1
|
Dubey P, Manjit, Rani A, Mittal N, Mishra B. In-silico exploration of Attukal Kizhangu L. compounds: Promising candidates for periodontitis treatment. Comput Biol Chem 2024; 113:108186. [PMID: 39255627 DOI: 10.1016/j.compbiolchem.2024.108186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/21/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024]
Abstract
A medicinal pteridophyte known as Attukal Kizhangu L. has been used to cure patients for centuries by administering plant parts based on conventional and common practices. Regarding its biological functions, significant use and advancement have been made. Extract of Attukal Kizhangu L. is the subject of the current study, which uses network pharmacology as its foundation. Three targeted compounds such as α-Lapachone, Dihydrochalcone, and Piperine were chosen for additional research from the 17 Phytoconstituents that were filtered out by the Coupled UPLC-HRMS study since they followed to Lipinski rule and showed no toxicity. The pharmacokinetics and physicochemical properties of these targeted compounds were analyzed by using three online web servers pkCSM, Swiss ADME, and Protox-II. This is the first in silico study to document these compound's effectiveness against the standard drug DOX in treating Periodontitis. The Swiss target prediction database was used to retrieve the targets of these compounds. DisGeNET and GeneCards were used to extract the targets of periodontitis. The top five hub genes were identified by Cytoscape utilizing the protein-protein interaction of common genes, from which two hub genes and three binding proteins of collagenase enzymes were used for further studies AA2, PGE2, PI2, TNFA, and PGP. The minimal binding energy observed in molecular docking, indicative of the optimal docking score, corresponds to the highest affinity between the protein and ligand. To corroborate the findings of the docking study, molecular dynamics (MD) simulations, and MMPBSA calculations were conducted for the complexes involving AA2-α-LPHE, AA2-DHC, and AA2-PPR. This research concluded that AA2-DHC was the most stable complex among the investigated interactions, surpassing the stability of the other complexes examined in comparison with the standard drug DOX. Overall, the findings supported the promotion of widespread use of Attukal Kizhangu L. in clinics as a potential therapeutic agent or may be employed for the treatment of acute and chronic Periodontitis.
Collapse
Affiliation(s)
- Pragati Dubey
- Faculty of Dental Sciences, Institute of Medical Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | - Manjit
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Asha Rani
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Neelam Mittal
- Faculty of Dental Sciences, Institute of Medical Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
2
|
Zhang Y, Huang S, Zhang S, Hao Z, Shen J. Pomegranate Peel Extract Mitigates Diarrhea-Predominant Irritable Bowel Syndromes via MAPK and NF-κB Pathway Modulation in Rats. Nutrients 2024; 16:3854. [PMID: 39599640 PMCID: PMC11597445 DOI: 10.3390/nu16223854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Diarrhea-predominant irritable bowel syndrome (IBS-D) is a common chronic functional gastrointestinal disorder that causes diarrheal and intestinal barrier disruptions. Although pomegranate peel extract (PPE) has been reported for the treatment of diarrheal and intestinal inflammation, its effectiveness and mechanisms specifically for the treatment of IBS-D remain unknown. OBJECTIVES This study aimed to explore the therapeutic effect of PPE on IBS-D and elucidate its underlying mechanisms. METHODS A high-fat diet, restraint stress, and senna gavage were combined to establish a rat model mimicking IBS-D, to evaluate the therapeutic effects of PPE. Network pharmacology analysis, serum medicinal chemistry, and transcriptomics were employed to investigate potential downstream signaling pathways. Findings were further validated through molecular docking and Western blot analysis. RESULTS The findings revealed that PPE significantly improved the symptoms of IBS-D, ameliorated intestinal inflammation, and promoted intestinal barrier function. The target genes in the MAPK and NF-κB signaling pathways were significantly enriched and down-regulated. Molecular docking and Western blot assays were performed to verify that PPE had a high affinity for the protein candidates in these pathways, and significantly down-regulated the expression of p-IκB, p-p65, p-JNK, p-p38, and p-ERK1/2. CONCLUSIONS The present study is the first to demonstrate that PPE alleviates diarrheal and intestinal damage in IBS-D, potentially by inhibiting MAPK and NF-κB signaling pathways. These findings suggest that PPE may provide a novel therapeutic option for IBS-D.
Collapse
Affiliation(s)
- Yannan Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.Z.); (S.H.); (S.Z.)
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Sijuan Huang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.Z.); (S.H.); (S.Z.)
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shuai Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.Z.); (S.H.); (S.Z.)
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.Z.); (S.H.); (S.Z.)
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.Z.); (S.H.); (S.Z.)
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
3
|
Zhan XZ, Wei TH, Huang C, Yu H, Chen XL, Kong XT, Shang ZH, Sun SL, Lu MY, Ni HW. Modulating JAK2/STAT3 signaling by quercetin in Qiling Baitouweng Tang: a potential therapeutic approach for diffuse large B-cell lymphoma. Mol Divers 2024:10.1007/s11030-024-10999-2. [PMID: 39369170 DOI: 10.1007/s11030-024-10999-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
Qiling Baitouweng Tang (QLBTWT) is a traditional clinical formula for treating diffuse large B-cell lymphoma (DLBCL), but its molecular action is not fully understood. This research is utilized in silico analysis and liquid chromatography tandem mass spectrometry (LC‒MS/MS) to identify the active constituents of QLBTWT with anti-DLBCL properties and their targets. The study identified 14 compounds, including quercetin, naringenin, and astilbin, as potentially effective against DLBCL. Molecular modeling highlighted the favorable interaction of quercetin with the JAK2 protein. In vitro studies confirmed the ability of quercetin to inhibit DLBCL cell growth and migration while inducing apoptosis and causing G2/M phase cell cycle arrest. Molecular dynamics simulations revealed that quercetin binds to JAK2 as a type II inhibitor. In vivo studies in U2932 xenograft models demonstrated that QLBTWT inhibited tumor growth in a dose-dependent manner, which was associated with the JAK2/STAT3 signaling pathway. Overall, this study elucidates the therapeutic effect of QLBTWT on DLBCL through quercetin-mediated suppression of the JAK2/STAT3 pathway, offering novel therapeutic insights for DLBCL.
Collapse
Affiliation(s)
- Xin-Zhuo Zhan
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chen Huang
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Hui Yu
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Xiao-Li Chen
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Xiang-Tu Kong
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Zhi-Hao Shang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China.
| | - Meng-Yi Lu
- Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China.
| | - Hai-Wen Ni
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
4
|
Sandhu S, Keyworth M, Karimi-Jashni S, Alomar D, Smith BJ, Kozbenko T, Doty S, Hocking R, Hamada N, Reynolds RJ, Scott RT, Costes SV, Beheshti A, Yauk C, Wilkins RC, Chauhan V. AOP Report: Development of an adverse outcome pathway for deposition of energy leading to bone loss. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 3:85-111. [PMID: 39387375 DOI: 10.1002/em.22631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024]
Abstract
Bone loss, commonly seen in osteoporosis, is a condition that entails a progressive decline of bone mineral density and microarchitecture, often seen in post-menopausal women. Bone loss has also been widely reported in astronauts exposed to a plethora of stressors and in patients with osteoporosis following radiotherapy for cancer. Studies on mechanisms are well documented but the causal connectivity of events to bone loss development remains incompletely understood. Herein, the adverse outcome pathway (AOP) framework was used to organize data and develop a qualitative AOP beginning from deposition of energy (the molecular initiating event) to bone loss (the adverse outcome). This qualitative AOP was developed in collaboration with bone loss research experts to aggregate relevant findings, supporting ongoing efforts to understand and mitigate human system risks associated with radiation exposures. A literature review was conducted to compile and evaluate the state of knowledge based on the modified Bradford Hill criteria. Following review of 2029 studies, an empirically supported AOP was developed, showing the progression to bone loss through many factors affecting the activities of bone-forming osteoblasts and bone-resorbing osteoclasts. The structural, functional, and quantitative basis of each proposed relationship was defined, for inference of causal changes between key events. Current knowledge and its gaps relating to dose-, time- and incidence-concordance across the key events were identified, as well as modulating factors that influence linkages. The new priorities for research informed by the AOP highlight areas for improvement to enable development of a quantitative AOP used to support risk assessment strategies for space travel or cancer radiotherapy.
Collapse
Affiliation(s)
- Snehpal Sandhu
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Mitchell Keyworth
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Syna Karimi-Jashni
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Dalya Alomar
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Benjamin J Smith
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Tatiana Kozbenko
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Stephen Doty
- Hospital for Special Surgery Research Institute, New York City, New York, USA
| | - Robyn Hocking
- Learning and Knowledge and Library Services, Health Canada, Ottawa, Ontario, Canada
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Substantiable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | | | - Ryan T Scott
- KBR, NASA Ames Research Center, Moffett Field, California, USA
| | - Sylvain V Costes
- NASA Ames Research Center, Space Biosciences Research Branch, Mountain View, California, USA
| | - Afshin Beheshti
- McGowan Institute for Regenerative Medicine - Center for Space Biomedicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ruth C Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Liu H, Shi J, Liu F, Zhang L. Integrating network pharmacology and experimental verification to reveal the anti-inflammatory ingredients and molecular mechanism of pycnogenol. Front Pharmacol 2024; 15:1408304. [PMID: 38989153 PMCID: PMC11233470 DOI: 10.3389/fphar.2024.1408304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/06/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction: Pycnogenol (PYC), a standardized extract from French maritime pine, has traditionally been used to treat inflammation. However, its primary active components and their mechanisms of action have not yet been determined. Methods: This study employed UPLC-MS/MS (Ultra-high performance liquid chromatography-tandem mass spectrometry) and network pharmacology to identify the potential active components of PYC and elucidate their anti-inflammatory mechanisms by cell experiments. Results: 768 PYC compounds were identified and 19 anti-inflammatory compounds were screened with 85 target proteins directly involved in the inflammation. PPI (protein-protein interaction) analysis identified IL6, TNF, MMP9, IL1B, AKT1, IFNG, CXCL8, NFKB1, CCL2, IL10, and PTGS2 as core targets. KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis suggested that the compound in PYC might exert anti-inflammatory effects through the IL17 and TNF signal pathways. Cell experiments determined that PYC treatment can reduce the expression of IL6 and IL1β to relieve inflammation in LPS (lipopolysaccharide)-induced BV2 cells. Conclusion: PYC could affect inflammation via multi-components, -targets, and -mechanisms.
Collapse
Affiliation(s)
| | | | | | - Litao Zhang
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
6
|
Lyu J, Shen S, Hao Y, Zhou M, Tao J. The impact of Thiopeptide antibiotics on inflammatory responses in periodontal tissues through the regulation of the MAPK pathway. Int Immunopharmacol 2024; 133:112094. [PMID: 38652969 DOI: 10.1016/j.intimp.2024.112094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Periodontitis is a bacteria-induced inflammatory disease that damages the tissues supporting the teeth, gums, periodontal ligaments, and alveolar bone. Conventional treatments such as surgical procedures, anti-inflammatory drugs, and antibiotics, are somewhat effective; however, these may lead to discomfort and adverse events, thereby affecting patient outcomes. Therefore, this study aimed to find an effective method to prevent the onset of periodontal disease and explore the specific mechanisms of their action.The impact of thiostrepton on Porphyromonas gingivalis and periodontal ligament stem cells was evaluated in an inflammatory microenvironment. In vivo experiments were performed using a mouse periodontitis model to assess the effectiveness of locally applied thiostrepton combined with a silk fibroin hydrogel in impeding periodontitis progression. Thiostrepton exhibited significant antimicrobial effects against Porphyromonas gingivalis and anti-inflammatory properties by regulating the MAPK pathway through DUSP2. Locally applied thiostrepton effectively impeded the progression of periodontitis and reduced tissue damage. Thiostrepton treatment is a promising and tolerable preventive strategy for periodontitis, offering antimicrobial and anti-inflammatory benefits. These findings suggest the potential of thiostrepton as a valuable addition to periodontitis management, warranting further research and clinical exploration to improve patient outcomes.
Collapse
Affiliation(s)
- Jiaxuan Lyu
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, No. 639 Zhizaoju Road, Shanghai 200011, China.
| | - Shihui Shen
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, No. 639 Zhizaoju Road, Shanghai 200011, China.
| | - Yanmei Hao
- Department of sStomatology, People's Hospital of Ningxia Hui Autonomous Region, Ningxia, People's Republic of China, No.301 North Zhengyuan street, Ningxia, 750002, China.
| | - Mingliang Zhou
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, No. 639 Zhizaoju Road, Shanghai 200011, China.
| | - Jiang Tao
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, No. 639 Zhizaoju Road, Shanghai 200011, China.
| |
Collapse
|
7
|
Shen J, Zhang S, Zhang J, Wei X, Wang Z, Han B. Osteogenic mechanism of chlorogenic acid and its application in clinical practice. Front Pharmacol 2024; 15:1396354. [PMID: 38873428 PMCID: PMC11169668 DOI: 10.3389/fphar.2024.1396354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Natural polyphenols may have a role in counteracting oxidative stress, which is associated with aging and several bone-related diseases. Chlorogenic acid (CGA) is a naturally occurring polyphenolic compound formed by the esterification of caffeic and quininic acids with osteogenic, antioxidant, and anti-inflammatory properties. This review discusses the potential of CGA to enhance osteogenesis by increasing the osteogenic capacity of mesenchymal stem cells (MSCs), osteoblast survival, proliferation, differentiation, and mineralization, as well as its ability to attenuate osteoclastogenesis by enhancing osteoclast apoptosis and impeding osteoclast regeneration. CGA can be involved in bone remodeling by acting directly on pro-osteoclasts/osteoblasts or indirectly on osteoclasts by activating the nuclear factor kB (RANK)/RANK ligand (RANKL)/acting osteoprotegerin (OPG) system. Finally, we provide perspectives for using CGA to treat bone diseases.
Collapse
Affiliation(s)
- Jiayu Shen
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Shichen Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Jiayu Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Xin Wei
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Zilin Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Bing Han
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| |
Collapse
|
8
|
Wu Y, Liu M, He X, Zhou H, Wei J, Li H, Yuan Q, Zuo Y, Zhao L, Xie Y. A breakthrough in periodontitis treatment: Revealing the pharmacodynamic substances and mechanisms of Kouqiangjie formula. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117738. [PMID: 38199336 DOI: 10.1016/j.jep.2024.117738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/29/2023] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Periodontitis, a complex inflammatory disease, significantly affects people's lives. Traditional Chinese multi-herbal formulas, composed of various herbs, exhibit their therapeutic efficacy holistically. Kouqiangjie Formula (KQJF), comprising 12 herbs including Rhizoma smilacis glabrae, Polygonatum sibiricum Delar. ex Redoute, Taraxacum mongolicum Hand.-Mazz, etc., has been clinically proven to effectively treat periodontitis. However, the potential active substances conferring these effects and their mechanisms of action remain unclear. AIM OF THE STUDY The current investigation endeavours to utilize Ultra Performance Liquid Chromatography Quadrupole Time of Flight Mass Spectrometry (UPLC-Q-TOF-MS), network pharmacology, and in vivo animal experiment confirmation to explore the plausible bioactive compounds and operational mechanisms underpinning KQJF's therapeutic impact on periodontitis. MATERIALS AND METHODS Using the UPLC-Q-TOF-MS technique, we deciphered the chemical constituents of KQJF. Network pharmacology was employed to earmark key bioactive elements, forecast principal targets, and operational pathways which were later substantiated through molecular docking. Experimental validations were carried out in a periodontitis animal model using a range of techniques, including micro-CT, H&E staining, qRT-PCR, and protein blotting procedures, providing comprehensive verification of our initial assumptions. RESULTS Utilizing UPLC-Q-TOF-MS, we characterized 87 individual chemical constituents in KQJF. Network pharmacology revealed that 14 components, including senkyunolide A, glycycoumarin, licoflavonol, glycyrin, senkyunolide I, and senkyunolide H, form the key therapeutic basis of KQJF in targeting periodontitis. Significant targets and pathways were discerned as AKT1, MMP9, JUN, PTGS2, CASP3, TLR4, IL1β, BCL2, PPARG, and pathways such as the TNF signaling pathway, NF-κB signaling pathway, osteoclast differentiation, and Wnt signaling pathway. Molecular docking demonstrated robust binding activity between these crucial targets and the key active ingredients. In vivo experimentation corroborated that, compared with the model group, KQJF significantly ameliorated symptoms and micro-CT imaging parameters of periodontitis in the rat model, down-regulating the expression of AKT1, MMP9, JUN, PTGS2, CASP3, TLR4, and IL1β, while up-regulating the expression of BCL2 and PPARG. CONCLUSION In summary, this study has pioneered a comprehensive exploration of the potential therapeutic constituents, targets, and mechanisms of KQJF for periodontitis treatment, adopting a synergistic strategy of "chemical component analysis-network pharmacology screening-in vivo animal experiment validation". This provides experimental evidence for the clinical application of KQJF and further in-depth research. Additionally, it presents an effective strategy for the research of other Chinese herbal formulations.
Collapse
Affiliation(s)
- Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Min Liu
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Xiang He
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Hongling Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jing Wei
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Huijing Li
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Qianghua Yuan
- Department of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yuling Zuo
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Lixing Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yunfei Xie
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
9
|
Chen M, Hu Q, Wang S, Tao L, Hu X, Shen X. 1,8-Cineole ameliorates endothelial injury and hypertension induced by L-NAME through regulation of autophagy via PI3K/mTOR signaling pathway. Eur J Pharmacol 2023:175863. [PMID: 37380045 DOI: 10.1016/j.ejphar.2023.175863] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
Our previous data confirmed that 1,8-Cineole had an antihypertensive effect in animal models. However, it is unclear whether antihypertension is dependent on the protective effect of 1,8-Cinceole on endothelial function and structure. At present, the purpose was to investigate the protective effects of 1,8-Cineole on vascular endothelial tissue in hypertensive rats and human umbilical vein endothelial cells (HUVECs). Our results showed that 1,8-Cineole significantly reduced the blood pressure and improved the vascular endothelial lesion, attenuated vascular oxidative stress and inflammation induced by L-nitroarginine methyl ester hydrochloride (L-NAME) in rats. Pretreatment with 1,8-Cineole was able to inhibit the increase in malondialdehyde (MDA) and reactive oxygen species (ROS) induced by L-NAME, and increased the release and expression of superoxide dismutase (SOD) and nitric oxide (NO). In addition, 1,8-Cineole also reversed the increase of autophagy-associated protein LC3Ⅱ/LC3Ⅰ and the decrease of P62 in vivo and in vitro respectively. There was a synergistic effect between PI3K agonists and drugs, while PI3K inhibitors blocked the efficacy of 1,8-Cineole. The addition of autophagy inhibitor CQ increases the expression of eNOS. Taken together, our results indicate that 1,8-Cineole has potential beneficial promising antihypertension depending on the integrity of vascular endothelial structure and function induced by L-NAME, and the mechanism involves ameliorating autophagy by regulatiing of PI3K/mTOR.
Collapse
Affiliation(s)
- Meng Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Qilan Hu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Shengquan Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiaoxia Hu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China.
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, Guiyang, China; The Department of Pharmacology, College of Basic Medical Sciences of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
10
|
Wang C, Liu C, Liang C, Qu X, Zou X, Du S, Zhang Q, Wang L. Role of Berberine Thermosensitive Hydrogel in Periodontitis via PI3K/AKT Pathway In Vitro. Int J Mol Sci 2023; 24:6364. [PMID: 37047340 PMCID: PMC10094121 DOI: 10.3390/ijms24076364] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Periodontitis is a long-term inflammatory illness and a leading contributor to tooth loss in humans. Due to the influence of the anatomic parameters of teeth, such as root bifurcation lesions and the depth of the periodontal pocket, basic periodontal treatment on its own often does not completely obliterate flora microorganisms. As a consequence, topical medication has become a significant supplement in the treatment of chronic periodontitis. Berberine (BBR) has various pharmacological effects, such as hypoglycemic, antitumor, antiarrhythmic, anti-inflammatory, etc. The target of our project is to develop a safe and non-toxic carrier that can effectively release berberine, which can significantly reduce periodontal tissue inflammation, and to investigate whether berberine thermosensitive hydrogel can exert anti-inflammatory and osteogenic effects by modulating phosphatifylinositol-3-kinase/Protein Kinase B (PI3K/AKT) signaling pathway. Consequently, firstly berberine temperature-sensitive hydrogel was prepared, and its characterizations showed that the mixed solution gelated within 3 min under 37 °C with a hole diameter of 10-130 µm, and the accumulation of berberine release amounted to 89.99% at 21 days. CCK-8 and live-dead cell staining results indicated that this hydrogel was not biotoxic, and it is also presumed that the optimum concentration of berberine is 5 µM, which was selected for subsequent experiments. Real-time polymerase chain reaction (qRT-PCR) and Western blotting (WB)results demonstrated that inflammatory factors, as well as protein levels, were significantly reduced in the berberine-loaded hydrogel group, and LY294002 (PI3K inhibitor) could enhance this effect (p < 0.05). In the berberine-loaded hydrogel group, osteogenesis-related factor levels and protein profiles were visibly increased, along with an increase in alkaline phosphatase expression, which was inhibited by LY294002 (p < 0.05). Therefore, berberine thermosensitive hydrogel may be an effective treatment for periodontitis, and it may exert anti-inflammatory and osteogenic effects through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Chang Wang
- Department of Periodontology, Hospital of Stomatology, Jilin University, 1500 Tsinghua Road, Chaoyang District, Changchun 130021, China; (C.W.)
| | - Chang Liu
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Chen Liang
- Department of Periodontology, Hospital of Stomatology, Jilin University, 1500 Tsinghua Road, Chaoyang District, Changchun 130021, China; (C.W.)
| | - Xingyuan Qu
- Department of Periodontology, Hospital of Stomatology, Jilin University, 1500 Tsinghua Road, Chaoyang District, Changchun 130021, China; (C.W.)
| | - Xinying Zou
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Siyu Du
- Department of Periodontology, Hospital of Stomatology, Jilin University, 1500 Tsinghua Road, Chaoyang District, Changchun 130021, China; (C.W.)
| | - Qian Zhang
- Department of Periodontology, Hospital of Stomatology, Jilin University, 1500 Tsinghua Road, Chaoyang District, Changchun 130021, China; (C.W.)
| | - Lei Wang
- Department of Periodontology, Hospital of Stomatology, Jilin University, 1500 Tsinghua Road, Chaoyang District, Changchun 130021, China; (C.W.)
| |
Collapse
|