1
|
Chen J, Yang S, Luo H, Fu X, Li W, Li B, Fu C, Chen F, Xu D, Cao N. Polysaccharide of Atractylodes macrocephala Koidz alleviates NAFLD-induced hepatic inflammation in mice by modulating the TLR4/MyD88/NF-κB pathway. Int Immunopharmacol 2024; 141:113014. [PMID: 39191120 DOI: 10.1016/j.intimp.2024.113014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) not only could cause abnormal lipid metabolism in the liver, but also could cause liver inflammation. Previous studies have shown that Polysaccharide of Atractylodes macrocephala Koidz (PAMK) could alleviate animal liver inflammatory damage and alleviate NAFLD in mice caused by high-fat diet(HFD), but regulation of liver inflammation caused by NAFLD has rarely been reported. In this study, an animal model of non-alcoholic fatty liver inflammation in the liver of mice was established to explore the protective effect of PAMK on the liver of mice. The results showed that PAMK could alleviate the abnormal increase of body weight and liver weight of mice caused by HFD, alleviate the abnormal liver structure of mice, reduce the level of oxidative stress and cytokine secretion in the liver of mice, and downregulate the mRNA expression of TLR4, MyD88, NF-κB and protein expression of P-IκB, P-NF-κB-P65, TLR4, MyD88, NF-κB in the liver. These results indicate that PAMK could alleviate hepatocyte fatty degeneration and damage, oxidative stress and inflammatory response of the liver caused by NAFLD in mice.
Collapse
Affiliation(s)
- Junyi Chen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Shuzhan Yang
- Technology Center, Guangzhou Customs, Guangzhou, Guangdong 510623, China
| | - Hanxia Luo
- Technology Center, Guangzhou Customs, Guangzhou, Guangdong 510623, China
| | - Xinliang Fu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Wanyan Li
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Bingxin Li
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Cheng Fu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Feiyue Chen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Danning Xu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Nan Cao
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China.
| |
Collapse
|
2
|
Liu Y, Fan Y, Liu J, Liu X, Li X, Hu J. Application and mechanism of Chinese herb medicine in the treatment of non-alcoholic fatty liver disease. Front Pharmacol 2024; 15:1499602. [PMID: 39605910 PMCID: PMC11598537 DOI: 10.3389/fphar.2024.1499602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver condition closely associated with metabolic syndrome, with its incidence rate continuously rising globally. Recent studies have shown that the development of NAFLD is associated with insulin resistance, lipid metabolism disorder, oxidative stress and endoplasmic reticulum stress. Therapeutic strategies for NAFLD include lifestyle modifications, pharmacological treatments, and emerging biological therapies; however, there is currently no specific drug to treat NAFLD. However Chinese herb medicine (CHM) has shown potential in the treatment of NAFLD due to its unique therapeutic concepts and methods for centuries in China. This review aims to summarize the pathogenesis of NAFLD and some CHMs that have been shown to have therapeutic effects on NAFLD, thus enriching the scientific connotation of TCM theories and facilitating the exploration of TCM in the treatment of NAFLD.
Collapse
Affiliation(s)
- Yuqiao Liu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Fan
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jibin Liu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyang Liu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiuyan Li
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingqing Hu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Xin-Huangpu Joint Innovation Institute of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Liu J, Zheng Y, Yang S, Zhang L, Liu B, Zhang J, Yu X, Wei X, Li S, Wang J, Lv H. Targeting antioxidant factor Nrf2 by raffinose ameliorates lipid dysmetabolism-induced pyroptosis, inflammation and fibrosis in NAFLD. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155756. [PMID: 38833791 DOI: 10.1016/j.phymed.2024.155756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/27/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a persistent liver condition that affects both human health and animal productive efficiency on a global scale. A number of naturally occurring compounds activate nuclear factor erythroid 2-related factor 2 (Nrf2) as a transcription factor with important protective effects against many liver diseases, including NAFLD. Raffinose (Ra), an oligosaccharide extracted from several plants, exhibits diverse biological functions. However, the uncertainty lies in determining whether the activation of Nrf2 by Ra can provide a preventive effect on liver lipotoxicity. PURPOSE The aim of this study was to shed light on the molecular pathways by which Ra possesses its protective benefits against NAFLD. METHODS Experimental protocols were established using WT and Nrf2-null (Nrf2-/-) mice. Liver samples from each group were collected for Western blot, RT-qPCR, H & E, Sirius red and Oil red O staining. Additionally, serums were processed for ELISA. ALM12 cells were gathered for Western blot and immunofluorescence. Moreover, to elucidate the molecular mechanism of Ra, molecular docking was performed. RESULTS Our results indicated that Ra remarkably alleviated liver lipotoxic in vivo and in vitro. Ra treatment effectively corrected hepatic steatosis, the release of AST, ALT, TG, and TC, as well as the depletion of HDL and LDL. Meanwhile, Ra efficiently prevented inflammation by inhibiting the TLR4-MyD88-NF-κB pathway and pyroptosis. Additionally, these findings implied that Ra reduced the production of fibrosis-related proteins, which enhanced collagen deposition. Molecular docking revealed that Ra possessed the ability to bind specific regions of Nrf2, resulting in the enhancement of Nrf2 activation and nuclear translocation. Ra treatment restored serum redox factors and antioxidant enzymes to normal levels; however, these alterations were clearly reversed in Nrf2-/- mice. CONCLUSION This study reveals novel information on Ra's protective benefits against liver injury caused by abnormal lipid metabolism; these effects are mostly mediated by Nrf2 activation, suggesting a potential new medicine or treatment strategy for NAFLD.
Collapse
Affiliation(s)
- Jiahe Liu
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Yuwei Zheng
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Songya Yang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Lihan Zhang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Bingxue Liu
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Jiexing Zhang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Xiaoqing Yu
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Xiangjian Wei
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Shize Li
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Jianfa Wang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China.
| | - Hongming Lv
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China.
| |
Collapse
|
4
|
de Matos RC, Bitencourt AFA, de Oliveira ADM, Prado VR, Machado RR, Scopel M. Evidence for the efficacy of anti-inflammatory plants used in Brazilian traditional medicine with ethnopharmacological relevance. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118137. [PMID: 38574778 DOI: 10.1016/j.jep.2024.118137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE When exacerbated, inflammatory processes can culminate in physical and emotional disorders and, if not stopped, can be lethal. The high prevalence of inflammation has become a public health problem, and the need for new drugs to treat this pathology is imminent. The use of medicinal plants has emerged as an alternative, and a survey of data that corroborates its application in inflammatory diseases is the starting point. Furthermore, Brazil harbors a megadiversity, and the traditional use of plants is relevant and needs to be preserved and carefully explored for the discovery of new medicines. AIM OF THE STUDY This review sought to survey the medicinal plants traditionally used in Brazil for the treatment of inflammatory processes and to perform, in an integrative way, a data survey of these species and analysis of their phytochemical, pharmacological, and molecular approaches. MATERIALS AND METHODS Brazilian plants that are traditionally used for inflammation (ophthalmia, throat inflammation, orchitis, urinary tract inflammation, ear inflammation, and inflammation in general) are listed in the DATAPLAMT database. This database contains information on approximately 3400 native plants used by Brazilians, which were registered in specific documents produced until 1950. These inflammatory disorders were searched in scientific databases (PubMed/Medline, Scopus, Web of Science, Lilacs, Scielo, Virtual Health Library), with standardization of DECS/MESH descriptors for inflammation in English, Spanish, French, and Portuguese, without chronological limitations. For the inclusion criteria, all articles had to be of the evaluated plant species, without association of synthesized substances, and full articles free available in any of the four languages searched. Duplicated articles and those that were not freely available were excluded. RESULTS A total of 126 species were identified, culminating in 6181 articles in the search. After evaluation of the inclusion criteria, 172 articles representing 40 different species and 38 families were included in the study. Comparison of reproducibility in intra-species results became difficult because of the large number of extraction solvents tested and the wide diversity of evaluation models used. Although the number of in vitro and in vivo evaluations was high, only one clinical study was found (Abrus precatorius). In the phytochemical analyses, more than 225 compounds, mostly phenolic compounds, were identified. CONCLUSION This review allowed the grouping of preclinical and clinical studies of several Brazilian species traditionally used for the treatment of many types of inflammation, corroborating new searches for their pharmacological properties as a way to aid public health. Furthermore, the large number of plants that have not yet been studied has encouraged new research to revive traditional knowledge.
Collapse
Affiliation(s)
- Rafael C de Matos
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil; Centro Especializado Em Plantas Aromáticas, Medicinais e Tóxicas - CEPLAMT-Museu de História Natural e Jardim Botânico da Universidade Federal de Minas Gerais, Rua Gustavo da Silveira 1035, Horto, 31.080-010, Belo Horizonte, MG, Brazil.
| | - Ana F A Bitencourt
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Alexsandro D M de Oliveira
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Vanessa R Prado
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Renes R Machado
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Marina Scopel
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil; Centro Especializado Em Plantas Aromáticas, Medicinais e Tóxicas - CEPLAMT-Museu de História Natural e Jardim Botânico da Universidade Federal de Minas Gerais, Rua Gustavo da Silveira 1035, Horto, 31.080-010, Belo Horizonte, MG, Brazil.
| |
Collapse
|
5
|
Yan B, Zheng X, Chen X, Hao H, Shen S, Yang J, Wang S, Sun Y, Xian J, Shao Z, Fu T. Silibinin Targeting Heat Shock Protein 90 Represents a Novel Approach to Alleviate Nonalcoholic Fatty Liver Disease by Simultaneously Lowering Hepatic Lipotoxicity and Enhancing Gut Barrier Function. ACS Pharmacol Transl Sci 2024; 7:2110-2124. [PMID: 39022366 PMCID: PMC11249643 DOI: 10.1021/acsptsci.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a clinicopathological condition characterized by intrahepatic ectopic steatosis. Due to the increase in high-calorie diets and sedentary lifestyles, NAFLD has surpassed viral hepatitis and become the most prevalent chronic liver disease globally. Silibinin, a natural compound, has shown promising therapeutic potential for the treatment of liver diseases. Nevertheless, the ameliorative effects of silibinin on NAFLD have not been completely understood, and the underlying mechanism is elusive. Therefore, in this study, we used high-fat diet (HFD)-induced mice and free fatty acid (FFA)-stimulated HepG2 cells to investigate the efficacy of silibinin for the treatment of NAFLD and elucidate the underlying mechanisms. In vivo, silibinin showed significant efficacy in inhibiting adiposity, improving lipid profile levels, ameliorating hepatic histological aberrations, healing the intestinal epithelium, and restoring gut microbiota compositions. Furthermore, in vitro, silibinin effectively inhibited FFA-induced lipid accumulation in HepG2 cells. Mechanistically, we reveal that silibinin possesses the ability to ameliorate hepatic lipotoxicity by suppressing the heat shock protein 90 (Hsp90)/peroxisome proliferator-activated receptor-γ (PPARγ) pathway and alleviating gut dysfunction by inhibiting the Hsp90/NOD-like receptor pyrin domain-containing 3 (NLRP3) pathway. Altogether, our findings provide evidence that silibinin is a promising candidate for alleviating the "multiple-hit" in the progression of NAFLD.
Collapse
Affiliation(s)
- Baofei Yan
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
- Jiangsu
Engineering, Research Center for Evaluation and Transformation of
Classic TCM Prescriptions, Jiangsu Health
Vocational College, Nanjing 211800, China
| | - Xian Zheng
- Department
of Pharmacy, Affiliated Kunshan Hospital
of Jiangsu University, Kunshan 215399, China
| | - Xi Chen
- Institute
of Medical technology, Jiangsu College of
Nursing, Huaian 223003, China
| | - Huihui Hao
- Department
of Pharmacology, Jiangsu College of Nursing, Huaian 223003, China
| | - Shen Shen
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Jingwen Yang
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Siting Wang
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Yuping Sun
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Jiaqi Xian
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Zhitao Shao
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Tingming Fu
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| |
Collapse
|
6
|
Li R, Feng J, Li L, Luo G, Shi Y, Shen S, Yuan X, Wu J, Yan B, Yang L. Recombinant fibroblast growth factor 4 ameliorates axonal regeneration and functional recovery in acute spinal cord injury through altering microglia/macrophage phenotype. Int Immunopharmacol 2024; 134:112188. [PMID: 38728880 DOI: 10.1016/j.intimp.2024.112188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024]
Abstract
Neuroinflammation is one of the extensive secondary injury processes that aggravate metabolic and cellular dysfunction and tissue loss following spinal cord injury (SCI). Thus, an anti-inflammatory strategy is crucial for modulating structural and functional restoration during the stage of acute and chronic SCI. Recombinant fibroblast growth factor 4 (rFGF4) has eliminated its mitogenic activity and demonstrated a metabolic regulator for alleviating hyperglycemia in type 2 diabetes and liver injury in non-alcoholic steatohepatitis. However, it remains to be explored whether or not rFGF4 has a neuroprotective effect for restoring neurological disorders, such as SCI. Here, we identified that rFGF4 could polarize microglia/macrophages into the restorative M2 subtype, thus exerting an anti-inflammatory effect to promote neurological functional recovery and nerve fiber regeneration after SCI. Importantly, these effects by rFGF4 were related to triggering PI3K/AKT/GSK3β and attenuating TLR4/NF-κB signaling axes. Conversely, gene silencing of the PI3K/AKT/GSK3β signaling or pharmacological reactivation of the TLR4/NF-κB axis aggravated inflammatory reaction. Thus, our findings highlight rFGF4 as a potentially therapeutic regulator for repairing SCI, and its outstanding effect is associated with regulating macrophage/microglial polarization.
Collapse
Affiliation(s)
- Rui Li
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy and Department of Gastroenterology, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China; State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Juerong Feng
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy and Department of Gastroenterology, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Liuxun Li
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy and Department of Gastroenterology, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Guotian Luo
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy and Department of Gastroenterology, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yongpeng Shi
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy and Department of Gastroenterology, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Shichao Shen
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy and Department of Gastroenterology, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Xinrong Yuan
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy and Department of Gastroenterology, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Jianlong Wu
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy and Department of Gastroenterology, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Bin Yan
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy and Department of Gastroenterology, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China.
| | - Lei Yang
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy and Department of Gastroenterology, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China.
| |
Collapse
|
7
|
Yu L, Gao F, Li Y, Su D, Han L, Li Y, Zhang X, Feng Z. Role of pattern recognition receptors in the development of MASLD and potential therapeutic applications. Biomed Pharmacother 2024; 175:116724. [PMID: 38761424 DOI: 10.1016/j.biopha.2024.116724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become one of the most prevalent liver diseases worldwide, and its occurrence is strongly associated with obesity, insulin resistance (IR), genetics, and metabolic stress. Ranging from simple fatty liver to metabolic dysfunction-associated steatohepatitis (MASH), even to severe complications such as liver fibrosis and advanced cirrhosis or hepatocellular carcinoma, the underlying mechanisms of MASLD progression are complex and involve multiple cellular mediators and related signaling pathways. Pattern recognition receptors (PRRs) from the innate immune system, including Toll-like receptors (TLRs), C-type lectin receptors (CLRs), NOD-like receptors (NLRs), RIG-like receptors (RLRs), and DNA receptors, have been demonstrated to potentially contribute to the pathogenesis for MASLD. Their signaling pathways can induce inflammation, mediate oxidative stress, and affect the gut microbiota balance, ultimately resulting in hepatic steatosis, inflammatory injury and fibrosis. Here we review the available literature regarding the involvement of PRR-associated signals in the pathogenic and clinical features of MASLD, in vitro and in animal models of MASLD. We also discuss the emerging targets from PRRs for drug developments that involved agent therapies intended to arrest or reverse disease progression, thus enabling the refinement of therapeutic targets that can accelerate drug development.
Collapse
Affiliation(s)
- Lili Yu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Feifei Gao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Yaoxin Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Dan Su
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Liping Han
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yueming Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Xuehan Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China.
| |
Collapse
|
8
|
Tao Y, Wang L, Ye X, Qian X, Pan D, Dong X, Jiang Q, Hu P. Huang Qin decoction increases SLC6A4 expression and blocks the NFκB-mediated NLRP3/Caspase1/GSDMD pathway to disrupt colitis-associated carcinogenesis. Funct Integr Genomics 2024; 24:55. [PMID: 38467948 PMCID: PMC10927794 DOI: 10.1007/s10142-024-01334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Huang Qin decoction (HQD) is a traditional Chinese medicine formula for treating colitis, but the effects and molecular mechanism of action of HQD in colitis-associated carcinogenesis (CAC) are still unclear. Therefore, we aimed to determine the beneficial effects of HQD on CAC in mice and to reveal the underlying mechanism involved. AOM/DSS was used to induce CAC in mice, and the effects of HQD on tumorigenesis in mice were examined (with mesalazine serving as a positive control). Mesalazine or HQD treatment alleviated body weight loss and decreased the disease activity index in mice induced by AOM/DSS. Mesalazine or HQD treatment also suppressed the shortening of colon tissue length, the number of tumors, and the infiltration of inflammatory cells. The genes targeted by HQD were predicted and verified, followed by knockout experiments. Elevated SLC6A4 and inhibited serotonin production and inflammation were observed in HQD-treated mice. HQD inhibited the NFκB and NLRP3/caspase1/GSDMD pathways. The therapeutic effect of HQD was diminished in SLC6A4-deficient AOM/DSS mice. Additionally, the downregulation of SLC6A4 mitigated the inhibitory effect of HQD-containing serum on MODE-K cell pyroptosis. Our findings suggest that SLC6A4 is a pivotal regulator of HQD-alleviated CAC via its modulation of the NLRP3/caspase1/GSDMD pathway.
Collapse
Affiliation(s)
- Yili Tao
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Lai Wang
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Xiaofeng Ye
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Xin Qian
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Danye Pan
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Xiaoyu Dong
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Qian Jiang
- Digestive Disease Diagnosis and Treatment Center of Integrated Traditional Chinese and Western Medicine, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Po Hu
- Department of Pulmonary Diseases, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China.
| |
Collapse
|
9
|
Ding X, He X, Tang B, Lan T. Integrated traditional Chinese and Western medicine in the prevention and treatment of non-alcoholic fatty liver disease: future directions and strategies. Chin Med 2024; 19:21. [PMID: 38310315 PMCID: PMC10838467 DOI: 10.1186/s13020-024-00894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024] Open
Abstract
Traditional Chinese medicine (TCM) has been widely used for several centuries for metabolic diseases, including non-alcoholic fatty liver disease (NAFLD). At present, NAFLD has become the most prevalent form of chronic liver disease worldwide and can progress to non-alcoholic steatohepatitis (NASH), cirrhosis, and even hepatocellular carcinoma. However, there is still a lack of effective treatment strategies in Western medicine. The development of NAFLD is driven by multiple mechanisms, including genetic factors, insulin resistance, lipotoxicity, mitochondrial dysfunction, endoplasmic reticulum stress, inflammation, gut microbiota dysbiosis, and adipose tissue dysfunction. Currently, certain drugs, including insulin sensitizers, statins, vitamin E, ursodeoxycholic acid and betaine, are proven to be beneficial for the clinical treatment of NAFLD. Due to its complex pathogenesis, personalized medicine that integrates various mechanisms may provide better benefits to patients with NAFLD. The holistic view and syndrome differentiation of TCM have advantages in treating NAFLD, which are similar to the principles of personalized medicine. In TCM, NAFLD is primarily classified into five types based on clinical experience. It is located in the liver and is closely related to spleen and kidney functions. However, due to the multi-component characteristics of traditional Chinese medicine, its application in the treatment of NAFLD has been considerably limited. In this review, we summarize the advances in the pathogenesis and treatment of NAFLD, drawn from both the Western medicine and TCM perspectives. We highlight that Chinese and Western medicine have complementary advantages and should receive increased attention in the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Xin Ding
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Xu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Bulang Tang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Tian Lan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
- School of Pharmacy, Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
10
|
Shen C, Luo Z, Zhan P, Deng F, Zhang P, Shen B, Hu J. Antifungal activity and potential mechanism of action of Huangqin decoction against Trichophyton rubrum. J Med Microbiol 2024; 73. [PMID: 38348868 DOI: 10.1099/jmm.0.001805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Introduction. Trichophyton rubrum is a major causative agent of superficial dermatomycoses such as onychomycosis and tinea pedis. Huangqin decoction (HQD), as a classical traditional Chinese medicine formula, was found to inhibit the growth of common clinical dermatophytes such as T. rubrum in our previous drug susceptibility experiments.Hypothesis/Gap Statement. The antifungal activity and potential mechanism of HQD against T. rubrum have not yet been investigated.Aim. The aim of this study was to investigate the antifungal activity and explore the potential mechanism of action of HQD against T. rubrum.Methodology. The present study was performed to evaluate the antifungal activity of HQD against T. rubrum by determination of minimal inhibitory concentrations (MICs), minimal fungicidal concentrations (MFCs), mycelial growth, biomass, spore germination and structural damage, and explore its preliminary anti-dermatophyte mechanisms by sorbitol and ergosterol assay, HPLC-based ergosterol test, enzyme-linked immunosorbent assay and mitochondrial enzyme activity test.Results. HQD was able to inhibit the growth of T. rubrum significantly, with an MIC of 3.125 mg ml-1 and an MFC of 12.5 mg ml-1. It also significantly inhibited the hyphal growth, conidia germination and biomass growth of T. rubrum in a dose-dependent manner, and induced structural damage in different degrees for T. rubrum cells. HQD showed no effect on cell wall integrity, but was able to damage the cell membrane of T. rubrum by interfering with ergosterol biosynthesis, involving the reduction of squalene epoxidase (SE) and sterol 14α-demethylase P450 (CYP51) activities, and also affect the malate dehydrogenase (MDH), succinate dehydrogenase (SDH) and ATPase activities of mitochondria.Conclusion. These results revealed that HQD had significant anti-dermatophyte activity, which was associated with destroying the cell membrane and affecting the enzyme activities of mitochondria.
Collapse
Affiliation(s)
- Chengying Shen
- Department of Pharmacy, Jiangxi Provincial People's Hospital (the First Affiliated Hospital of Nanchang Medical College), Nanchang, PR China
| | - Zhong Luo
- School of Pharmacy, Nanochang University, Nanchang, PR China
| | - Ping Zhan
- Department of Dermatology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, PR China
| | - Fengyi Deng
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital (the First Affiliated Hospital of Nanchang Medical College), Nanchang, PR China
| | - Pei Zhang
- Department of Pharmacy, Jiangxi Provincial People's Hospital (the First Affiliated Hospital of Nanchang Medical College), Nanchang, PR China
| | - Baode Shen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, PR China
| | - Jianxin Hu
- Department of Pharmacy, Jiangxi Provincial People's Hospital (the First Affiliated Hospital of Nanchang Medical College), Nanchang, PR China
| |
Collapse
|
11
|
Yan B, Zheng X, Wang Y, Yang J, Zhu X, Qiu M, Xia K, Wang Y, Li M, Li S, Ma X, Xie J, Li F, Fu T, Li W. Liposome-Based Silibinin for Mitigating Nonalcoholic Fatty Liver Disease: Dual Effects via Parenteral and Intestinal Routes. ACS Pharmacol Transl Sci 2023; 6:1909-1923. [PMID: 38093834 PMCID: PMC10714430 DOI: 10.1021/acsptsci.3c00210] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a clinicopathological entity that is typically characterized by intrahepatic ectopic steatosis. Nowadays, NAFLD has surpassed viral hepatitis and become the most common chronic liver disease worldwide, which poses a great threat to human health. Silibinin (Sil), a well-known natural product, has been widely used in clinical treatment for liver disorders and exhibited therapeutic potential for NAFLD. However, the suitability of Sil for NAFLD treatment still requires further investigation due to its limited absorption and low bioavailability. This study aimed to construct a Sil-loaded liposome (Sil-Lip) to overcome the limitations of Sil, thereby enhancing its beneficial effects on NAFLD and then investigate the underlying mechanisms of action of Sil-Lip. Herein, Sil-Lip was fabricated by a well-established thin-film dispersion method and carefully characterized, followed by evaluating their therapeutic efficacy using high-fat diet-induced NAFLD mice and free fatty acid -stimulated HepG2 cells. Then, liver transcriptome analysis and 16S ribosomal RNA (16S rRNA) sequencing were utilized to elucidate the potential mechanisms of action of Sil-Lip. Our data indicated that Sil-Lip harbored good gastrointestinal tract stability, mucus layer permeation, and excellent oral absorption and bioavailability. In vivo and in vitro NAFLD models demonstrated that Sil-Lip had better effects in alleviating lipid metabolism disorders, insulin resistance, and inflammation than did Sil alone. Further investigations revealed that the beneficial effects of Sil-Lip were mediated by modulating intrahepatic insulin resistance-related and nuclear factor-kappa B (NF-κB) signaling pathways and extrahepatic gut microbiota. Our study confirmed that Sil-Lip can effectively improve the absorption and bioavailability of Sil, resultantly potentiating its ameliorative effects on NAFLD through modulating intrahepatic insulin resistance-related and NF-κB signaling pathways and extrahepatic gut microbiota.
Collapse
Affiliation(s)
- Baofei Yan
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
- School
of Pharmacy, Jiangsu Health Vocational College, Nanjing 211800, China
| | - Xian Zheng
- Department
of Pharmacy, Affiliated Kunshan Hospital
of Jiangsu University, Kunshan 215399, China
| | - Yun Wang
- Department
of Dermatology, Affiliated Huai’an Hospital of Xuzhou Medical
University, The Second People’s Hospital
of Huai’an, Huai’an 223002, China
| | - Jingwen Yang
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Xingyu Zhu
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Mengmeng Qiu
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Kexin Xia
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Yongan Wang
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Mian Li
- Shandong
Medicinal Biotechnology Centre, Shandong
First Medical University, Ji’nan 271016, China
| | - Sipan Li
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Xinai Ma
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Jianjun Xie
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Fengtao Li
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Tingming Fu
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Wei Li
- Zhejiang
Provincial Key Laboratory of Medical Genetics, College of Laboratory
Medicine and Life Sciences, Wenzhou Medical
University, Wenzhou 325035, China
| |
Collapse
|
12
|
Yan BF, Pan LF, Quan YF, Sha Q, Zhang JZ, Zhang YF, Zhou LB, Qian XL, Gu XM, Li FT, Wang T, Liu J, Zheng X. Huangqin decoction alleviates lipid metabolism disorders and insulin resistance in nonalcoholic fatty liver disease by triggering Sirt1/NF-κB pathway. World J Gastroenterol 2023; 29:4744-4762. [PMID: 37664157 PMCID: PMC10473922 DOI: 10.3748/wjg.v29.i31.4744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a clinicopathological entity characterized by intrahepatic ectopic steatosis. As a consequence of increased consumption of high-calorie diet and adoption of a sedentary lifestyle, the incidence of NAFLD has surpassed that of viral hepatitis, making it the most common cause of chronic liver disease globally. Huangqin decoction (HQD), a Chinese medicinal formulation that has been used clinically for thousands of years, has beneficial outcomes in patients with liver diseases, including NAFLD. However, the role and mechanism of action of HQD in lipid metabolism disorders and insulin resistance in NAFLD remain poorly understood. AIM To evaluate the ameliorative effects of HQD in NAFLD, with a focus on lipid metabolism and insulin resistance, and to elucidate the underlying mechanism of action. METHODS High-fat diet-induced NAFLD rats and palmitic acid (PA)-stimulated HepG2 cells were used to investigate the effects of HQD and identify its potential mechanism of action. Phytochemicals in HQD were analyzed by high-performance liquid chromatography (HPLC) to identify the key components. RESULTS Ten primary chemical components of HQD were identified by HPLC analysis. In vivo, HQD effectively prevented rats from gaining body and liver weight, improved the liver index, ameliorated hepatic histological aberrations, decreased transaminase and lipid profile disorders, and reduced the levels of pro-inflammatory factors and insulin resistance. In vitro studies revealed that HQD effectively alleviated PA-induced lipid accumulation, inflammation, and insulin resistance in HepG2 cells. In-depth investigation revealed that HQD triggers Sirt1/NF-κB pathway-modulated lipogenesis and inflammation, contributing to its beneficial actions, which was further corroborated by the addition of the Sirt1 antagonist EX-527 that compromised the favorable effects of HQD. CONCLUSION In summary, our study confirmed that HQD mitigates lipid metabolism disorders and insulin resistance in NAFLD by triggering the Sirt1/NF-κB pathway.
Collapse
Affiliation(s)
- Bao-Fei Yan
- College of Pharmacy, Jiangsu Health Vocational College, Nanjing 211800, Jiangsu Province, China
| | - Lan-Fen Pan
- Department of Pathology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu Province, China
| | - Yi-Fang Quan
- Department of Education and Science, The First People's Hospital of Taicang, Kunshan 215400, Jiangsu Province, China
| | - Qian Sha
- Department of Pharmacy, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
| | - Jing-Zheng Zhang
- College of Pharmacy, Jiangsu Health Vocational College, Nanjing 211800, Jiangsu Province, China
| | - Yi-Feng Zhang
- School of Pharmacy, Nantong University, Nantong 226019, Jiangsu Province, China
| | - Li-Bing Zhou
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu Province, China
| | - Xi-Long Qian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Xiao-Mei Gu
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu Province, China
| | - Feng-Tao Li
- College of Pharmacy, Jiangsu Health Vocational College, Nanjing 211800, Jiangsu Province, China
| | - Ting Wang
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu Province, China
| | - Jia Liu
- College of Pharmacy, Jiangsu Health Vocational College, Nanjing 211800, Jiangsu Province, China
| | - Xian Zheng
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu Province, China
| |
Collapse
|
13
|
Li M, Huang X, Huang M, Jin W, Hong Z, Zhang Y, Fang H, Chen W. Effects of fatty acid-ethanol amine (FA-EA) derivatives on lipid accumulation and inflammation. Lipids 2023; 58:117-127. [PMID: 36942837 DOI: 10.1002/lipd.12368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/23/2023]
Abstract
This study aimed to investigate the effect of fatty acid-ethanol amine (FA-EA) derivatives (L1-L10) on the mitigation of intracellular lipid accumulation and downregulation of pro-inflammatory cytokines in vitro. First, the series of FA-EA derivatives were synthesized and characterized. Then, their cytotoxic, intracellular lipid accumulation and inhibition of pro-inflammatory cytokines were evaluated. The oil red O staining experiment showed that the tested compounds L4, L6, L8, L9, and L10 could reduce intracellular lipid accumulation induced by palmitic acid (PA). Moreover, ω-3/ω-6 PUFA-EA derivatives showed inhibitory effect on the production of pro-inflammatory cytokines in lipopolysaccharide (LPS) -stimulated RAW 264.7 cells. ω-3/ω-6 PUFA-EA derivatives at a concentrations of 10 μM could significantly decrease mRNA levels of IL-6, IL-1β, and TNF-α, inhibit NO production, and alleviate the protein expression of IL-1β in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. These data suggest that ω-3 PUFA-EA derivatives can be beneficial for further pharmaceutical development to treat chronic low-grade inflammation diseases such as obesity.
Collapse
Affiliation(s)
- Mengyu Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
- Third Institute of Oceanography, Ministry of Natural Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
| | - Xiaoqing Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
- Third Institute of Oceanography, Ministry of Natural Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
| | - Mengxian Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
- College of Biology and Environment, Zhejiang Wanli University, Ningbo, 315100, China
| | - Wenhui Jin
- Third Institute of Oceanography, Ministry of Natural Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
- Xiamen Ocean Vocational College, Xiamen, 361102, China
| | - Zhuan Hong
- Third Institute of Oceanography, Ministry of Natural Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
- Xiamen Ocean Vocational College, Xiamen, 361102, China
| | - Yucang Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Hua Fang
- Third Institute of Oceanography, Ministry of Natural Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
- Xiamen Ocean Vocational College, Xiamen, 361102, China
| | - Weizhu Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
- Xiamen Ocean Vocational College, Xiamen, 361102, China
| |
Collapse
|