1
|
Wang W, Hu Y, Ding N, Wei J, Li C. The role of SIRT1 in kidney diseases. Int Urol Nephrol 2025; 57:147-158. [PMID: 39030438 DOI: 10.1007/s11255-024-04162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
SIRT1, a nicotinamide adenine dinucleotide (NAD +)-dependent class III histone deacetylase, exhibits a high level of expression within renal tissues. It has garnered considerable recognition for its pivotal role in modulating signaling pathways intricately linked with the aging process; however, it extends beyond this in the organism. The literature reports that SIRT1 regulates biological processes such as glucose metabolism, lipid metabolism, oxidative stress, inflammation, autophagy, endoplasmic reticulum stress, and apoptosis. Therefore, our study reviews the primary mechanisms by which SIRT1 induces kidney disease and the regulation of related signaling pathways in different models of renal disease. We also discuss commonly studied SIRT1-targeted interventional drugs reported in the literature, including inhibitors (e.g., Ex-527) and activators (e.g., resveratrol). This study aims to provide theoretical foundations and clinical insights for the development and screening of clinical drugs targeting SIRT1, aiming at enhanced scientific approaches for the prevention and treatment of kidney diseases.
Collapse
Affiliation(s)
- Wei Wang
- School of Pharmacy, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Yuanyuan Hu
- School of Pharmacy, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Ning Ding
- School of Pharmacy, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Jiping Wei
- School of Pharmacy, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Cairong Li
- Second Affiliated Hospital, Clinical Medical School, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
2
|
Yan X, Li P, Liu C, Yin F, Han J, Sun H, Zheng Y, Chen X, Guan S, Wang X. Exploring the molecular mechanisms for renoprotective effects of Huangkui capsule on diabetic nephropathy mice by comprehensive serum metabolomics analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 340:119223. [PMID: 39706356 DOI: 10.1016/j.jep.2024.119223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huangkui capsule (HKC), a patent traditional Chinese medicine, has shown significant efficacy in managing chronic kidney disease (CKD), particularly diabetic nephropathy (DN). Previous studies have shown that HKC can alleviate kidney damage in DN. However, the exact mechanisms through which it exerts its effects remain unclear. AIM OF THE STUDY This study aimed to elucidate the potential molecular mechanisms of HKC in treating kidney injury in type 1 diabetic nephropathy (T1DN) models through serum metabolomics, Chinmedomics, and molecular docking techniques. MATERIALS AND METHODS T1DN mouse models were induced by intraperitoneal injection of streptozotocin (STZ), resulting in the ACR value ten times that of the control group. The efficacy of HKC on T1DN was comprehensively evaluated in general conditions, renal coefficient, histopathology, and related biochemical indicators. UPLC-Q-TOF-MS/MS based serum metabolomics was employed to identify biomarkers of T1DN and evaluate the effects of HKC. Relevant pathways were analyzed, and followed by Protein-Protein Interaction network analysis to screen for key enzymes. By integrating the Chinmedomics strategy and molecular docking the relationship between these targets and active components was elucitaed. RESULTS HKC resulted in a significant reduction in renal inflammation and fibrosis, as evidenced by the decreased levels of urinary ACR, blood TG, T-CHO, BUN, and renal TNF-α and VEGF-A, along with a reduction in the positive area of COL-1. Palmitic acid, stearic acid, arachidonic acid, pantothenic acid, and sphingosine-1-phosphate serve as key serum metabolite biomarkers for T1DN, involved in the biosynthesis of unsaturated fatty acids, arachidonic acid metabolism, pantothenate and CoA biosynthesis, and sphingolipid metabolism. FASN, Cyp2e1, and Cyp4a32 are the key enzymes in the treatment of T1DN with HKC. Additionally, 8 key active components were identified in the serum of HKC-H, including quercetin, myricetin, isoquercitrin, hyperoside, hibifolin, gentisic acid 5-O-β-glucoside, floramanoside F, and quercetin-4'-O-glucoside, which are believed to interact with key enzymes. CONCLUSIONS The active components of HKC influence Fasn, Cyp2e1, and Cy4a32, improving renal injury in T1DN. These findings provide new molecular insights for the future clinical application and research of HKC in treating T1DN.
Collapse
Affiliation(s)
- Xiaotong Yan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Chang Liu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Fengting Yin
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Jinwei Han
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Hui Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Zheng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China.
| | - Shihan Guan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Xijun Wang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China.
| |
Collapse
|
3
|
Shen P, Deng X, Chen Z, Chen M, Han L, Chen X, Tu S. Demethylzeylasteral ameliorates podocyte damage in murine lupus by inhibiting inflammation and enhancing autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155966. [PMID: 39241387 DOI: 10.1016/j.phymed.2024.155966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 06/07/2024] [Accepted: 08/15/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with multiorgan and tissue involvement. Lupus nephritis (LN), an inflammatory condition of the kidneys associated with SLE, represents a significant cause of morbidity and mortality in SLE patients. Current immunosuppressive therapies for LN have limited efficacy and can lead to significant side effects. Demethylzeylasteral (DML) has shown promise in the treatment of LN, but its precise mechanism of action remains unclear. PURPOSE To assess the therapeutic effects and potential molecular mechanisms of DML in LN METHODS: The study evaluated the renal protective effects of DML in MRL/lpr mice through assessments of immune complex levels, renal function, and pathological changes. Network pharmacology and transcriptomics approaches were used to elucidate the underlying mechanisms. Molecular docking, biacore assay, monoclonal antibody blocking experiments, and in vitro studies were conducted to verify the mechanisms of action. RESULTS DML treatment reduced levels of anti-Sm and anti-dsDNA IgG antibodies, as well as serum creatinine and blood urea nitrogen levels. DML also mitigated glomerular damage and fibrosis. Mechanistically, DML alleviated podocyte damage by suppressing inflammation and enhancing autophagy through inhibition of the IL-17A/JAK2-STAT3 pathways. Additionally, DML exhibited high binding affinity with IL17A, JAK2, and STAT3. CONCLUSION These findings provide strong evidence for the beneficial effects of DML in LN, suggesting its potential as a novel therapeutic strategy for improving renal function in autoimmune kidney diseases.
Collapse
Affiliation(s)
- Pan Shen
- Department of Dermatology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology; Department of Rheumatology and Immunology, Zhongnan Hospital, Wuhan University
| | - Xuan Deng
- Department of Nephrology, Zhongnan Hospital, Wuhan University
| | - Zhe Chen
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology
| | - Min Chen
- Department of Rheumatology and Immunology, Zhongnan Hospital, Wuhan University
| | - Liang Han
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology.
| | - Xiaoqi Chen
- Department of Rheumatology and Immunology, Zhongnan Hospital, Wuhan University.
| | - Shenghao Tu
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology.
| |
Collapse
|
4
|
Ng YY, Ho YC, Yen CH, Lee SS, Tseng CC, Wu SW, Kuan YH. Protective Effect of Hibifolin on Lipopolysaccharide-Induced Acute Lung Injury Through Akt Phosphorylation and NFκB Pathway. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 39119817 DOI: 10.1002/tox.24383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/08/2024] [Accepted: 05/23/2024] [Indexed: 08/10/2024]
Abstract
Acute lung injury (ALI) is a difficult condition to manage, especially when it is complicated by bacterial sepsis. Hibifolin, a flavonoid glycoside, has anti-inflammatory properties that make it a potential treatment for ALI. However, more research is needed to determine its effectiveness in LPS-induced ALI. In this study, male ICR mice were treated with hibifolin before LPS-induced ALI. Protein content and neutrophil count in bronchoalveolar lavage (BAL) fluid were measured by BCA assay and Giemsa staining method, respectively. The levels of proinflammatory cytokines and adhesive molecules were detected by ELISA assay. The expression of NFκB p65 phosphorylation, IκB degradation, and Akt phosphorylation was assessed by western blot assay. Hibifolin pre-treatment significantly reduced pulmonary vascular barrier dysfunction and neutrophil infiltration into the BAL fluid in LPS-induced ALI mice. In addition, LPS-induced expression of proinflammatory cytokines (IL-1β, IL-6, TNF-α) and adhesive molecules (ICAM-1, VCAM-1) within the BAL fluid were markedly reduced by hibifolin in LPS-induced ALI mice. More, hibifolin inhibited LPS-induced phosphorylation of NFκB p65, degradation of IκB, and phosphorylation of Akt in lungs with ALI mice. In conclusion, hibifolin shows promise in improving the pathophysiological features and proinflammatory responses of LPS-induced ALI in mice through the NFκB pathway and its upstream factor, Akt phosphorylation.
Collapse
Affiliation(s)
- Yan-Yan Ng
- Department of Pediatric, Chung Kang Branch, Cheng Ching Hospital, Taichung, Taiwan
| | - Yung-Chuan Ho
- Center for General Education, Chung Shan Medical University, Taichung, Taiwan
| | - Chi-Hua Yen
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shiuan-Shinn Lee
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Ching-Chi Tseng
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Dermatology, Shiso Municipal Hospital, Shiso, Hyogo, Japan
| | - Sheng-Wen Wu
- Division of Nephrology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
5
|
Zhang R, Wang Q, Li Y, Li Q, Zhou X, Chen X, Dong Z. A new perspective on proteinuria and drug therapy for diabetic kidney disease. Front Pharmacol 2024; 15:1349022. [PMID: 39144629 PMCID: PMC11322372 DOI: 10.3389/fphar.2024.1349022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Diabetic kidney disease (DKD) is one of the leading causes of end-stage renal disease worldwide and significantly increases the risk of premature death due to cardiovascular diseases. Elevated urinary albumin levels are an important clinical feature of DKD. Effective control of albuminuria not only delays glomerular filtration rate decline but also markedly reduces cardiovascular disease risk and all-cause mortality. New drugs for treating DKD proteinuria, including sodium-glucose cotransporter two inhibitors, mineralocorticoid receptor antagonists, and endothelin receptor antagonists, have shown significant efficacy. Auxiliary treatment with proprietary Chinese medicine has also yielded promising results; however, it also faces a broader scope for development. The mechanisms by which these drugs treat albuminuria in patients with DKD should be described more thoroughly. The positive effects of combination therapy with two or more drugs in reducing albuminuria and protecting the kidneys warrant further investigation. Therefore, this review explores the pathophysiological mechanism of albuminuria in patients with DKD, the value of clinical diagnosis and prognosis, new progress and mechanisms of treatment, and multidrug therapy in patients who have type 2 diabetic kidney disease, providing a new perspective on the clinical diagnosis and treatment of DKD.
Collapse
Affiliation(s)
- Ruimin Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Qian Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Yaqing Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Qihu Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Xuefeng Zhou
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Xiangmei Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Zheyi Dong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| |
Collapse
|
6
|
Wu C, Tang H, Cui X, Li N, Fei J, Ge H, Wu L, Wu J, Gu HF. A single-cell profile reveals the transcriptional regulation responded for Abelmoschus manihot (L.) treatment in diabetic kidney disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155642. [PMID: 38759315 DOI: 10.1016/j.phymed.2024.155642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Huangkui capsule (HKC), as an ethanol extract of Abelmoschus manihot (L.), has a significant efficacy in treatment of the patients with diabetic kidney disease (DKD). The bioactive ingredients of HKC mainly include the flavonoids such as rutin, hyperoside, hibifolin, isoquercetin, myricetin, quercetin and quercetin-3-O-robinobioside. PURPOSE To explore the molecular mechanisms of A. manihot in treatment of DKD. STUDY DESIGN A single-cell RNA sequencing analysis of kidneys in db/db mice with and without HKC administration. METHODS Urinary biochemical and histopathological examination in C57BL/6 and db/db mice of DKD and HKC groups was done. Single-cell RNA sequencing pipeline was then performed. The regulatory mechanisms of seven flavonoids in HKC were revealed by cell communication, prediction of transcription factor regulatory network, and molecular docking. RESULTS By constructing ligand-receptor regulatory network and performing molecular docking between 75 receptors with different activities and seven flavonoids. 11 key receptors in 4 cell types (segment 3 proximal convoluted tubular cell, ascending limbs of the loop of Henle, distal convoluted tubule, and T cell) in kidneys were found to be directly interacted with HKC. The interactions regulated 8 downstream regulons. The docking receptors in T cell led to transcriptional event differences in the regulons such as Cebpb, Rel, Tbx21 and Klf2 and consequently affected the activation, differentiation, and infiltration of T cell, while the receptors Tgfbr1 and Ldlr in stromal cells of kidneys were closely associated with the downstream transcriptional events of renal injury and proteinuria in DKD. CONCLUSION The current study provides novel information of the key receptors and regulons in renal cells for a better understanding of the cell type specific molecular mechanisms of A. manihot in treatment of DKD.
Collapse
Affiliation(s)
- Chenhua Wu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, China; Laboratory of Minigene Pharmacy, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, China
| | - Haitao Tang
- Suzhong Pharmaceutical Research Institute, Nanjing, Jiangsu Province, 210018, China
| | - Xu Cui
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, China
| | - Nan Li
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, China
| | - Jingjin Fei
- Laboratory of Minigene Pharmacy, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, China
| | - Haitao Ge
- Suzhong Pharmaceutical Research Institute, Nanjing, Jiangsu Province, 210018, China
| | - Liang Wu
- Jiangsu Key Laboratory of Drug Screening, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, China
| | - Jie Wu
- Laboratory of Minigene Pharmacy, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, China.
| | - Harvest F Gu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, China.
| |
Collapse
|
7
|
Zhao Q, Dai H, Jiang H, Zhang N, Hou F, Zheng Y, Gao Y, Liu W, Feng Z, Hu Y, Tang X, Rui H, Liu B. Activation of the IL-6/STAT3 pathway contributes to the pathogenesis of membranous nephropathy and is a target for Mahuang Fuzi and Shenzhuo Decoction (MFSD) to repair podocyte damage. Biomed Pharmacother 2024; 174:116583. [PMID: 38626520 DOI: 10.1016/j.biopha.2024.116583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024] Open
Abstract
BACKGROUND Primary membranous nephropathy (PMN) is an autoimmune glomerular disease. IL-6 is a potential therapeutic target for PMN. Previous clinical studies have demonstrated the effectiveness of Mahuang Fuzi and Shenzhuo Decoction (MFSD) in treating membranous nephropathy. However, the mechanism of action of MFSD remains unclear. METHODS Serum IL-6 levels were measured in patients with PMN and healthy subjects. The passive Heymann nephritis (PHN) rat model was established, and high and low doses of MFSD were used for intervention to observe the repair effect of MFSD on renal pathological changes and podocyte injury. RNA-seq was used to screen the possible targets of MFSD, and the effect of MFSD targeting IL-6/STAT3 was further verified by combining the experimental results. Finally, the efficacy of tocilizumab in PHN rats was observed. RESULTS Serum IL-6 levels were significantly higher in PMN patients than in healthy subjects. These levels significantly decreased in patients in remission after MFSD treatment. MFSD treatment improved laboratory indicators in PHN rats, as well as glomerular filtration barrier damage and podocyte marker protein expression. Renal transcriptome changes showed that MFSD-targeted differential genes were enriched in JAK/STAT and cytokine-related pathways. MFSD inhibits the IL6/STAT3 pathway in podocytes. Additionally, MFSD significantly reduced serum levels of IL-6 and other cytokines in PHN rats. However, treatment of PHN with tocilizumab did not achieve the expected effect. CONCLUSION The IL-6/STAT3 signaling pathway is activated in podocytes of experimental membranous nephropathy. MFSD alleviates podocyte damage by inhibiting the IL-6/STAT3 pathway.
Collapse
Affiliation(s)
- Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Haoran Dai
- Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100310, China
| | - Hanxue Jiang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Naiqian Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Fanyu Hou
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yang Zheng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yu Gao
- Beijing Chaoyang District emergency medical rescue center, Beijing, 100020, China
| | - Wenbin Liu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhendong Feng
- Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100310, China
| | - Yuehong Hu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Xinyue Tang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Hongliang Rui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Chinese Medicine, Beijing, 100010, China.
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
8
|
Tao Y, Luo R, Xiang Y, Lei M, Peng X, Hu Y. Use of bailing capsules (cordyceps sinensis) in the treatment of chronic kidney disease: a meta-analysis and network pharmacology. Front Pharmacol 2024; 15:1342831. [PMID: 38645562 PMCID: PMC11026558 DOI: 10.3389/fphar.2024.1342831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/11/2024] [Indexed: 04/23/2024] Open
Abstract
The Bailing Capsule is a commonly used traditional Chinese medicine for the treatment of chronic kidney disease (CKD). However, its therapeutic effects and pharmacological mechanisms have not been fully explored. In this study, we integrated meta-analysis and network pharmacology to provide scientific evidence for the efficacy and pharmacological mechanism of Bailing Capsule in treating CKD. We conducted searches for randomized controlled studies matching the topic in PubMed, the Cochrane Library, Embase, Web of Science, and the Wanfang Database, and screened them according to predefined inclusion and exclusion criteria. Dates from the included studies were extracted for meta-analysis, including renal function indicators, such as 24-h urinary protein (24UP), blood urea nitrogen (BUN), and serum creatinine (Scr), as well as inflammatory indicators like high-sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α). Network pharmacology was employed to extract biological information, including active drug ingredients and potential targets of the drugs and diseases, for network construction and gene enrichment. Our findings indicated that 24UP, BUN, and Scr in the treatment group containing Bailing Capsule were lower than those in the control group. In terms of inflammatory indicators, hs-CRP, IL-6, and TNF-α, the treatment group containing Bailing Capsule also exhibited lower levels than the control group. Based on network pharmacology analysis, we identified 190 common targets of Bailing Capsule and CKD. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggested that the pharmacological mechanism of Bailing Capsule might be related to immune response, inflammatory response, vascular endothelial damage, cell proliferation, and fibrosis. This demonstrates that Bailing Capsule can exert therapeutic effects through multiple targets and pathways, providing a theoretical basis for its use.
Collapse
Affiliation(s)
- Yilin Tao
- Department of Medicine Renal Division, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, China
| | - Ruixiang Luo
- The Third Affiliated Hospital of Sun Yat Sen University, Guangzhou, China
| | - Yuanbing Xiang
- Department of Medicine Renal Division, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, China
| | - Min Lei
- Department of Medicine Renal Division, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, China
| | - Xuan Peng
- Department of Medicine Renal Division, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, China
| | - Yao Hu
- Department of Medicine Renal Division, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, China
- Department of Medicine Renal Division, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Wei C, Wang C, Li R, Bai Y, Wang X, Fang Q, Chen X, Li P. The pharmacological mechanism of Abelmoschus manihot in the treatment of chronic kidney disease. Heliyon 2023; 9:e22017. [PMID: 38058638 PMCID: PMC10695975 DOI: 10.1016/j.heliyon.2023.e22017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/08/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023] Open
Abstract
Abelmoschus manihot (A.manihot) is a herbaceous flowering medicinal plant and flavonoids are its main pharmacological active ingredients. A.manihot is listed in the 2020 edition of the Chinese Pharmacopoeia for the treatment of chronic kidney disease (CKD). A.manihot significantly reduces proteinuria in CKD, and the effectiveness and safety of A.manihot in the treatment including primary glomerulonephropathy and diabetic kidney disease (DKD) have been proved by several randomized controlled trials (RCT). Emerging pharmacological studies have explored the potential active small molecules and the underlying mechanisms in A.manihot. The active constituents of A.manihot are mainly seven flavonoids, including hibifolin, hyperoside, isoquercetin, rutin, quercetin, myricetin, and quercetin-3-O-robinobioside. The mechanisms of action mainly include alleviating renal fibrosis, reducing the inflammatory response and decreasing the apoptosis of podocytes. In this review, we summarize the updated information of active components and molecular mechanisms of A.manihot on chronic kidney disease.
Collapse
Affiliation(s)
- Cuiting Wei
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Nephrology, First Medical Center of Chinese People's, Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese, People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Chao Wang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Nephrology, First Medical Center of Chinese People's, Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese, People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Run Li
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Nephrology, First Medical Center of Chinese People's, Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese, People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Yunfeng Bai
- Department of Nephrology, First Medical Center of Chinese People's, Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese, People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xue Wang
- Department of Nephrology, First Medical Center of Chinese People's, Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese, People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Qingyun Fang
- Department of Nephrology, First Medical Center of Chinese People's, Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese, People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Nephrology, First Medical Center of Chinese People's, Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese, People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese People's, Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese, People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
10
|
Iji OT, Ajibade TO, Esan OO, Awoyomi OV, Oyagbemi AA, Adetona MO, Omobowale TO, Yakubu MA, Oguntibeju OO, Nwulia E. Ameliorative effects of glycine on cobalt chloride-induced hepato-renal toxicity in rats. Animal Model Exp Med 2023; 6:168-177. [PMID: 37141004 PMCID: PMC10158950 DOI: 10.1002/ame2.12315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/21/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND The important roles of liver and kidney in the elimination of injurious chemicals make them highly susceptible to the noxious activities of various toxicants including cobalt chloride (CoCl2 ). This study was designed to investigate the role of glycine in the mitigation of hepato-renal toxicities associated with CoCl2 exposure. METHODS Forty-two (42) male rats were grouped as Control; (CoCl2 ; 300 ppm); CoCl2 + Glycine (50 mg/kg); CoCl2 + Glycine (100 mg/kg); Glycine (50 mg/kg); and Glycine (100 mg/kg). The markers of hepatic and renal damage, oxidative stress, the antioxidant defense system, histopathology, and immunohistochemical localization of neutrophil gelatinase associated lipocalin (NGAL) and renal podocin were evaluated. RESULTS Glycine significantly reduced the markers of oxidative stress (malondialdehyde content and H2 O2 generation), liver function tests (ALT, AST, and ALP), markers of renal function (creatinine and BUN), and decreased the expression of neutrophil gelatinase-associated lipocalin (NGAL) and podocin compared with rats exposed to CoCl2 toxicity without glycine treatment. Histopathology lesions including patchy tubular epithelial necrosis, tubular epithelial degeneration and periglomerular inflammation in renal tissues, and severe portal hepatocellular necrosis, inflammation, and duct hyperplasia were observed in hepatic tissues of rats exposed to CoCl2 toxicity, but were mild to absent in glycine-treated rats. CONCLUSION The results of this study clearly demonstrate protective effects of glycine against CoCl2 -induced tissue injuries and derangement of physiological activities of the hepatic and renal systems in rats. The protective effects are mediated via augmentation of total antioxidant capacity and upregulation of NGAL and podocin expression.
Collapse
Affiliation(s)
| | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwaseun Olanrewaju Esan
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Moses Olusola Adetona
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Momoh Audu Yakubu
- Department of Environmental and Interdisciplinary Sciences, College of Science, Engineering & Technology, COPHS, Texas Southern University, Houston, Texas, USA
| | - Oluwafemi Omoniyi Oguntibeju
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Evaristus Nwulia
- Department of Psychiatry and Behavioral Sciences, Howard University Hospital, College of Medicine, Howard University, Washington, District of Columbia, USA
| |
Collapse
|