4.18 to 1.63 in local EASI. Compared to the historical controls, KG had a reduced recurrence rate (36%) and a longer median time to relapse (>12 weeks). Modular pharmacology analysis identified the hub genes including IL6, IL1B, VEGFA, STAT3, JUN, TIMP1 and ARG1, and kernel pathway including IL-17 signaling pathway of KG. Pharmacodynamic results suggested that KG ameliorated skin symptoms and demonstrated no less efficacy than halcinonide (HC) in MC903-induced AD-like mice. In addition, KG regulated the mRNA expression of hub genes as well as the related genes involved in IL-17 signaling pathway including Il25, Il17a,Traf3ip2, and Traf6, in skin lesions of AD-like mice. CONCLUSION These results showed that KG is a safe and effective topical treatment for AD with low recurrence. In addition, our study identified potential molecular pathways and therapeutic candidate targets of the KG formula, providing evidence for its clinical applicability in AD.
Collapse
Affiliation(s)
- Xin Ma
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Jiankun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Mingxia Wang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Chunjie Gao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Wencheng Jiang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Yeqiang Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Yun Bai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Bin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
10
|
Investigation of the Therapeutic Effect of Total Alkaloids of Corydalis saxicola Bunting on CCl 4-Induced Liver Fibrosis in Rats by LC/MS-Based Metabolomics Analysis and Network Pharmacology. Metabolites 2022; 13:metabo13010009. [PMID: 36676934 PMCID: PMC9866371 DOI: 10.3390/metabo13010009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Liver fibrosis is a pathological result of liver injury that usually leads to a pathophysiological wound healing response. The total alkaloids of Corydalis saxicola Bunting (TACS) have been used for hepatoprotective effects on the liver. However, its exact therapeutic mechanisms of liver fibrosis are not yet well understood. To explore the potential anti-fibrosis mechanism of TACS, metabolomics coupled with network pharmacology were applied to reveal the underlying mechanisms. Ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) combined with multivariate statistical analyses were performed to estimate changes in metabolic profiles. As a result, a total of 23 metabolites in rats with liver fibrosis were altered; of these, 11 had been downregulated and 12 had been upregulated compared with the control group. After TACS treatment, the levels of 13 metabolites were significantly restored compared with the CCl4-treated group, of which 4 metabolites were up-regulated and 9 metabolites were down-regulated. Many of these metabolites are involved in the bile acid metabolism, glutathione metabolism, tryptophan metabolism and purine metabolism. Then, three key targets, including cytochrome P450 family1 subfamily A member 1 (CYP1A1), ornithine decarboxylase 1 (OCD1) and monoamine oxidase Type B (MAOB) were predicted as potential therapeutic targets of TACS against liver fibrosis through network pharmacology analysis. Finally, palmatine, tetrahydropalmatine and dehydrocavidine were screened as potential active compounds responsible for the anti-fibrosis effect of TACS by molecular docking analysis. This study reveals that TACS exerted anti-fibrosis effects by regulating the liver metabolic pathway with multiple components and multiple targets, which is helpful to further clarify the hepatoprotective mechanisms of natural plant extracts.
Collapse
|
11
|
Ling J, Huang Y, Sun Z, Guo X, Chang A, Pan J, Zhuo X. Exploration of the effect of Celastrol on protein targets in nasopharyngeal carcinoma: Network pharmacology, molecular docking and experimental evaluations. Front Pharmacol 2022; 13:996728. [PMID: 36506508 PMCID: PMC9726908 DOI: 10.3389/fphar.2022.996728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Celastrol, an important extract of Tripterygium wilfordii, shows strong antitumor activity in a variety of tumors including nasopharyngeal carcinoma (NPC). However, little is known about its targets in NPC. We aimed to screen the key gene targets of Celastrol in the treatment of NPC by means of in silico analyses (including network pharmacology and molecular docking) and experimental evaluations. Methods: The main target genes of Celastrol and the genes related to NPC were obtained by retrieving the relevant biological databases, and the common targets were screened. Protein-protein interaction analysis was used to screen the hub genes. Then, a "compound-target-disease" network model was created and molecular docking was used to predict the binding of Celastrol to the candidate hub proteins. Afterward, the expression changes of the candidate genes under the administration of Celastrol were verified in vitro and in vivo. Results: Sixty genes common to Celastrol and NPC were screened out, which may be related to numerous biological processes such as cell proliferation, apoptosis, and tube development, and enriched in various pathways such as PI3K- Akt, EGFR tyrosine kinase inhibitor resistance, and Apoptosis. The tight binding ability of the candidate hub proteins (TNF, VEGFA, and IL6) to Celastrol was predicted by molecular docking [Docking energy: TNF, -6.08; VEGFA,-6.76; IL6,-6.91(kcal/mol)]. In vitro experiments showed that the expression of TNF and VEGFA decreased while the expression of IL6 increased in NPC cells (CNE2 and HONE1) treated with Celastrol. In vivo experiments suggested that Celastrol significantly reduced the weight and volume of the transplanted tumors in tumor-bearing mice in vivo. The expression of TNF, VEGFA, and IL6 in the transplanted tumor cells could be regulated by using Celastrol, and the expression trends were consistent with the in vitro model. Conclusion: Several gene targets have been filtered out as the core targets of Celastrol in the treatment of NPC, which might be involved in a variety of signaling pathways. Hence, Celastrol may exert its anti-NPC activity through multiple targets and multiple pathways, which will provide new clues for further research. Future experiments are warranted to validate the findings.
Collapse
Affiliation(s)
- Junjun Ling
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yu Huang
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhen Sun
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaopeng Guo
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Aoshuang Chang
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Jigang Pan
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China,*Correspondence: Jigang Pan, ; Xianlu Zhuo,
| | - Xianlu Zhuo
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China,*Correspondence: Jigang Pan, ; Xianlu Zhuo,
| |
Collapse
|