1
|
Xu S, Wang D, Tan L, Lu J. The role of NLRP3 inflammasome in type 2 inflammation related diseases. Autoimmunity 2024; 57:2310269. [PMID: 38332696 DOI: 10.1080/08916934.2024.2310269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/21/2024] [Indexed: 02/10/2024]
Abstract
Type 2 inflammation related diseases, such as atopic dermatitis, asthma, and allergic rhinitis, are diverse and affect multiple systems in the human body. It is common for individuals to have multiple co-existing type 2 inflammation related diseases, which can impose a significant financial and living burden on patients. However, the exact pathogenesis of these diseases is still unclear. The NLRP3 inflammasome is a protein complex composed of the NLRP3 protein, ASC, and Caspase-1, and is activated through various mechanisms, including the NF-κB pathway, ion channels, and lysosomal damage. The NLRP3 inflammasome plays a role in the immune response to pathogens and cellular damage. Recent studies have indicated a strong correlation between the abnormal activation of NLRP3 inflammasome and the onset of type 2 inflammation. Additionally, it has been demonstrated that suppressing NLRP3 expression effectively diminishes the inflammatory response, highlighting its promising therapeutic applications. Therefore, this article reviews the role of NLRP3 inflammasome in the development and therapy of multiple type 2 inflammation related diseases.
Collapse
Affiliation(s)
- Shenming Xu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Medical Ozone Research Center of Central South University, Changsha, Hunan, People's Republic of China
| | - Dan Wang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Medical Ozone Research Center of Central South University, Changsha, Hunan, People's Republic of China
| | - Lina Tan
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Medical Ozone Research Center of Central South University, Changsha, Hunan, People's Republic of China
| | - Jianyun Lu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Medical Ozone Research Center of Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
2
|
Wang Y, Sui Y, Yao J, Jiang H, Tian Q, Tang Y, Ou Y, Tang J, Tan N. Herb-CMap: a multimodal fusion framework for deciphering the mechanisms of action in traditional Chinese medicine using Suhuang antitussive capsule as a case study. Brief Bioinform 2024; 25:bbae362. [PMID: 39073832 DOI: 10.1093/bib/bbae362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/21/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024] Open
Abstract
Herbal medicines, particularly traditional Chinese medicines (TCMs), are a rich source of natural products with significant therapeutic potential. However, understanding their mechanisms of action is challenging due to the complexity of their multi-ingredient compositions. We introduced Herb-CMap, a multimodal fusion framework leveraging protein-protein interactions and herb-perturbed gene expression signatures. Utilizing a network-based heat diffusion algorithm, Herb-CMap creates a connectivity map linking herb perturbations to their therapeutic targets, thereby facilitating the prioritization of active ingredients. As a case study, we applied Herb-CMap to Suhuang antitussive capsule (Suhuang), a TCM formula used for treating cough variant asthma (CVA). Using in vivo rat models, our analysis established the transcriptomic signatures of Suhuang and identified its key compounds, such as quercetin and luteolin, and their target genes, including IL17A, PIK3CB, PIK3CD, AKT1, and TNF. These drug-target interactions inhibit the IL-17 signaling pathway and deactivate PI3K, AKT, and NF-κB, effectively reducing lung inflammation and alleviating CVA. The study demonstrates the efficacy of Herb-CMap in elucidating the molecular mechanisms of herbal medicines, offering valuable insights for advancing drug discovery in TCM.
Collapse
Affiliation(s)
- Yinyin Wang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, PR China
| | - Yihang Sui
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, PR China
| | - Jiaqi Yao
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, PR China
| | - Hong Jiang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, PR China
| | - Qimeng Tian
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, PR China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Yongyu Ou
- Beijing Haiyan Pharmaceutical Co., Ltd., Yangtze River Pharmaceutical Group, No. 16 Shengmingyuan Road, Beijing 102206, PR China
| | - Jing Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki FI-00290, Finland
| | - Ninghua Tan
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, PR China
| |
Collapse
|
3
|
Sá AK, Olímpio F, Vasconcelos J, Rosa P, Faria Neto HC, Rocha C, Camacho MF, Barcick U, Zelanis A, Aimbire F. Involvement of GPR43 Receptor in Effect of Lacticaseibacillus rhamnosus on Murine Steroid Resistant Chronic Obstructive Pulmonary Disease: Relevance to Pro-Inflammatory Mediators and Oxidative Stress in Human Macrophages. Nutrients 2024; 16:1509. [PMID: 38794746 PMCID: PMC11124176 DOI: 10.3390/nu16101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Cytokine storm and oxidative stress are present in chronic obstructive pulmonary disease (COPD). Individuals with COPD present high levels of NF-κB-associated cytokines and pro-oxidant agents as well as low levels of Nrf2-associated antioxidants. This condition creates a steroid-resistant inflammatory microenvironment. Lacticaseibacillus rhamnosus (Lr) is a known anti-cytokine in lung diseases; however, the effect of Lr on lung inflammation and oxidative stress in steroid-resistant COPD mice remains unknown. OBJECTIVE Thus, we investigated the Lr effect on lung inflammation and oxidative stress in mice and macrophages exposed to cigarette smoke extract (CSE) and unresponsive to steroids. METHODS Mice and macrophages received dexamethasone or GLPG-094 (a GPR43 inhibitor), and only the macrophages received butyrate (but), all treatments being given before CSE. Lung inflammation was evaluated from the leukocyte population, airway remodeling, cytokines, and NF-κB. Oxidative stress disturbance was measured from ROS, 8-isoprostane, NADPH oxidase, TBARS, SOD, catalase, HO-1, and Nrf2. RESULTS Lr attenuated cellularity, mucus, collagen, cytokines, ROS, 8-isoprostane, NADPH oxidase, and TBARS. Otherwise, SOD, catalase, HO-1, and Nrf2 were upregulated in Lr-treated COPD mice. Anti-cytokine and antioxidant effects of butyrate also occurred in CSE-exposed macrophages. GLPG-094 rendered Lr and butyrate less effective. CONCLUSIONS Lr attenuates lung inflammation and oxidative stress in COPD mice, suggesting the presence of a GPR43 receptor-dependent mechanism also found in macrophages.
Collapse
Affiliation(s)
- Ana Karolina Sá
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720–2 Andar, Vila Clementino, São Paulo 04039-002, Brazil; (A.K.S.); (F.O.); (J.V.); (P.R.)
- Laboratory of Immunopharmacology, Institute of Science and Technology, Federal University of São Paulo, Rua Talim, 330, Vila Nair, São José dos Campos 12231-280, Brazil
| | - Fabiana Olímpio
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720–2 Andar, Vila Clementino, São Paulo 04039-002, Brazil; (A.K.S.); (F.O.); (J.V.); (P.R.)
- Laboratory of Immunopharmacology, Institute of Science and Technology, Federal University of São Paulo, Rua Talim, 330, Vila Nair, São José dos Campos 12231-280, Brazil
| | - Jessica Vasconcelos
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720–2 Andar, Vila Clementino, São Paulo 04039-002, Brazil; (A.K.S.); (F.O.); (J.V.); (P.R.)
- Laboratory of Immunopharmacology, Institute of Science and Technology, Federal University of São Paulo, Rua Talim, 330, Vila Nair, São José dos Campos 12231-280, Brazil
| | - Paloma Rosa
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720–2 Andar, Vila Clementino, São Paulo 04039-002, Brazil; (A.K.S.); (F.O.); (J.V.); (P.R.)
- Laboratory of Immunopharmacology, Institute of Science and Technology, Federal University of São Paulo, Rua Talim, 330, Vila Nair, São José dos Campos 12231-280, Brazil
| | - Hugo Caire Faria Neto
- Laboratory of Immunopharmacology, Oswaldo Cruz Foundation Fundação Oswaldo Cruz, Av. Brazil, Rio de Janeiro 4036, Brazil;
| | - Carlos Rocha
- Medical School, Group of Phytocomplexes and Cell Signaling, Anhembi Morumbi University, São José dos Campos 04039-002, Brazil;
| | - Maurício Frota Camacho
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, São José dos Campos 12231-280, Brazil; (M.F.C.); (U.B.); (A.Z.)
| | - Uilla Barcick
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, São José dos Campos 12231-280, Brazil; (M.F.C.); (U.B.); (A.Z.)
| | - Andre Zelanis
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, São José dos Campos 12231-280, Brazil; (M.F.C.); (U.B.); (A.Z.)
| | - Flavio Aimbire
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720–2 Andar, Vila Clementino, São Paulo 04039-002, Brazil; (A.K.S.); (F.O.); (J.V.); (P.R.)
- Laboratory of Immunopharmacology, Institute of Science and Technology, Federal University of São Paulo, Rua Talim, 330, Vila Nair, São José dos Campos 12231-280, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Evangelical University of Goiás (UniEvangélica), Avenida Universitária Km 3,5, Anápolis 75083-515, Brazil
| |
Collapse
|
4
|
Wu LR, Peng QY, Li XJ, Guo MY, He JQ, Ying HZ, Yu CH. Daqing formula ameliorated allergic asthma and airway dysbacteriosis in mice challenged with ovalbumin and ampicillin. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117056. [PMID: 37597673 DOI: 10.1016/j.jep.2023.117056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asthma is a chronic airway inflammatory disease that can lead to several complications caused by bacterial infections. However, recurrent attacks of the disease require long-term use of antibiotics, resulting in lung dysbiosis and poor outcomes. Daqing Formula (DQF) is a well-known herbal medicine in Pharmacopoeia of China, which is widely used for various stimuli-induced lower respiratory diseases, including asthma, bronchitis, and pneumonia. Thus, it has been demonstrated to be a plant-derived broad-spectrum antibiotic for treating and preventing various acute and chronic respiratory diseases. AIM OF THE STUDY This study evaluated the efficacy and possible mechanism of DQF on allergic asthma and airway dysbiosis. METHODS AND MATERIALS The mice were co-challenged with ovalbumin and ampicillin to induce allergic asthma combined with airway dysbacteriosis. The populations of lung microbiota were detected by using 16s DNA sequencing. The levels of asthmatic markers in BALF were detected by ELISA. The levels of Th1/Th2 cytokines in splenic CD4+ cells of mice were analyzed by flow cytometry. The expressions of the GSK-3β signaling pathway in the lung tissues of asthmatic mice and eosinophils were detected by western blotting assay. The inhibition of DQF on the production of pro-inflammatory cytokines in eosinophils of asthmatic mice. RESULTS The results showed that treatment with DQF at 200-800 mg/kg doses significantly reduced the frequency of nasal rubbing and lung inflammation as well as the number of total cells, eosinophils, and macrophages in bronchoalveolar lavage fluid. It decreased the relative abundances of Streptococcus, Cuoriavidus, and Moraxella, increased Akkermansia and Prevotella_6 in lung tissues of asthmatic mice, and inhibited the growth of Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae and their resistant strains in vitro. Furthermore, DQF reduced the levels of eotaxin, TSLP, IL-4, IL-5, IL-25, and IL-33, but enhanced IFN-γ and IL-12 in BALF. It elevated the population of Th1 cells, inhibited eosinophil activation, and downregulated the expressions of p-GSK-3β, p-p65, nuclear β-catenin, and p-STAT3 in the lung tissues of asthmatic mice. CONCLUSIONS The results revealed that DQF reduced airway inflammation, ameliorated lung dysbiosis, shifted the Th1/Th2 balance, and inhibited eosinophil activation in asthmatic mice, indicating its potential for severe asthma treatment.
Collapse
Affiliation(s)
- Li-Ren Wu
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China
| | - Qian-Yu Peng
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China
| | - Xue-Jian Li
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China
| | - Mei-Ying Guo
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China
| | - Jia-Qi He
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Hua-Zhong Ying
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China.
| | - Chen-Huan Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China; Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, China; Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, 310018, China.
| |
Collapse
|