1
|
Zhang L, Yin H, Xie Y, Zhang Y, Dong F, Wu K, Yang L, Lv H. Exploring the anti‑oxidative mechanisms of Rhodiola rosea in ameliorating myocardial fibrosis through network pharmacology and in vitro experiments. Mol Med Rep 2024; 30:214. [PMID: 39370810 PMCID: PMC11450433 DOI: 10.3892/mmr.2024.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
Myocardial fibrosis (MF) significantly compromises cardiovascular health by affecting cardiac function through excessive collagen deposition. This impairs myocardial contraction and relaxation and leads to severe complications and increased mortality. The present study employed network pharmacology and in vitro assays to investigate the bioactive compounds of Rhodiola rosea and their targets. Using databases such as HERB, the Encyclopedia of Traditional Chinese Medicine, Pubchem, OMIM and GeneCards, the present study identified effective components and MF‑related targets. Network analysis was conducted with Cytoscape to develop a Drug‑Ingredient‑Target‑Disease network and the STRING database was utilized to construct a protein‑protein interaction network. Key nodes were analyzed for pathway enrichment using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Molecular interactions were further explored through molecular docking techniques. The bioactivity of salidroside (SAL), the principal component of Rhodiola rosea, against MF was experimentally validated in H9c2 cardiomyocytes treated with angiotensin II and assessed for cell viability, protein expression and oxidative stress markers. Network pharmacology identified 25 active ingredients and 372 targets in Rhodiola rosea, linking SAL with pathways such as MAPK, EGFR, advanced glycosylation end products‑advanced glycosylation end products receptor and Forkhead box O. SAL showed significant interactions with core targets such as albumin, IL6, AKT serine/threonine kinase 1, MMP9 and caspase‑3. In vitro, SAL mitigated AngII‑induced increases in collagen I and alpha smooth muscle actin protein levels and oxidative stress markers, demonstrating dose‑dependent effectiveness in reversing MF. SAL from Rhodiola rosea exhibited potent anti‑oxidative properties that mitigated MF by modulating multiple molecular targets and signaling pathways. The present study underscored the therapeutic potential of SAL in treating oxidative stress‑related cardiovascular diseases.
Collapse
Affiliation(s)
- Luna Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Hang Yin
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Yumin Xie
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Yueyue Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Feihong Dong
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Ke Wu
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Le Yang
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Huiyi Lv
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| |
Collapse
|
2
|
Kan H, Wang P, Yang Y, Jia H, Liu A, Wang M, Ouyang C, Yang X. Apigenin inhibits proliferation and differentiation of cardiac fibroblasts through AKT/GSK3β signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118518. [PMID: 38964628 DOI: 10.1016/j.jep.2024.118518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza Bunge (S. miltiorrhiza) is an important Traditional Chinese herbal Medicine (TCM) used to treat cardio-cerebrovascular diseases. Based on the pharmacodynamic substance of S. miltiorrhiza, the aim of present study was to investigate the underlying mechanism of S. miltiorrhiza against cardiac fibrosis (CF) through a systematic network pharmacology approach, molecular docking and dynamics simulation as well as experimental investigation in vitro. MATERIALS AND METHODS A systematic pharmacological analysis was conducted using the Traditional Chinese Medicine Pharmacology (TCMSP) database to screen the effective chemical components of S. miltiorrhiza, then the corresponding potential target genes of the compounds were obtained by the Swiss Target Prediction and TCMSP databases. Meanwhile, GeneCards, DisGeNET, OMIM, and TTD disease databases were used to screen CF targets, and a protein-protein interaction (PPI) network of drug-disease targets was constructed on S. miltiorrhiza/CF targets by Search Tool for the Retrieval of Interacting Genes/Proteins (STING) database. After that, the component-disease-target network was constructed by software Cytoscape 3.7. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed for the intersection targets between drug and disease. The relationship between active ingredient of S. miltiorrhiza and disease targets of CF was assessed via molecular docking and molecular dynamics simulation. Subsequently, the underlying mechanism of the hub compound on CF was experimentally investigated in vitro. RESULTS 206 corresponding targets to effective chemical components from S. miltiorrhiza were determined, and among them, there were 82 targets that overlapped with targets of CF. Further, through PPI analysis, AKT1 and GSK3β were the hub targets, and which were both enriched in the PI3K/AKT signaling pathway, it was the sub-pathways of the lipid and atherosclerosis pathway. Subsequently, compound-disease-genes-pathways diagram is constructed, apigenin (APi) was a top ingredients and AKT1 (51) and GSK3β (22) were the hub genes according to the degree value. The results of molecular docking and dynamics simulation showed that APi has strong affinities with AKT and GSK3β. The results of cell experiments showed that APi inhibited cells viability, proliferation, proteins expression of α-SMA and collagen I/III, phosphorylation of AKT1 and GSK3β in MCFs induced by TGFβ1. CONCLUSION Through a systematic network pharmacology approach, molecular docking and dynamics simulation, and confirmed by in vitro cell experiments, these results indicated that APi interacts with AKT and GSK3β to disrupt the phosphorylation of AKT and GSK3β, thereby inhibiting the proliferation and differentiation of MCFs induced by TGFβ1, which providing new insights into the pharmacological mechanism of S. miltiorrhiza in the treatment of CF.
Collapse
Affiliation(s)
- Hongshuang Kan
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, 437100, China.
| | - Pengyu Wang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, 437100, China.
| | - Yayuan Yang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, 437100, China.
| | - Hongyu Jia
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, 437100, China.
| | - Aimei Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Miao Wang
- Department of Cardiovascular Medicine, Xian Ning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xian'an District, Xian Ning City, Hubei Province, China.
| | - Changhan Ouyang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Xiaosong Yang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China; School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, 437100, China.
| |
Collapse
|
3
|
Jin Z, Lan Y, Li J, Wang P, Xiong X. The role of Chinese herbal medicine in the regulation of oxidative stress in treating hypertension: from therapeutics to mechanisms. Chin Med 2024; 19:150. [PMID: 39468572 PMCID: PMC11520704 DOI: 10.1186/s13020-024-01022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Although the pathogenesis of essential hypertension is not clear, a large number of studies have shown that oxidative stress plays an important role in the occurrence and development of hypertension and target organ damage. PURPOSE This paper systematically summarizes the relationship between oxidative stress and hypertension, and explores the potential mechanisms of Chinese herbal medicine (CHM) in the regulation of oxidative stress in hypertension, aiming to establish a scientific basis for the treatment of hypertension with CHM. METHODS To review the efficacy and mechanism by which CHM treat hypertension through targeting oxidative stress, data were searched from PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, the Chinese National Knowledge Infrastructure, the VIP Information Database, the Chinese Biomedical Literature Database, and the Wanfang Database from their inception up to January 2024. NPs were classified and summarized by their mechanisms of action. RESULTS In hypertension, the oxidative stress pathway of the body is abnormally activated, and the antioxidant system is inhibited, leading to the imbalance between the oxidative and antioxidative capacity. Meanwhile, excessive production of reactive oxygen species can lead to endothelial damage and vascular dysfunction, resulting in inflammation and immune response, thereby promoting the development of hypertension and damaging the heart, brain, kidneys, blood vessels, and other target organs. Numerous studies suggested that inhibiting oxidative stress may be the potential therapeutic target for hypertension. In recent years, the clinical advantages of traditional Chinese medicine (TCM) in the treatment of hypertension have gradually attracted attention. TCM, including active ingredients of CHM, single Chinese herb, TCM classic formula and traditional Chinese patent medicine, can not only reduce blood pressure, improve clinical symptoms, but also improve oxidative stress, thus extensively affect vascular endothelium, renin-angiotensin-aldosterone system, sympathetic nervous system, target organ damage, as well as insulin resistance, hyperlipidemia, hyperhomocysteinemia and other pathological mechanisms and hypertension related risk factors. CONCLUSIONS CHM display a beneficial multi-target, multi-component, overall and comprehensive regulation characteristics, and have potential value for clinical application in the treatment of hypertension by regulating the level of oxidative stress.
Collapse
Affiliation(s)
- Zixuan Jin
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Yu Lan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Junying Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Pengqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xingjiang Xiong
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
4
|
Wei X, Leng X, Liang J, Liu J, Chi L, Deng H, Sun D. Pharmacological potential of natural medicine Astragali Radix in treating intestinal diseases. Biomed Pharmacother 2024; 180:117580. [PMID: 39413615 DOI: 10.1016/j.biopha.2024.117580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024] Open
Abstract
Due to changes in diet and lifestyle, the prevalence of intestinal diseases has been increasing annually. Current treatment methods exhibit several limitations, including adverse reactions and drug resistance, necessitating the development of new, safe, and effective therapies. Astragali Radix, a natural medicine utilized for over two millennia, offers unique advantages in treating intestinal ailments due to its multi-component and multi-target properties. This study aims to review the effective components of Astragali Radix that provide intestinal protection and to explore its pharmacological effects and molecular mechanisms across various intestinal diseases. This will provide a comprehensive foundation for using Astragali Radix in treating intestinal diseases and serve as a reference for future research directions. The active components of Astragali Radix with protective effects on the intestines include astragaloside (AS)-IV, AS-III, AS-II, astragalus polysaccharide (APS), cycloastagenol, calycosin, formononetin, and ononin. Astragali Radix and its active components primarily address intestinal diseases such as colorectal cancer (CRC), inflammatory bowel disease (IBD), and enterocolitis through mechanisms including anti-inflammatory actions, antioxidative stress responses, anti-proliferation and invasion activities, regulation of programmed cell death, immunoregulation, restoration of the intestinal epithelial barrier, and modulation of the intestinal microbiota and its metabolites. Consequently, Astragali Radix demonstrates significant intestinal protective activity and represents a promising natural treatment for intestinal diseases. However, the pharmacological actions and mechanisms of some active components in Astragali Radix remain unexplored. Moreover, further comprehensive toxicological and clinical studies are required to ascertain its safety and clinical effectiveness.
Collapse
Affiliation(s)
- Xiunan Wei
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Xiaohui Leng
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Junwei Liang
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Jiahui Liu
- Department of Gastroenterology, Shandong Provincial Third Hospital, Jinan 250014, China.
| | - Lili Chi
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Hualiang Deng
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Dajuan Sun
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
5
|
Shi Y, Ma P. Pharmacological effects of Astragalus polysaccharides in treating neurodegenerative diseases. Front Pharmacol 2024; 15:1449101. [PMID: 39156112 PMCID: PMC11327089 DOI: 10.3389/fphar.2024.1449101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
Astragalus membranaceus widely used in traditional Chinese medicine, exhibits multiple pharmacological effects, including immune stimulation, antioxidation, hepatoprotection, diuresis, antidiabetes, anticancer, and expectorant properties. Its main bioactive compounds include flavonoids, triterpene saponins, and polysaccharides. Astragalus polysaccharides (APS), one of its primary bioactive components, have been shown to possess a variety of pharmacological activities, such as antioxidant, immunomodulatory, anti-inflammatory, antitumor, antidiabetic, antiviral, hepatoprotective, anti-atherosclerotic, hematopoietic, and neuroprotective effects. This review provides a comprehensive summary of the molecular mechanisms and therapeutic effects of APS in treating neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). It discusses how APS improve insulin resistance, reduce blood glucose levels, enhance cognitive function, and reduce Aβ accumulation and neuronal apoptosis by modulating various pathways such as Nrf2, JAK/STAT, Toll, and IMD. For PD, APS protect neurons and stabilize mitochondrial function by inhibiting ROS production and promoting autophagy through the PI3K/AKT/mTOR pathway. APS also reduce oxidative stress and neurotoxicity induced by 6-hydroxydopamine, showcasing their neuroprotective effects. In MS, APS alleviate symptoms by suppressing T cell proliferation and reducing pro-inflammatory cytokine expression via the PD-1/PD-Ls pathway. APS promote myelin regeneration by activating the Sonic hedgehog signaling pathway and fostering the differentiation of neural stem cells into oligodendrocytes. This article emphasizes the significant antioxidant, anti-inflammatory, immunomodulatory, and neuroprotective pharmacological activities of APS, highlighting their potential as promising candidates for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Ping Ma
- School of Basic Medical, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Yun S, Oh J, Chu H, Park D, Leem J. Systematic Review of Preclinical Studies on the Efficacy and Mechanisms of Herbal Medicines in Post-Myocardial Infarction Heart Failure with Reduced Ejection Fraction. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1101. [PMID: 39064530 PMCID: PMC11278938 DOI: 10.3390/medicina60071101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: Heart failure with reduced ejection fraction (HFrEF) remains a significant burden. Traditional herbal medicines have shown cardioprotective effects in treating HFrEF. However, the implications of herbal formulation considering the dynamic immunohistological changes in the myocardium following acute ischemic injury have been insufficiently discussed. This review investigated the efficacy and mechanisms reported in studies using rat or mouse models of HFrEF induced by left descending coronary artery ligation. Materials and Methods: A systematic search was conducted using PubMed, Embase, AMED, CINAHL, and CENTRAL databases. Information was extracted regarding study characteristics, disease model induction protocols, intervention characteristics, treatment protocols, outcomes, and suggested mechanisms. Hierarchical cluster analysis of test drugs was performed based on constituent herb similarities. The risk of bias (RoB) was assessed using the Systematic Review Center for Laboratory animal Experimentation RoB tool. Results: Overall, 26 studies met the eligibility criteria. HF model induction periods after LADCA ligation ranged from 1 day to 12 weeks. Most studies administered the test drug for four weeks. Commonly used herbs included Panax ginseng, Astragalus membranaceus, Salvia miltiorrhiza, Carthamus tinctorius, and Lepidium apetalum, which demonstrated anti-fibrotic, anti-inflammatory, and anti-apoptotic effects through various signaling pathways. The overall RoB was relatively high. No significant association was found between model induction periods and herbal formulations or examined mechanisms. Conclusions: Future research should consider the time-dependent immunohistological features of the myocardium during HF treatment.
Collapse
Affiliation(s)
- Soyeong Yun
- Department of Obstetrics & Gynecology of Korean Medicine, Wonkwang University Jeonju Korean Medicine Hospital, 99 Garyeonsan-ro, Deokjin-gu, Jeonju 54887, Jeollabuk-do, Republic of Korea;
| | - Jieun Oh
- Department of Neuropsychiatry of Korean Medicine, Wonkwang University Jeonju Korean Medicine Hospital, 99 Garyeonsan-ro, Deokjin-gu, Jeonju 54887, Jeollabuk-do, Republic of Korea;
| | - Hongmin Chu
- Department of Internal Medicine and Neuroscience, College of Korean Medicine, Wonkwang University, 460 Iksan-daero, Sin-dong, Iksan 54538, Jeollabuk-do, Republic of Korea;
| | - Dasol Park
- Department of Diagnostics, College of Korean Medicine, Wonkwang University, 460 Iksan-daero, Sin-dong, Iksan 54538, Jeollabuk-do, Republic of Korea
| | - Jungtae Leem
- Department of Diagnostics, College of Korean Medicine, Wonkwang University, 460 Iksan-daero, Sin-dong, Iksan 54538, Jeollabuk-do, Republic of Korea
- Research Center of Traditional Korean Medicine, College of Korean Medicine, Wonkwang University, 460 Iksan-daero, Sin-dong, Iksan 54538, Jeollabuk-do, Republic of Korea
- Korean Medicine Clinical Research Institute, Wonkwang University Korean Medicine Hospital, 895 Muwang-ro, Iksan 54538, Jeollabuk-do, Republic of Korea
| |
Collapse
|
7
|
Tao Y, Yuan J, Zhou H, Li Z, Yao X, Wu H, Shi H, Huang F, Wu X. Antidepressant potential of total flavonoids from Astragalus in a chronic stress mouse model: Implications for myelination and Wnt/β-catenin/Olig2/Sox10 signaling axis modulation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117846. [PMID: 38301982 DOI: 10.1016/j.jep.2024.117846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Astragali, a versatile traditional Chinese medicinal herb, has a rich history dating back to "Sheng Nong's herbal classic". It has been employed in clinical practice to address various ailments, including depression. One of its primary active components, total flavonoids from Astragalus (TFA), remains unexplored in terms of its potential antidepressant properties. This study delves into the antidepressant effects of TFA using a mouse model subjected to chronic unpredictable mild stress (CUMS). AIMS OF THE STUDY The study aimed to scrutinize how TFA influenced depressive behaviors, corticosterone and glutamate levels in the hippocampus, as well as myelin-related protein expression in CUMS mice. Additionally, it sought to explore the involvement of the Wnt/β-catenin/Olig2/Sox10 signaling axis as a potential antidepressant mechanism of TFA. MATERIALS AND METHODS Male C57BL/6 mice were subjected to CUMS to induce depressive behaviors. TFA were orally administered at two different doses (50 mg/kg and 100 mg/kg). A battery of behavioral tests, biochemical analyses, immunohistochemistry, UPLC-MS/MS, real-time PCR, and Western blotting were employed to evaluate the antidepressant potential of TFA. The role of the Wnt/β-catenin/Olig2/Sox10 signaling axis in the antidepressant mechanism of TFA was validated through MO3.13 cells. RESULTS TFA administration significantly alleviated depressive behaviors in CUMS mice, as evidenced by improved sucrose preference, reduced immobility in tail suspension and forced swimming tests, and increased locomotor activity in the open field test. Moreover, TFA effectively reduced hippocampal corticosterone and glutamate levels and promoted myelin formation in the hippocampus of CUMS mice. Then, TFA increased Olig2 and Sox10 expression while inhibiting the Wnt/β-catenin pathway in the hippocampus of CUMS mice. Finally, we further confirmed the role of TFA in promoting myelin regeneration through the Wnt/β-catenin/Olig2/Sox10 signaling axis in MO3.13 cells. CONCLUSIONS TFA exhibited promising antidepressant effects in the CUMS mouse model, facilitated by the restoration of myelin sheaths and regulation of corticosterone, glutamate, Olig2, Sox10, and the Wnt/β-catenin pathway. This research provides valuable insights into the potential therapeutic application of TFA in treating depression, although further investigations are required to fully elucidate the underlying molecular mechanisms and clinical relevance.
Collapse
Affiliation(s)
- Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jinfeng Yuan
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Houyuan Zhou
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zikang Li
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xiaomeng Yao
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
8
|
Rami M, Ahmadi Hekmatikar A, Rahdar S, Marashi SS, Daud DMA. Highlighting the effects of high-intensity interval training on the changes associated with hypertrophy, apoptosis, and histological proteins of the heart of old rats with type 2 diabetes. Sci Rep 2024; 14:7133. [PMID: 38531890 DOI: 10.1038/s41598-024-57119-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
T2DM is known to cause disturbances in glucose homeostasis and negative changes in the heart muscle, while aging and diabetes are recognized risk factors for CVD. Given this, our study aims to investigate a method for controlling and managing CVDs induced by T2DM in elderly populations. To achieve this, we categorized 40 rats into 5 groups, including HAD (n = 8), HA (n = 8), AD (n = 8), AHT (n = 8), and ADT (n = 8). The exercise protocol consisted of eight weeks of HIIT (three sessions per week) performed at 90-95% of maximal speed. Following cardiac tissue extraction, we assessed the levels of IGF-1, PI3K, and AKT proteins using Western blot technique, and analyzed the histopathological variations of the heart tissue using H&E, Sudan Black, and Masson's trichrome tissue staining. The histological findings from our study demonstrated that T2DM had a significant impact on the development of pathological hypertrophy and fibrosis in the heart tissue of elderly individuals. However, HIIT not only effectively controlled pathological hypertrophy and fibrosis, but also induced physiological hypertrophy in the AHT and ADT groups compared to the HA and AD groups. Results from Sudan Black staining indicated that there was an increase in lipid droplet accumulation in the cytoplasm of cardiomyocytes and their nuclei in the HA and AD groups, while the accumulation of lipid droplets decreased significantly in the AHT and ADT groups. In both the AHT group and the ADT group, a single HIIT session led to a reduction in collagen fiber accumulation and fibrotic frameworks. Our research also revealed that diabetes caused a significant elevation in the levels of IGF-1, PI3K, and AKT proteins, but after eight weeks of HIIT, the levels of these proteins decreased significantly in the training groups. Overall, our findings suggest that HIIT may be a suitable non-pharmacological approach for improving histological and physiological changes in elderly individuals with T2DM. However, we recommend further research to examine the impact of HIIT training on both healthy and diseased elderly populations.
Collapse
Affiliation(s)
- Mohammad Rami
- Department of Sport Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Amirhossein Ahmadi Hekmatikar
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, 10600, Iran
| | - Samaneh Rahdar
- Department of Basic Sciences, Histology Section, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sayed Shafa Marashi
- Department of Sport Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - D Maryama Awang Daud
- Health Through Exercise and Active Living (HEAL) Research Unit, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, 88400, Sabah, Malaysia.
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88450, Sabah, Malaysia.
| |
Collapse
|
9
|
Yang B, Zhang Z, Song J, Qi T, Zeng J, Feng L, Jia X. Interpreting the efficacy enhancement mechanism of Chinese medicine processing from a biopharmaceutic perspective. Chin Med 2024; 19:14. [PMID: 38238801 PMCID: PMC10797928 DOI: 10.1186/s13020-024-00887-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
Chinese medicine processing (CMP) is a unique pharmaceutical technology that distinguishes it from natural medicines. Current research primarily focuses on changes in chemical components to understand the mechanisms behind efficacy enhancement in processing. However, this paper presents a novel perspective on the biopharmaceutics of CMP. It provides a comprehensive overview of the current research, emphasizing two crucial aspects: the role of 'heat' during processing and the utilization of processing adjuvants. The paper highlights the generation of easily absorbed components through the hydrolysis of glycosides by 'heat', as well as the facilitation of dissolution, absorption, and targeted distribution of active components through the utilization of processing adjuvants. From a biopharmaceutic perspective, this paper provides a lucid comprehension of the scientific foundation for augmenting the efficacy of CMP. Moreover, it proposes a three-dimensional research framework encompassing chemical reactions, phase transitions, and biopharmaceutical properties to further investigate the mechanisms involved in enhancing the efficacy of CMP.
Collapse
Affiliation(s)
- Bing Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Zhubin Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jinjing Song
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Tianhao Qi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jingqi Zeng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Liang Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Xiaobin Jia
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
10
|
Han X, Yu T, Chen X, Du Z, Yu M, Xiong J. Effect of Astragalus membranaceus on left ventricular remodeling in HFrEF: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1345797. [PMID: 38283626 PMCID: PMC10811102 DOI: 10.3389/fphar.2024.1345797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024] Open
Abstract
Background: Left ventricular remodeling (LVR) is a key factor leading to the onset and progression of heart failure with reduced ejection fraction (HFrEF). Improving LVR can delay the progression of HFrEF and improve quality of life. Objective: To evaluate the improvement effect of Astragalus membranaceus (A. membranaceus) on LVR in patients with HFrEF. Method: We retrieved randomized controlled trials (RCTs) of A. membranaceus in treating HFrEF from eight Chinese and English databases, up until 31 October 2023. To assess the quality of the literature, we utilized the bias risk tool from the Cochrane Handbook. For meta-analysis, we employed Review Manager 5.4.1 software. Additionally, we performed sensitivity analysis and publication bias assessment using Stata 17.0 software. Result: Totally 1,565 patients were included in 19 RCTs. Compared to conventional treatment (CT), the combination therapy of A. membranaceus with CT demonstrated significant improvements in LVR, specifically increasing left ventricular ejection fraction (LVEF, MD = 5.82, 95% CI: 4.61 to 7.03, p < 0.00001), decreasing left ventricular end-diastolic diameter (LVEDD, MD = -4.05, 95% CI: -6.09 to -2.01, p = 0.0001), and left ventricular end-systolic diameter (LVESD, MD = -12.24, 95% CI: -15.24 to -9.24, p < 0.00001). The combination therapy of A. membranaceus with CT also improved clinical efficacy (RR = 4.81, 95% CI: 3.31 to 7.00, p < 0.00001), reduced brain natriuretic peptide (BNP, MD = -113.57, 95% CI: -146.91 to -81.22, p < 0.00001) level, and increased 6-min walking distance (6-MWD, MD = 67.62, 95% CI: 41.63 to 93.60, p < 0.00001). In addition, the combination therapy of A. membranaceus with CT mitigated inflammatory responses by reducing tumor necrosis factor-alpha (TNF-α, MD = -16.83, 95% CI: -22.96 to -10.71, p < 0.00001), interleukin-6 (IL-6, MD = -29.19, 95% CI: -36.08 to -22.30, p < 0.00001), and high-sensitivity C-reactive protein (hs-CRP, MD = -0.98, 95% CI: -1.43 to -0.52, p < 0.0001). Notably, the combination therapy of A. membranaceus with CT did not increase the incidence of adverse reactions (RR = 0.86, 95% CI: 0.25 to 2.96, p = 0.81). Conclusion: This systematic review and meta-analysis revealed that the combination therapy of A. membranaceus with CT has more advantages than CT alone in improving LVR and clinical efficacy in HFrEF patients, without increasing the incidence of adverse reactions. However, due to the limited quality of included studies, more high-quality investigations are required to provide reliable evidence for clinical use. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=397571, Identifier: CRD42023397571.
Collapse
Affiliation(s)
- Xu Han
- Chongqing Changshou Traditional Chinese Medicine Hospital, Chongqing, China
| | - Ting Yu
- Traditional Chinese Medicine Hospital Dianjiang Chongqing, Chongqing, China
| | - Xi Chen
- Chongqing Changshou Traditional Chinese Medicine Hospital, Chongqing, China
| | - Zhiyan Du
- Chongqing Changshou Traditional Chinese Medicine Hospital, Chongqing, China
| | - Man Yu
- Chongqing Changshou Traditional Chinese Medicine Hospital, Chongqing, China
| | - Jiang Xiong
- Traditional Chinese Medicine Hospital Dianjiang Chongqing, Chongqing, China
| |
Collapse
|
11
|
Li J, Huang Q, Ma W, Yi J, Zhong X, Hu R, Sun J, Ma M, Lv M, Han Z, Zhang W, Feng W, Sun X, Zhou X. Hepatoprotective efficacy and interventional mechanism of JianPi LiShi YangGan formula in acute-on-chronic liver failure. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116880. [PMID: 37422102 DOI: 10.1016/j.jep.2023.116880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/24/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute-on-chronic liver failure (ACLF) progresses rapidly with a high short-term death rate. Although JianPi LiShi YangGan formula (YGF) has been used to treat ACLF by managing inflammatory responses and reducing endotoxemia, hepatocyte injury, and mortality, the underlying mechanisms remain unclear. AIM OF THE STUDY This study aims to investigate the potential mechanisms underlying the efficacy and protective benefits of YGF in mice with ACLF. MATERIALS AND METHODS YGF composition was determined using high-performance liquid chromatography coupled with mass spectrometry. We constructed a mouse model of ACLF using carbon tetrachloride, lipopolysaccharide (LPS), and D-galactosamine (D-Gal), as well as an in vitro model of D-Gal/LPS-induced hepatocyte injury. The therapeutic effects of YGF in ACLF mice were verified using hematoxylin-eosin, Sirius red, and Masson staining, and by measuring serum alanine transaminase (ALT), aspartate transaminase (AST), and inflammatory cytokine levels. Mitochondrial damage in hepatocytes was evaluated using electron microscopy, while superoxide anion levels in liver tissue were investigated using dihydroethidium. Transcriptome analysis, immunohistochemistry, western blotting, and immunofluorescence assays were performed to explore the mechanisms underlying the ameliorative effects of YGF against ACLF. RESULTS In mice with ACLF, YGF therapy partially decreased serum inflammatory cytokine levels, as well as hepatocyte injury and liver fibrosis. The livers of ACLF mice treated with YGF exhibited decreased mitochondrial damage and reactive oxygen species generation, as well as a decreased number of M1 macrophages and increased number of M2 macrophages. Transcriptome analysis revealed that YGF may regulate biological processes such as autophagy, mitophagy, and PI3K/AKT signaling. In ACLF mice, YGF promoted mitophagy and inhibited PI3K/AKT/mTOR pathway activation in hepatocytes. Meanwhile, the autophagy inhibitor 3M-A reduced the capacity of YGF to induce autophagy and protect against hepatocyte injury in vitro. In contrast, the PI3K agonist 740 Y-P suppressed the ability of YGF to control PI3K/AKT/mTOR pathway activation and induce autophagy. CONCLUSIONS Together, our findings suggest that YGF mediates autophagy, tight junctions, cytokine generation, and other biological processes. In addition, YGF inhibits hepatic inflammatory responses and ameliorates hepatocyte injury in mice with ACLF. Mechanistically, YGF can promote mitophagy to ameliorate acute-on-chronic liver failure by inhibiting the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Jing Li
- Macau University of Science and Technology, Faculty of Chinese Medicine, Taipa, Macau; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China
| | - Qi Huang
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China
| | - Wenfeng Ma
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China
| | - JinYu Yi
- Macau University of Science and Technology, Faculty of Chinese Medicine, Taipa, Macau; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China
| | - Xin Zhong
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China
| | - Rui Hu
- Macau University of Science and Technology, Faculty of Chinese Medicine, Taipa, Macau; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China
| | - Jialing Sun
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China
| | - MengQing Ma
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China
| | - Minling Lv
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China
| | - Zhiyi Han
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China
| | - Wei Zhang
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China
| | - Wenxing Feng
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China
| | - Xinfeng Sun
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China
| | - Xiaozhou Zhou
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China.
| |
Collapse
|
12
|
Wang Y, Pan Y, Hou M, Luo R, He J, Lin F, Xia X, Li P, He C, He P, Cheng S, Song Z. Danggui Shaoyao San ameliorates the lipid metabolism via the PPAR signaling pathway in a Danio rerio (zebrafish) model of hyperlipidemia. Biomed Pharmacother 2023; 168:115736. [PMID: 37852100 DOI: 10.1016/j.biopha.2023.115736] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023] Open
Abstract
The escalating prevalence of hyperlipidemia has a profound impact on individuals' daily physiological well-being. The traditional Chinese medicine (TCM) prescription Danggui Shaoyao San (DSS) has demonstrated significant clinical efficacy and promising prospects for clinical application. Leveraging network pharmacology and bioinformatics, we hypothesize that DSS can ameliorate lipid metabolic disorders in hyperlipidemia by modulating the PPAR signaling pathway. In this study, we employed a zebrafish model to investigate the impact of DSS on lipid metabolism in hyperlipidemia. Body weight alterations were monitored by pre- and postmodeling weight measurements. Behavioral assessments and quantification of liver biochemical markers were conducted using relevant assay kits. Pathways associated with lipid metabolism were identified through network pharmacology and GEO analysis, while PCR was utilized to assess genes linked to lipid metabolism. Western blotting was employed to analyze protein expression levels, and liver tissue underwent Oil Red O and immunofluorescence staining to evaluate liver lipid deposition. Our findings demonstrate that DSS effectively impedes weight gain and reduces liver lipid accumulation in zebrafish models with elevated lipid levels. The therapeutic effects of DSS on lipid metabolism are mediated through its modulation of the PPAR signaling pathway, resulting in a significant reduction in lipid accumulation within the body and alleviation of certain hyperlipidemia-associated symptoms.
Collapse
Affiliation(s)
- Yuke Wang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of integrated Chinese and western medicine, Hunan University of Chinese medicine, Changsha 410208, Hunan, China
| | - Ying Pan
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Mirong Hou
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Rongsiqing Luo
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of integrated Chinese and western medicine, Hunan University of Chinese medicine, Changsha 410208, Hunan, China
| | - Jiawei He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of integrated Chinese and western medicine, Hunan University of Chinese medicine, Changsha 410208, Hunan, China
| | - Fan Lin
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Xiaofang Xia
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Ping Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of integrated Chinese and western medicine, Hunan University of Chinese medicine, Changsha 410208, Hunan, China
| | - Chunxiang He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of integrated Chinese and western medicine, Hunan University of Chinese medicine, Changsha 410208, Hunan, China
| | - Pan He
- Research Institute of Zhong Nan Grain and Oil Foods, Changsha 410208, Hunan, China
| | - Shaowu Cheng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of integrated Chinese and western medicine, Hunan University of Chinese medicine, Changsha 410208, Hunan, China.
| | - Zhenyan Song
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of integrated Chinese and western medicine, Hunan University of Chinese medicine, Changsha 410208, Hunan, China; National Key Laboratory Cultivation Base of Chinese Medicinal Powder & Innovative Medicinal Jointly Established by Province and Ministry, Changsha 410208, Hunan, China.
| |
Collapse
|
13
|
Yang B, Yu N. Traditional Chinese medicine alleviating neuropathic pain targeting purinergic receptor P2 in purinergic signaling: A review. Brain Res Bull 2023; 204:110800. [PMID: 37913850 DOI: 10.1016/j.brainresbull.2023.110800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Past studies have suggested that Chinese herbal may alleviate neuropathic pain, and the mechanism might target the inhibition of purinergic receptor P2. This review discusses whether traditional Chinese medicine target P2 receptors in neuropathic pain and its mechanism in order to provide references for future clinical drug development. The related literatures were searched from Pubmed, Embase, Sinomed, and CNKI databases before June 2023. The search terms included"neuropathic pain", "purinergic receptor P2", "P2", "traditional Chinese medicine", "Chinese herbal medicine", and "herb". We described the traditional Chinese medicine alleviating neuropathic pain via purinergic receptor P2 signaling pathway including P2X2/3 R, P2X3R, P2X4R, P2X7R, P2Y1R. Inhibition of activating glial cells, changing synaptic transmission, increasing painful postsynaptic potential, and activating inflammatory signaling pathways maybe the mechanism. Purine receptor P2 can mediate the occurrence of neuropathic pain. And many of traditional Chinese medicines can target P2 receptors to relieve neuropathic pain, which provides reasonable evidences for the future development of drugs. Also, the safety and efficacy and mechanism need more in-depth experimental research.
Collapse
Affiliation(s)
- Bo Yang
- Department of Center for Psychosomatic Medicine,Sichuan Provincial Center for Mental Health,Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611135, China
| | - Nengwei Yu
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
14
|
Liang P, Bi T, Zhou Y, Ma Y, Liu X, Ren W, Yang S, Luo P. Insights into the Mechanism of Supramolecular Self-Assembly in the Astragalus membranaceus- Angelica sinensis Codecoction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47939-47954. [PMID: 37791782 PMCID: PMC10591233 DOI: 10.1021/acsami.3c09494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
Astragalus membranaceus (Fisch.) Bge. (AM) and Angelica sinensis (Oliv.) Diels (AS) constitute a classic herb pair in prescriptions to treat myocardial fibrosis. To date, research on the AM-AS herb pair has mainly focused on the chemical compositions associated with therapeutic efficacy. However, supermolecules actually exist in herb codecoctions, and their self-assembly mechanism remains unclear. In this study, supermolecules originating from AM-AS codoping reactions (AA-NPs) were first reported. The chemical compositions of AA-NPs showed a dynamic self-assembly process. AA-NPs with different decoction times had similar surface groups and amorphous states; however, the size distributions of these nanoparticles might be different. Taking the interaction between Z-ligustilide and astragaloside IV as an example to understand the self-assembly mechanism of AA-NPs, it was found that the complex could be formed with a molar ratio of 2:1. Later, AA-NPs were proven to be effective in the treatment of myocardial fibrosis both in vivo and in vitro, the in-depth mechanisms of which were related to the recovery of cardiac function, reduced collagen deposition, and inhibition of the endothelial-to-mesenchymal transition that occurred in the process of myocardial fibrosis. Thus, AA-NPs may be the chemical material basis of the molecular mechanism of the AM-AS decoction in treating isoproterenol-induced myocardial fibrosis. Taken together, this work provides a supramolecular strategy for revealing the interaction between effective chemical components in herb-pair decoctions.
Collapse
Affiliation(s)
- Pan Liang
- State
Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
- National
Traditional Chinese Medicine Clinical Research Base and Drug Research
Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital
of Southwest Medical University, Luzhou 646000, China
| | - Tao Bi
- National
Traditional Chinese Medicine Clinical Research Base and Drug Research
Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital
of Southwest Medical University, Luzhou 646000, China
| | - Yanan Zhou
- National
Traditional Chinese Medicine Clinical Research Base and Drug Research
Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital
of Southwest Medical University, Luzhou 646000, China
| | - Yining Ma
- National
Traditional Chinese Medicine Clinical Research Base and Drug Research
Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital
of Southwest Medical University, Luzhou 646000, China
| | - Xinyue Liu
- National
Traditional Chinese Medicine Clinical Research Base and Drug Research
Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital
of Southwest Medical University, Luzhou 646000, China
| | - Wei Ren
- National
Traditional Chinese Medicine Clinical Research Base and Drug Research
Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital
of Southwest Medical University, Luzhou 646000, China
| | - Sijin Yang
- National
Traditional Chinese Medicine Clinical Research Base and Drug Research
Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital
of Southwest Medical University, Luzhou 646000, China
| | - Pei Luo
- State
Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
15
|
Du W, Hu J, Liang J, Yang X, Fang B, Ma G. Effect of Astragali radix extract on pharmacokinetic behavior of dapagliflozin in healthy and type 2 diabetic rats. Front Pharmacol 2023; 14:1214658. [PMID: 37881186 PMCID: PMC10597649 DOI: 10.3389/fphar.2023.1214658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023] Open
Abstract
Objective: This study aimed to investigate effect of antidiabetic herb Astragali Radix (AR) on pharmacokinetic behavior of dapagliflozin (DAPA) in healthy rats and type 2 diabetes mellitus (T2DM) rats. Methods: The T2DM rats were induced by high-fat diet (HFD) and intraperitoneal injection of streptozotocin (STZ). Concentrations of DAPA in healthy and T2DM rat plasma were determined by UPLC-MS/MS method. Effect of AR extract (ARE) on pharmacokinetic behavior of DAPA in healthy and T2DM rats was evaluated, respectively. Results: The diabetes status and co-administrated with ARE significantly affected pharmacokinetic behaviors of DAPA in the rats. Compared to that in healthy rats, t max of DAPA significantly shortened, its C max significantly increased in T2DM rats, and its t 1/2, V, AUC, CL and MRT kept unchanged. When ARE was co-administrated with DAPA, C max of DAPA significantly increased, its t max and MRT significantly decreased, and its t 1/2, V, AUC and CL kept unchanged in healthy rats. t max and C max of DAPA significantly decreased, its t 1/2 and V significantly increased, and its AUC, CL and MRT were unchanged in T2DM rats when ARE was co-administrated with DAPA. Co-administration of DAPA and ARE promoted absorptive rate of DAPA, increased its extravascular tissue distribution, and prolonged its duration of action. ARE did not cause accumulation of DAPA in vivo. Conclusion: Both disease status of T2DM and co-administration of ARE affect pharmacokinetic behavior of DAPA in vivo. Potential pharmacokinetic interactions may occur in vivo when herbs and drugs are co-administrated, which may affect efficacy and safety of drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Guo Ma
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Ren Z, Zhang Z, Ling L, Liu X, Wang X. Drugs for treating myocardial fibrosis. Front Pharmacol 2023; 14:1221881. [PMID: 37771726 PMCID: PMC10523299 DOI: 10.3389/fphar.2023.1221881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Myocardial fibrosis, which is a common pathological manifestation of many cardiovascular diseases, is characterized by excessive proliferation, collagen deposition and abnormal distribution of extracellular matrix fibroblasts. In clinical practice, modern medicines, such as diuretic and β receptor blockers, and traditional Chinese medicines, such as salvia miltiorrhiza and safflower extract, have certain therapeutic effects on myocardial fibrosis. We reviewed some representative modern medicines and traditional Chinese medicines (TCMs) and their related molecular mechanisms for the treatment of myocardial fibrosis. These drugs alleviate myocardial fibrosis by affecting related signaling pathways and inhibiting myocardial fibrosis-related protein synthesis. This review will provide more references and help for the research and treatment of myocardial fibrosis.
Collapse
Affiliation(s)
- Zhanhong Ren
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zixuan Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Li Ling
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xiufen Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xin Wang
- School of Mathematics and Statistics, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|